Abstract
There are currently bullet trains that are using magnetic levitation to travel more efficiently for long distances than planes or regular trains. These trains work by inducing a current in the track from an on-board generator in the train. This method of producing levitation is not very energy efficient. A permanent magnet will be used to induce a current in the inductrack instead of the generator to improve efficiency. This project is a continuation of a project done last year. There will be an FPGA added to control the system autonomously. A circuit is designed to control the motor speed by using a pulse width modulation (PWM) signal generated by an FPGA. The user will input a desired levitation height into the FPGA which will be converted to a velocity from a look-up table. This is the required motor velocity to reach the levitation height set by the user.

System

High Level Block Diagram

Speed Vs. Duty Cycle Results

Conclusion
An FPGA board was selected for closed loop control of rotary inductrack magnetic levitation system height. The user will input a desired levitation height into the FPGA which will be converted to a desired velocity. The error between the actual velocity and desired velocity is used by a discrete PID controller to generate a PWM signal. This signal drives the power electronics which control the motor speed. All of the subsystems have been tested and are working correctly. The FPGA will be integrated into the system during the remainder of the semester.

References