ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY BOARD

Will Anderson
Advisor: Dr. Brian Huggins

(B)BRADLEY University

AGENDA

- Introduction
- Problem Statement
- Engineering Efforts
- Future Work
- Questions
- References
(B)BRADLEY University

INTRODUCTION

(B)BRADLEY University

PROBLEM BACKGROUND

- Battery dependency at an all-time high
- Need to use batteries at maximum efficiency
- Two most common battery capability metrics:
- State of Charge (SOC)
- State of Health (SOH)
(回)BRADLEY University

PROBLEM BACKGROUND

- State of Charge (SOC):
- A metric that reports percentage of energy remaining as compared to maximum energy ${ }^{[1]}$
- Multiple established methods of calculating SOC:
- Coulomb Counting
- Open Circuit Voltage lookup table

(B)BRADLEY University

PROBLEM BACKGROUND

- State of Health (SOH):
- Currently a more complex and uncertain method
- Goal is to inform the user of overall condition and performance capabilities, and to warn of catastrophic failure
- Many proposed SOH solutions require bulky and expensive equipment
- Not viable for most Battery Management Systems

PROBLEM STATEMENT

A lightweight, compact, low power, and inexpensive solution must be found for a real-time SOH monitor to be attached to a deployable battery
(回)BRADLEY University

REVIEW OF EXISTING LITERATURE

- Potential SOH Methods ${ }^{[2]}$:
- Linear Approximation
- Single Cell Impedance
- Weighted Average
- Log Book Function
- Electrochemical Impedance Spectroscopy (EIS)
(B)BRADLEY University

REVIEW OF EXISTING LITERATURE

- EIS:
- Established for laboratory experiments ${ }^{[3]}$
- Basic Principle ${ }^{[4]}$ is to excite electrochemical cell with sinusoidal signal and measure the response
- Linearity of the system means sinusoidal input will yield approximately sinusoidal output
(B)BRADLEY University

REVIEW OF EXISTING LITERATURE

- EIS offers wealth of battery information ${ }^{[5]}$:
- Reaction mechanisms
- Change of active surface area during operation
- Separator Evaluation
- Possible corrosion processes
- Our use is to generate frequency response and Nyquist plots

REVIEW OF EXISTING LITERATURE

Figure 1: Frequency Response and Nyquist Plots ${ }^{[4]}$

- Battery health degradation tracked by outward shifts in the curvature over time

(B)BRADLEY University

PROBLEM SOLUTION

- EIS determined to be most effective solution
- Proper implementation aims to ${ }^{[6]}$:
- Enhance accuracy of SOC and SOH measurements
- Fine tune individual cell balancing
- Extend discharge and shorten charge cycles
- Provide second life benefits

(回BRADLEY University

PROBLEM SOLUTION

- Sandia National Laboratories (SNL) has developed "EIS Board"
- Capable of performing two different EIS Techniques

Figure 2: High Level EIS Board Block Diagram
(回)BRADLEY University

ENGINEERING EFFORTS

Design

(B)BRADLEY University

DESIGN GOALS

- EIS Board intended to be capable of implementing two different EIS techniques
- Method 1: "Pseudo EIS"
- Method 2: "True Impedance Spectroscopy"
- My goal was to write all of the firmware for these methods
- Current board hardware is only capable of Method 1

DESIGN GOALS

- Efficient firmware was written for:
- UART Communication to Laptop
- ADC, LCD, Timer, GPIOs
- Initial SPI and I2C Communication to EIS Hardware

(B)BRADLEY University

EIS METHOD 1: "PSEUDO EIS"

Figure 3: EIS Board Block Diagram for EIS Method 1

EIS METHOD 1: "PSEUDO EIS"

- Battery excited by square-wave current pulse
- Voltage response is measured
- Fourier Transform of both waveforms
- Complex impedance response calculated
- Filtering by digital signal processing
- Nyquist Plot graphed

- Track deviations over time
(B)BRADLEY University

EIS METHOD 2: "TRUE IMPEDANCE SPECTROSCOPY"

Figure 5: EIS Board Block Diagram for EIS Method 2
(回)BRADLEY University

EIS METHOD 2: "TRUE IMPEDANCE SPECTROSCOPY"

