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Objective and Contribution
Objective
• Develop a platform allowing mobile devices to control

the motion of a group of helicopters
Contribution
• Determine trade-offs between traditional control

techniques and machine learning
• Multi-Helicopter Application
Applications
• Teleoperation approach to search and rescue
• Aerial turbulence resistance

Problem Setup
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Figure 1:High level architecture of the proposed system.

Figure 2:2-DOF helicopter (Quanser Aero).

• State-space representation of 2-DOF helicopter


θ̇

ψ̇

θ̈

ψ̈



=



0 0 1 0
0 0 0 1
0 −Ksp/Jp −Dp/Jp 0
0 0 1 −Dy/Jy





θ
ψ

θ̇

ψ̇



+



0 0
0 0

Kpp/Jp Kpy/Jp
Kyp/Jy Kyy/Jy




Vp
Vy
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Figure 3:A desired orientation is given by a user. The difference between
this input and the actual position is calculated. The controller the calcu-
lates the proper amount of voltage to apply to the DC motors.

1 Employ state-space representation of 2-DOF helicopter:
ẋ = Ax + Bu

2 Use state feedback law
u = −Kx

to minimize the quadratic cost function:
J(u) = ∫∞

0 (xTQx + uTRu + 2xTNu)dt
3 Find the solution S to the Riccati equation

ATS + SA− (SB + N)R−1(BTS + NT ) + Q = 0
4 Calculate gain, K

K = R−1(BTS + NT )

Optimal Noise Resistant Control
Algorithm

• Utilizes gain calculated in LQR
• Added Kalman filter to reduce external disturbances to the

system

Figure 4:Noise resistant 2-DOF helicopter model.

Reinforcement Learning Algorithm
• Uses neural network based on difference between desired

and actual orientation to determine optimal gain
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Figure 5:ADP Neural Network

Simulation Results
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Figure 6:A comparison between LQG and LQR control for a step input is
shown for (a) the main rotor and (b) the tail rotor and the corresponding
voltages in (c) and (d)

Experimental Results
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Figure 7:Experimental Setup
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Figure 8:ADP experimental results for (a) the main rotor and (b) the tail ro-
tor given a step input

0 5 10 15 20 25 30

time(s)

-10

-5

0

5

10

15

20

P
it
c
h

(d
e

g
)

(a)

0 5 10 15 20 25 30

time(s)

-40

-20

0

20

40

60

Y
a

w
(d

e
g

)

(b)
Figure 9:Comparison between P and PI control for a step input is shown
for (a) the main rotor and (b) the tail rotor
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Figure 10:(a) Time = 0 and (b) Time = 10

Conclusion and Future Work
• Model-based reinforcement learning technique (ADP) is

useful when system model is unknown

• Implement PI controller for ADP algorithm
• Use digital compass to increase accuracy of orientation

and help identify initial position


