

ZigBee Infrastructure using DIGI

Gateway and TI CC2650 SensorTags

Adam Holler and Clay McKinley, with Dr. Malinowski

Senior Project 2018-2019 for Electrical Engineering

Final Report

Table of Contents
Table of Contents 1

Abstract 3

Problem Statement 4

Review of Literature/Prior Work 5

ZigBee 6

ZigBee Stack Library 7
Physical Layer 8
MAC Layer 8
Network Layer 9
Application Support Sub-layer (Application Framework) 9
ZigBee Device Objects 9

ZigBee PAN ID 10

ZigBee Operating Channels 11

Product Research 12

Parts Ordered 13

Specifications 14
TI Sensor Tag (CC2650STK wireless MCU) 14
Capacitive Soil Moisture Sensor v1.2 14
Digi XBee® Gateway 14
SimpleLink SensorTag Debugger DevPack 14

Block Diagram 15

Troubleshooting 16

Complications and the Emphasis on Zigbee 19
Compilers and Programs 19

BLE Device Monitor 19
TI SensorTag App 19
Smart RF Studio 7 20
Flash Programmer 2 20
Code Composer Studio 20
IAR Embedded Workbench 20

Holler & McKinley 1

XCTU 21
DIGI Device Cloud 21
PyCharm 2018.3.5 21
DIGI Gateway Web Interface 22

DIGI Xbee - T.I. Compatibility 22

Zigbee Home Automation Standard 22

Zigbee Cluster Library 24

Timeline/Division of Labor 25
Timeline 25
Division of Labor 25

Conclusions 27

Holler & McKinley 2

Abstract

In today’s home automation market the most popular communication protocol is

Bluetooth. However, a less frequently used type of communication for networks of

sensors in home automation, ZigBee, has several unique benefits that Bluetooth lacks.

ZigBee is based on IEEE standard 802.15.4 operating in the 2.4 GHz band and boasts

low power consumption and its ability to communicate in a mesh. Mesh communication

is ZigBee’s main advantage over Bluetooth as it allows individual end devices to

communicate between each other before forwarding data to a central coordinator. This

allows for communication over longer distances as well as increased reliability. If an end

device were to fail, other end devices could still communicate between each other and

the coordinator. Compared to Bluetooth, ZigBee has very little documentation so

research into ZigBee was critical. Using several TI 2650 Sensor Tags and a DIGI

ZigBee gateway, we aimed to facilitate their connection and transmit sensor data for

further use.

Holler & McKinley 3

Problem Statement

Our goal was to research into ZigBee communication protocol as an alternative

to Bluetooth. The information we looked to understand was:

● How exactly data is transmitted between ZigBee devices

● The structure of a ZigBee mesh network and the roles of each device

● What low-power capabilities were available to extend battery life of sensors

● What benefits over Bluetooth did ZigBee have and is it the better choice for our

application

We kept this research in the context of a small network of sensors in a

greenhouse which will collect environmental data such as temperature, humidity,

sunlight and soil moisture. We needed to research sensors that would help us facilitate

this as well as a ZigBee gateway that would receive the data for use by a theoretical

user.

Holler & McKinley 4

Review of Literature/Prior Work

We researched into communication protocols such as Bluetooth Low Energy &

ZigBee vs Wi-Fi, 6LoWPAN. In our research, it was clear that ZigBee and Bluetooth

Low Energy were top competitors for low energy systems. Below is a figure found

during our research that shows average power consumption for transmitting and

receiving of different communication protocols. We compared and contrasted Bluetooth

Low Energy and ZigBee, finding that the former was more energy efficient for smaller

wireless networks but ZigBee was more efficient for larger networks due to its mesh

network capabilities. Researching ZigBee protocol gives us an opportunity to learn

about a communication protocol that is not as widely used so in the future we can make

decisions about which is best in what situation.

Figure1: Communication protocol power consumption

Holler & McKinley 5

ZigBee

ZigBee was released before Bluetooth Low Energy as a way to link hundreds of

devices wirelessly onto a single network. As described in [7] ZigBee has two

implementation options, ZigBee and ZigBee Pro. ZigBee is for smaller networks where

ZigBee Pro, the more popular version, is capable of linking up to 64,000 devices of a

wider variety onto a single network.