- Utilizes impedance converter/network analyzer AD5933 [7]
- With help from the AD5174 digital rheostat ${ }^{[8]}$
- Allows for excitation of load by sinusoidal voltage at known frequencies
- Performs on-board Fourier transform with DSP engine
- Returns real and imaginary impedance values at known frequency

(回BRADLEY University

AD5933

- Impedance Converter
- Network Analyzer
- Frequency Sweep Generator
- 12 bit ADC
- DSP Engine

Figure 6: Functional Block Diagram of AD5933 [7]
(回)BRADLEY University

EIS METHOD 2: "TRUE IMPEDANCE SPECTROSCOPY"

Figure 7: EIS Method 2 Software Flow Chart
(回)BRADLEY University

ENGINEERING EFFORTS

Experimental Results

(回BRADLEY University

EIS METHOD 1 RESULTS

(B)BRADLEY University

EIS METHOD 1 RESULTS

Current Pulse

Figure 8: Experimental vs Theoretical Data [9]

(回)BRADLEY University

EIS METHOD 1 RESULTS

$$
\begin{gathered}
Z(\omega)=\frac{U(\omega)}{I(\omega)}=\frac{U_{0}}{I_{0}} \cdot e^{j \phi} \\
Z(\omega)=|Z| \cdot e^{j \phi}=R_{\text {real }}+j \cdot R_{\text {img }}
\end{gathered}
$$

Where:

- U represents the FT of voltage response
- I represents the FT of excitation current
- Z represents impedance response

FUTURE WORK

(回BRADLEY University

FUTURE WORK

- Further research and testing on DSP algorithms for EIS Method 1
- Second version of EIS Board needed
- Firmware for EIS Method 2 completion
- Test EIS Method 2 on power supply for proof of concept
- Test EIS Method 2 functionality on batteries
- Collect data and analyze the results
(回)BRADLEY University

FUTURE WORK

- Create database of battery health "fingerprints" to track changes in health over time

Figure 10: Estimated Nyquist Plot for Varying SOH ${ }^{[10]}$

QUESTIONS?

(回)BRADLEY University

REFERENCES

 301998.

- [2] "State of Health (SOH) Determination." Battery and Energy Technologies, Woodbank Communications Ltd, www.mpoweruk.com/soh.htm.
- [3] A. Christensen and A. Adebusuyi, "Using on-board electrochemical impedance spectroscopy in battery management systems," 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, 2013, pp. 1-7. doi: 10.1109/EVS.2013.6914969
- [4] Wang Li, Gen Wang Liu, and Fu He Yang. Design of Automatic Measurement System of Lithium Battery Electrochemical Impedance Spectroscopy Based on Microcomputer. Applied Mechanics and Materials, 241-244:259- 264, December 2012.
- [5] Dr. Hong Shih, "Electrochemical Impedance Spectroscopy for Battery Research and Development," Solartron Instruments a division of Solartron Group Ltd. [Online]. Available: https://www.ameteksi.com/-/media/ameteksi/download_links/documentations/library/solartonanalytical/electrochemistry/technical report 31 hong shih eis for battery research.pdf?la=en.
- [6] Uwe Tr"oltzsch, Olfa Kanoun, and Hans-Rolf Tr"ankler. Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochimica Acta, 51(8-9):1664-1672, January 2006.
- [7] "AD5933," 1 MSPS, 12-Bit Impedance Converter, Network Analyzer. [Online]. Available: https://www.analog.com/en/products/ad5933.html\#product-overview. [Accessed: 06-Nov-2018]
- [8] "AD5174," Single-Channel, 1024-Position, Digital Rheostat with SPI interface and 50-TOP Memory. [Online]. Available: https://www.analog.com/en/products/ad5174.html [Accessed: 06-Nov-2018]
- [9] Andre, D., et al. "Characterization of High-Power Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy. I. Experimental Investigation." Jounral of Power Sources, 12 Jan. 2011, www.Elsevier.com/locate/jpowsour.
- [10] T. Stockley, K. Thanapalan, M. Bowkett, J. Williams, and M. Hathway, "Advanced EIS techniques for performance evaluation of Li-ion cells," in 19th World Congress the International Federation of Automatic Control, pp. 8610-8615, 2014.

(回)BRADLEY University