ZigBee operates on the same 2.4 gigahertz frequency as Bluetooth which is split

into 16 channels for communication. In a ZigBee system there are 3 categories of

nodes: Coordinator, router, and end devices. Courtesy of [2], a possible organization of

these devices is seen in figure 1.

Figure1: ZigBee Network

● The coordinator acts as the root of the network. It is responsible for determining

things like the frequency channel of communication and possibly communicating with

other networks. Each ZigBee network must have exactly one coordinator.

Holler & McKinley 6

● Routers act as bridges that communicate that relay data between routers and

end devices or to coordinators.

● End devices are sensors that are potentially battery powered who only have

enough functionality to transmit data to either routers or coordinators and cannot

receive any data. This allows for the end devices to be cheaper and have a much longer

battery life as they can stay in a sleep state for significant periods of time.

There are also two physical types on devices with ZigBee detailed in [8]. There is

a Full-function device (FFD) and a Reduced-function device (RFD). FFDs can talk to

RFDs or other FFDs. Where a RFD can only talk to FFDs. RFDs are used in very

simple applications such as a light switch where the device only has to send a simple

signal.

Holler & McKinley 7

ZigBee Stack Library

Most network protocols use the concept of layers to separate different

components and functions into independent modules that can be assembled in different

ways. Zigbee is built on the Physical (PHY) layer and Medium Access Control (MAC)

sub-layer defined in the IEEE 802.15.4 standard. There are other standards on the

IEEE 802.15.4, such as WirelessHART and MiWi. These layers handle low-level

network operations such as addressing and message transmission/reception. The

Zigbee specification defines the Network (NWK) layer and the framework for the

application (APL) layer. The Network layer takes care of the network structure, routing,

and security. The application layer framework consists of the Application Support

sub-layer (APS), the Zigbee device objects (ZDO) and user-defined applications that

give the device its specific functionality.

Holler & McKinley 8

Physical Layer

Defines the physical operation of the Zigbee device including receive sensitivity,

channel rejection, output power, number of channels, chip modulation, and transmission

rate specifications. Most Zigbee applications operate on the 2.4 GHz ISM band at a 250

kb/s data rate. See the IEEE 802.15.4 specification for details.

MAC Layer

Manages RF data transactions between neighboring devices (point to point). The

MAC includes services such as transmission retry and acknowledgment management,

and collision avoidance techniques (CSMA-CA).

Network Layer

Adds routing capabilities that allows RF data packets to traverse multiple devices

(multiple hops) to route data from source to destination (peer to peer).

Application Support Sub-layer (Application Framework)

Application layer that defines various addressing objects including profiles,

clusters, and endpoints. We would have got to editing this.

Holler & McKinley 9

ZigBee Device Objects

Application layer that provides device and service discovery features and

advanced network management capabilities.

Holler & McKinley 10

ZigBee PAN ID

The 16-bit PAN ID is used as a MAC layer addressing field in all RF data

transmissions between devices in a network. However, due to the limited addressing

space of the 16-bit PAN ID (65,535 possibilities), there is a possibility that multiple

Zigbee networks (within range of each other) could use the same 16-bit PAN ID. To

resolve potential 16-bit PAN ID conflicts, the Zigbee Alliance created a 64-bit PAN ID.

The 64-bit PAN ID (also called the extended PAN ID), is intended to be a unique,

non-duplicated value. When a coordinator starts a network, it can either start a network

on a preconfigured 64-bit PAN ID, or it can select a random 64-bit PAN ID. Devices use

a 64-bit PAN ID during joining; if a device has a preconfigured 64-bit PAN ID, it will only

join a network with the same 64-bit PAN ID. Otherwise, a device could join any detected

PAN and inherit the PAN ID from the network when it joins. All Zigbee beacons include

the 64-bit PAN ID and is used in 16- bit PAN ID conflict resolution.

Holler & McKinley 11

ZigBee Operating Channels

Zigbee uses direct-sequence spread spectrum modulation and operates on a fixed

channel. The 802.15.4 PHY defines 16 operating channels (channels 11 to 26) in the 2.4 GHz

frequency band. Below is the TI SensorTag file that shows the channels.

Holler & McKinley 12

Product Research

With the application of a series of sensors for a greenhouse in mind, we began

looking for suitable devices. There were more familiar microcontrollers such as the

ESP286, but they did not have as many on-board sensors as well as not supporting

ZigBee. The best candidate we found was the TI SensorTag which offered an

impressive number of built in sensors in addition to having ZigBee support. The TI

SensorTags needed a dedicated physical debugger to program directly which TI

SensorTag DevPacks would be able to do. In addition to the SensorTags themselves

and their debuggers, ZigBee also required a ZigBee to internet specific gateway. This

gateway would act as a ZigBee coordinator and make data collected from the

Sensortags available for further use. Many common IoT bridges such as Amazon’s

Alexa is actually a Zigbee/Ethernet gateway, though we were looking for a simpler,

dedicated device. The best option at the time seemed to be a XBee gateway by DIGI.

The DIGI XBee gateway was advertised as being compatible with any ZigBee Pro

device. XBee modules are DIGI brand specific radios which have ZigBee capabilities.

Additionally we thought having a soil moisture sensor would be a good device for data

collection as they were lost cost on Amazon.

Holler & McKinley 13

Parts Ordered

4x BLUETOOTH SENSOR TAG 296-38831-ND

3x DEBUGGER FOR SENSORTAG 296-42039-ND

1x Networking Modules XBee Gateway ZigBee to Ethernet Intl 888-X2E-Z3C-E1-W

1x Capacitive soil moisture sensor

Holler & McKinley 14

Specifications

TI Sensor Tag (CC2650STK wireless MCU)

● 10 low-power sensors, including ambient light, digital microphone, magnetic sensor,

humidity, pressure, accelerometer, gyroscope, magnetometer, object temperature

and ambient temperature.

● Ultra low power, coin cell battery, ARM Cortex-M3.

● Uses Zigbee or 6LoWPAN.

Capacitive Soil Moisture Sensor v1.2

● 5V, Analog readings 2.4-4.4V

Digi XBee® Gateway

● Protocols: UDP/TCP, DHCP. Security: SSL tunnels, WEP-40, WEP-104,

WPA/WPA2, Authentication with PSK and EAP

● OS: Digi Embedded Linux

SimpleLink SensorTag Debugger DevPack

● Small form-factor XDS110 debugger

Holler & McKinley 15

Block Diagram

Holler & McKinley 16

Troubleshooting

The first thing we tested was the capacitive moisture sensor. It does not have a

data sheet so we have hooked up the sensor to the power supply and oscilloscope. It

needs a supply of around 5V and the analog output is between 2.4-4.2V.

We initially booted up the TI SensorTags we ordered and used the TI Smart Tag

App to rename the devices and see how they operate. After reading through a lot of

documentation, we have arrived on using Code Compiler Studio. We had some trouble

installing the application. We also figured out how to use the TI DevPack and hook up to

the computer via Micro USB cable. Using the BLE Device Manager, we got marginal

success with connecting to the device. We still are researching how to program the

device, with the ultimate goal of configuring GPIO pin for the moisture sensor.

We also have read through documentation for Digi Gateway, it did come with an

ethernet cable which is nice.

In the second half of the semester we started hunting for the Zigbee firmware on

the TI SensorTags. This is where the crux of the project turned into figuring out Zigbee.

The Mobile Phone App for TI SensorTags had a firmware page, and it seemed simple

enough. Just click on the firmware you wanted to upgrade to. There was firmware for

Zigbee as an option, however, when selected the app proceeded to do nothing. No

response. We figured it was bugged. Now it was on to manually flashing Zigbee

Holler & McKinley 17

firmware to the SensorTags, which seems simple enough however finding the firmware

was a hassle.

To start, there was an emphasis on Zigbee 3.0, what seemed to be Zigbee’s

latest development on its networking. So when we first started searching for Zigbee

firmware we were directed to the Zigbee 3.0 Stack for CC2650. However, the chip on

the SensorTag is a CC2640, even though the part number for the SensorTag is

CC2650STK. This was a point a confusion, because the product description said the

SensorTag was Zigbee compatible, however every time we tried to look up zigbee

firmware we were directed to the Zigbee 3.0 Stack website.

It wasn’t until a few weeks when later we happen to find an older link which took

us to the ZStack 1.22a Home Automation Library where our next breakthrough was.

After installing that stack, we had to dig but eventually we found there was an

SensorTag example. The issue was, the example used IAR Embedded Workbench,

instead of Code Compiler Studio to compile. And this caused some issues as explained

below.

After temporarily solving the issues with the new compiler, it was time to start

taking a look at the DIGI gateway. We had a router put in the lab where we could hook it

up to the internet and we registered the device online so we could monitor it. Eventually

we found we configure base settings in the Web Interface or simply a SSH session with

login. Clay did find some information on the python script used to program the gateway

but in the end it was easier and simpler to change network settings through this

interface.

Holler & McKinley 18

The final phase was trying to run the example program on the SensorTag and

get the DIGI gateway to find it. We of course did adjust settings in the sample program.

Such as the PAN ID, channel settings and EPID. From our intensive forum searching

and documentation hunting these were the primary settings we had to change, since the

SensorTag was already setup for Zigbee Home Automation Standard. So the next step

was to configure the gateway to Zigbee Home Automation Standard. To this day we

setup everything to that standard but we never could the gateway to find the

SensorTag.

Holler & McKinley 19

Complications and the Emphasis on Zigbee

Compilers and Programs

We used and experimented with several programs while trying to find the best

method for utilizing ZigBee. These are listed below, all of which we installed on our own

machines.

BLE Device Monitor

This was one of the first programs we found, which will detect TI brand Bluetooth

devices. We hoped we would be able to alter setting of the TI sensor tags as they were

Bluetooth by standard but the program did not have the functionality we were looking

for.

TI SensorTag App

A mobile app developed by TI specifically for SensorTags. This app allowed us to

read sensor data, change sampling rate, rename specific sensor tags and among other

capabilities, it allowed us to download the ZigBee stack which would enable ZigBee

capability. However, this capability does not work and no fix was released by TI.

Holler & McKinley 20

Smart RF Studio 7

This program monitors radio frequency communication on TI SensorTags,

unfortunately, its functionality does not extend to SensorTags using ZigBee.

Flash Programmer 2

Flash Programmer 2 is a programmer which could load .hex and .out files to our

SensorTags which were generated by the different IDEs discussed below. The files

were downloaded onto the SensorTags themselves via a USB connection to the

attached debugger.

Code Composer Studio

In terms of ease of use, this IDE for the SensorTags is by far the best. Aside from

creating a few small programs to test the SensorTags capabilities, its usefulness was

completely negated by the fact that ZigBee functionality was exclusive to IAR

Embedded Workbench described below.

IAR Embedded Workbench

This is the main compiler and debugger which is used for the Z-stack project for

the TI SensorTags. This IDE specifically was required as it was the only one which

could handle ZigBee protocol. The sample programs we were dealing with went as far

as to check if the programmer was using IAR Embedded Workbench or it would

Holler & McKinley 21

immediately stop running. This program does require a license which we were able to

get with our student emails for 30 days at a time. Unfortunately this program was

plagued with constant bugs which would require anything from restarting to reinstalling

the software.

XCTU

XCTU is a program for DIGI products which would monitor ZigBee

communication and allow configuration of device settings. Unfortunately, it required a

serial connection which our DIGI gateway did not have.

DIGI Device Cloud

This web application is a handy tool that allowed a DIGI gateway which was

connected to the internet to be remotely monitored and configured. This also allowed us

to download the source python code that the DIGI Gateway was running and reupload

any modified version.

PyCharm 2018.3.5

This program was our choice for modifying the python code that the DIGI

gateway was running.

Holler & McKinley 22

DIGI Gateway Web Interface

This web interface that was accessed by connecting directly to the IP of the

Gateway allowed for monitoring the entire ZigBee network. The interface also allowed

for changing of several settings to match with the settings we put on the TI SensorTags.

DIGI Xbee - T.I. Compatibility

There are some differences between the similar looking names to be aware of.

First off, Xbee refers to a family of devices from Digi that share form factor, host

interface and a group of protocols you can select from (Zigbee being one of these).

Zigbee, on the other hand, is a mesh networking protocol built upon the 802.15.4 IEEE

standard. So Zigbee protocol dictates how devices can communicate wirelessly and are

one of the supported protocols of the Xbee products. Zigbee also has their line of goods

too; however, they only support Zigbee communication protocols.

This is the main point of conflict in this project. DIGI devices have a standard for

easy connection between their ZigBee devices called Xbee. When we were configuring

the DIGI coordinator/router to accept non-Xbee devices, we had to set up the gateway

using the Zigbee Home Automation standard.

Zigbee Home Automation Standard
There are different Zigbee standards:

Holler & McKinley 23

The version we use is Zigbee Home Automation, which uses these standards:

Holler & McKinley 24

The SensorTag Zigbee example is set up already for Zigbee Home Automation

Standard. However, the DIGI gateway was the tricky part. That had to have specific

settings for this standard. Here is what DIGI has on their website:

Zigbee Cluster Library
We would have looked further into this library if we have had the time. This is

how ZigBee is a standard when dealing with clusters and binding.

Holler & McKinley 25

Timeline/Division of Labor

Timeline

There was always research being done. So in general are listed the major goals

of each month:

● Fall Semester - Researched several products for project and ZigBee protocols and

gateways.

○ October - We acquired the first set of components

● February - Focused on finding firmware (ZigBee Stack) for TI SensorTag

● March - Setup IAR Embedded Workbench, DIGI gateway, and started

troubleshooting connection between gateway and SensorTag

● April - Continued ZigBee/XBee troubleshooting and documentation

● May - Finished final paper and Final presentation

Division of Labor

We typically combined effort by following what is known as agile pair

programming. One of us would act as the ‘driver’ who wrote code or changed ZigBee

settings.The other would be the ‘navigator’ who checked changes and kept the overall

goal of these changes in mind. These roles were switched often. When we did have a

true split it would typically be split into one person programming sensortag and other

Holler & McKinley 26

programming the DIGI gateway.

Holler & McKinley 27

Conclusions

We figured out that the use of DIGI’s XBee is situational to where only DIGI

devices will be interfaced with. Some companies have their own ‘brand’ of ZigBee with

questionable cross compatibility. So beware inaccurate advertising. Going forward we

recommend TI’s CC1350 for a ZigBee Router or simply just use XBee devices with the

DIGI gateway.

Holler & McKinley 28

Appendix A:
Power Efficiency for Small Electronics: Comparing Bluetooth Low

Energy and ZigBee

Abstract- Power efficiency for small wireless networks is vital for extending the battery life of a
network. One way to extend the life time of these electronics is by altering how it communicates.
There are two dominant communication protocols that have low-power in mind, Bluetooth and
ZigBee. Both of these protocols will be analyzed in how they function and how they compare to
other communication protocols. They will then be compared against each other in their ability to
use the least amount of power possible. Each protocol’s ability to reduce power without
sacrificing significant performance will be key in determining which protocol is superior for
low-power. These factors and more will be thoroughly discussed in the following report.

Clay McKinley
November 7 2018

Power Efficiency for Small Electronics: Comparing Bluetooth Low Energy
and ZigBee

Clay McKinley, in association with Bradley University

Holler & McKinley 29

Abstract

Power efficiency for small wireless networks is vital
for extending the battery life of a network. One way to
extend the life time of these electronics is by altering how
it communicates. There are two dominant
communication protocols that have low-power in mind,
Bluetooth and ZigBee. Both of these protocols will be
analyzed in how they function and how they compare to
other communication protocols. They will then be
compared against each other in their ability to use the
least amount of power possible. Each protocol’s ability to
reduce power without sacrificing significant
performance will be key in determining which protocol is
superior for low-power. These factors and more will be
thoroughly discussed in the following report.

Introduction

The two protocols which will be discussed, ZigBee
and Bluetooth, dominate the market for low power
wireless sensor network communication. The Bluetooth
discussed will be Bluetooth 4 also known as Bluetooth
Low Energy. The iteration of ZigBee discussed is IEEE
802.15.4. As explained in [5], Both of these protocols do
their job well and are widely used, however they do not do
exactly the same thing. Bluetooth Low Energy is designed
as a one to one communication protocol as explained in
[6]. This means that the layout of a wireless sensor
network must change to meet the needs of a wireless
sensor network. Zigbee protocol is capable of connecting
far more sensors than bluetooth. So, in order to compare
these protocols we will compare their effectiveness when
used in small wireless sensor networks of 5 or less nodes.

Bluetooth

Bluetooth was released as a machine to machine
protocol for reliable short distance communication. Today
it still fits this definition but has been improved to be far
more energy efficient. This has made it a strong contender
against protocols like ZigBee for small wireless sensor
communication. The main difference between standard
Bluetooth and Bluetooth Low Energy (BLE) is that BLE

makes a tradeoff in response time in order to increase
power efficiency.

As described in [11], Bluetooth Low Energy has
several theoretical specifications. A BLE device on a coin
cell battery has a lifetime between 2 days and 14.1 years
depending on what exactly the device is doing. BLE works
off of what is known as a master and slave design where
for each master(the device requesting data, which can be
linked to several devices), BLE can support between 1 and
5,917 slaves(the devices providing data, which can only be
linked to one master). The minimum time for a master to
obtain a sensor reading from a slave is 676 microseconds.
BLE devices are non-compatible with standard Bluetooth
devices. BLE operates in 2.4 gigahertz frequency band and
defines 40 radio frequency channels that are 2 megahertz
apart. Three of these 40 channels are defined as
advertising channels which are used to link new
connections before they communicate on one of the other
channels called data channels. To save energy the slaves
are put in a low-power sleep mode by default and
occasionally wake up to listen to requests. The master
determines how often the slaves wake up to listen as well
as other information such as what frequency channels to
transmit on. So, every time a slave device wakes up, the
master device makes a request which the slave receives,
send the requested data, then re-enters sleep mode.

ZigBee

ZigBee was released before Bluetooth Low Energy as
a way to link hundreds of devices wirelessly onto a single
network. As described in [7] ZigBee has two
implementation options, ZigBee and ZigBee Pro. ZigBee
is for smaller networks where ZigBee Pro, the more
popular version, is capable of linking up to 64,000 devices
of a wider variety onto a single network.

ZigBee operates on the same 2.4 gigahertz frequency
as Bluetooth which is split into 16 channels for
communication. In a ZigBee system there are 3 categories
of nodes: Coordinator, router, and end devices. Courtesy
of [2], a possible organization of these devices is seen in

Holler & McKinley 30

figure 1.

Figure1: ZigBee Network

● The coordinator acts as the root of the network.

It is responsible for determining things like the frequency
channel of communication and possibly communicating
with other networks. Each ZigBee network must have
exactly one coordinator.

● Routers act as bridges that communicate that

relay data between routers and end devices or to
coordinators.

● End devices are sensors that are potentially

battery powered who only have enough functionality to
transmit data to either routers or coordinators and cannot
receive any data. This allows for the end devices to be
cheaper and have a much longer battery life as they can
stay in a sleep state for significant periods of time.

There are also two physical types on devices with

ZigBee detailed in [8]. There is a Full-function device
(FFD) and a Reduced-function device (RFD). FFDs can
talk to RFDs or other FFDs. Where a RFD can only talk to
FFDs. RFDs are used in very simple applications such as a
light switch where the device only has to send a simple
signal.

Power Consumption

Both ZigBee and BLE were designed with power
efficiency in mind. They both far outdo other protocols for
wireless sensor networks. This is illustrated in figure 2
which is seen in [3] where power consumption was
averaged across several devices using ZigBee, Bluetooth,
as well as WiFi and UWB, which are other popular
communication protocols as comparison. These devices
were measured in transmit mode(TX) as well as receive

mode(RX).

Figure2: Power Consumption

As can be seen in Figure 2 above, Bluetooth and

ZigBee consume far less energy and are far superior to
UWB and WiFi in terms of power efficiency. ZigBee and
Bluetooth, however, were too close in power consumption
and measured on too few devices to determine which one
was more efficient.

In order to properly test BLE and ZigBee, they must
be used equally in a state that prioritizes power efficiency.
As previously mentioned, both of these protocols can
utilize a sleep mode where sensors or end devices can
enter a low power state. As pointed out in [10], while in
sleep mode, these devices cannot transmit or receive data.
In order to save energy these end devices are put on a set
timer where they will wake up out of sleep mode, transmit
data it has, then re-enters sleep mode. The length of this
sleep interval is determined by the master in bluetooth and
either by the main coordinator or individually on each end
device in zigbee. So, a test was done by [4] where a single
sensor node is in a sleep cycle and will transmit to some
receiver. Both devices were on a 3.3 Volt power supply,
which is standard for these devices, and was set to sleep
for 120 seconds before waking up to transmit data. The
power consumption in each was measured in microamps.
The test found that Bluetooth Low Energy had the lowest
power consumption of 10.1 microamps and ZigBee fell
behind at 15.7 microamps.

This test is reinforced by the findings of [1] which
goes more in depth by measuring the watts used in each
phase of communication. The total power consumed by
BLE was 234 microwatts compared to the total power
consumed by ZigBee which was 356 microwatts. With
each phase of communication added up, the findings were
very similar to that found in [4].

Holler & McKinley 31

Conclusion

Overall, both Bluetooth and ZigBee accomplish what
they were made to do. They consume significantly less
power than other protocols such as WiFi and UWB.
However, when it came down to the power consumption
of a single node in a sleep cycle, Bluetooth Low Energy
was superior. The difference between them was large
enough to be a major determining factor in which protocol
to use in wireless sensor networks.

References

[1] M. Siekkinen, M. Hiienkari, J. K. Nurminen and J. Nieminen,

"How low energy is bluetooth low energy?
Comparative measurements with ZigBee/802.15.4,"
2012 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW), Paris, 2012, pp.
232-237.

[2] N. A. Somani and Y. Patel, “ZigBee: a low power wireless

technology for industrial applications,” International
Journal of Control Theory and Computer Modelling,
Vol. 2, No. 3, May 2012.

[3] J. Lee, Y. Su and C. Shen, "A Comparative Study of Wireless

Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,"
IECON 2007 - 33rd Annual Conference of the IEEE
Industrial Electronics Society, Taipei, 2007, pp. 46-51.

[4] A. Dementyev, S. Hodges, S. Taylor and J. Smith, "Power

consumption analysis of Bluetooth Low Energy,
ZigBee and ANT sensor nodes in a cyclic sleep
scenario," 2013 IEEE International Wireless
Symposium (IWS), Beijing, 2013, pp. 1-4.

[5] J. Lee, M. Dong and Y. Sun, "A preliminary study of low

power wireless technologies: ZigBee and Bluetooth
Low Energy," 2015 IEEE 10th Conference on
Industrial Electronics and Applications (ICIEA),
Auckland, 2015, pp. 135-139.

[6] N. Baker, "ZigBee and Bluetooth strengths and weaknesses

for industrial applications," in Computing & Control
Engineering Journal, vol. 16, no. 2, pp. 20-25,
April-May 2005.

[7] E. Antonopoulos, K. Kosmatopoulos and T. Laopoulos,
"Reducing power consumption in pseudo-ZigBee
sensor networks," 2009 IEEE Instrumentation and
Measurement Technology Conference, Singapore,
2009, pp. 300-304.

[8] A. A. Essa, Xuan Zhang, Peiqiao Wu and A. Abuzneid,

"ZigBee network using low power techniques and
modified LEACH protocol," 2017 IEEE Long Island
Systems, Applications and Technology Conference
(LISAT), Farmingdale, NY, 2017, pp. 1-5.

[9] Itsuki Tanabe, Hiroshi Sasaki and Li Zheng, "An ultra low

power ZigBee module - AA batteries with life
expectancy of 10 or more years!," 2008 5th
International Conference on Networked Sensing
Systems, Kanazawa, 2008, pp. 245-245.

[10] Y. Qianjun, W. Guichu, Y. Fenqun and X. Hongyan,

"Design and applications of intelligent low voltage
distribution system based on ZigBee," 2011
International Conference on Electronics,
Communications and Control (ICECC), Ningbo, 2011,
pp. 791-794.

[11] C. Gomez, J. Oller and J. Paradells. “Overview and

evaluation of bluetooth low energy: an emerging
low-power wireless technology,” Sensors 2012, Vol.
12, No. 9, pp. 11734-11753, August 2012.

Holler & McKinley 32

