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Abstract— This paper proposes a strategy for test-
ing and comparing three control algorithms, LQR,
LQG, and ADP, to control two two-DOF helicopters
from a mobile device. We will be using Raspberry Pi
3’s as terminals for the wireless communication and
MATLAB as our primary coding language.

I. INTRODUCTION

Helicopters are of a paramount importance as
they are used in many civilian and military appli-
cations due to their ability for vertical take-off and
landing. To enable their use in such applications,
intensive research has been conducted in the lit-
erature to date since helicopters involve complex
nonlinear dynamics. Most of the work on helicopter-
based research requires dedicated computers for
controlling their motion to specific configurations
and resistant to turbulent conditions. Such meth-
ods are expensive and time-consuming to develop.
Implementation of motion control techniques using
cost-effective hardware is still a challenge.

In this project, we are proposing an algorithm
for smart control of a team of two degree-of-
freedom (two-DOF) helicopters using conventional
motion control in cooperation with machine learn-
ing techniques where a user will be able to con-
figure helicopters from any initial position. Even
though conventional techniques have been tested
with simple platforms in the literature, the current
project employs conventional motion control strate-
gies in cooperation with machine learning technique
(reinforcement learning, for instance) for a team
of helicopters as well as introducing user control
via mobile devices. This project is expected to
encourage research in this area as well as serve as
an educational tool in teaching environments.

II. BACKGROUND STUDY

Our project requires a great deal of research as
some of our tasks have not been attempted before.
As a result, we have examined research papers,
work complete by other projects at Bradley Uni-
versity, and documentation/teaching materials from
Quanser Inc.

A. Review of Literature

In order to get a better understanding of im-
portance, kinematics, and control techniques of he-
licopters, several articles, journal, and conference
papers we examined.

The motor directly controls the angle of their
respective axis using the force generated by its
propeller, creating a torque on the opposite axis as
an effect of air resistance. [1]

τp = lpKppΩ2
p + lpKpyΩ2

y (1)

τy = lyKyyΩ2
y + lyKypΩ2

p (2)

where Kpp is the pitch motor thrust constant, Kpy

thrust constant acting on the pitch angle from the
yaw motor, Kyp thrust constant acting on yaw angle
from pitch motor, Kyy is the yaw motor thrust
constant, Ω2

p and Ω2
y are the pitch and motor speeds

squared, and lp and ly are the distance of each motor
to the center of rotation of the helicopter.

PID controllers are a very basic technique to
improve the performance of feedback systems.[2]
Extended Kalman Filters (EKF) are used to help
reduce noise in a system.[3]. Neural Network (NN)
algorithms such as radial basis function (RBF) and
multilayer neural networks (MNNs) are widely used
due their ability to model nonlinear systems.[3]
Fuzzy logic controllers are also common in non-
linear systems.[2] ADP (Approximate Dynamic
Programming) is a data-driven method rather than
based on a model.[2]

B. Review of Last Year’s Project

Tony Birge and Andrew Fandel completed a
similar project in the fall of 2017 and spring of
2018 as part of Bradley University’s Electrical and
Computer Engineering Department[4]. Their project
focused on the the development of a method us-
ing APD (Approximate Dynamic Programming) for
control of the Quanser Aero two-DOF helicopter.
The involved the creation of a neural network to
compute the gain value for the system. They im-
plemented this on a Raspberry Pi micro-controller
by generating a C program to run their algorithm.
To communicate with the Quanser Aero, they cre-
ated another program which utilized SPI protocol.
Eventually they created a mobile application for an
Android smart phone using the local network.

Their work will serve as a foundation for our
project moving forward. Their documentation on
SPI has helped us to implement our own control
algorithms. We will also replicate their ADP algo-
rithm to provide insight as to which control method
best suits this application.

C. Quanser Aero

This project will implement control techniques
on Quanser’s two-DOF Aero helicopter platform.
This consist of two 18 volt motors powered by a
built-in PWM amplifier attached to a propeller. [5]
Encoders are also attached to the motors as well as
the yolk which count the number of revolutions to
provide RPM and position information.

Quanser Inc. provided background teaching ma-
terials which we used as a starting point for imple-
menting some of our control algorithms[6]. They
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Fig. 1: General High-Level System Architecture

also provided the parameters for the Quanser Aero
as shown in Table I. Using the parameters, the state-
space model for the system can be created as shown
in Equation 3, Equation 4, Equation 5, Equation 6

A =


0 0 1 0
0 0 0 1
0 −Ksp/Jp −Dp/Jp 0
0 0 1 −Dy/Jy

 (3)

B =


0 0
0 0

Kpp/Jp Kpy/Jp
Kyp/Jy Kyy/Jy

 (4)

C =

[
1 0 0 0
0 1 0 0

]
(5)

D =

[
0 0
0 0

]
(6)

III. FUNCTIONAL REQUIREMENTS

Over the next few sections we will describe the
functional requirements of our project. This will
cover our basic system architecture to the details
of our communication protocols.

A. System Architecture

For our project, we consider the high level
system shown in Figure 1 where mobile devices are
used to to control a team of two degree of freedom
helicopters. In our case we will be using one mobile
device and two helicopters. Information sent by the
users will be transmitted through a wireless TCP/IP
network. We will be using Raspberry Pi 3’s to ac-
complish the wireless communication between the
mobile devices and the helicopters. Their inputs will
interface with our proposed smart control algorithm
and change the configuration of the helicopters.

Each of the helicopters used will have fixed
bases as shown in Figure 2 (courtesy of Quanser

Fig. 2: Quanser Aero 2-DOF Helicopter.
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Fig. 3: Low Level Smart Control Diagram

Inc.1). The tail of the helicopter has a motor that
controls its yaw motion. Similarly, the main rotor
changes the pitch of the helicopter. The directions
in which the motors spin will be determined by
the polarity of the applied voltages. This will be
regulated by our smart control algorithm.

B. Proposed Smart Control Algorithm

The system we propose for our project in Fig-
ure 1 has a mystery box with our smart control al-
gorithm. Figure 3 shows our subsystem level smart
control algorithm. This would be loaded to our
Raspberry Pi 3 which is connected to the Quanser
Aero, and wirelessly communicates with the mo-
bile device. From the mobile device you choose a
desired pitch and yaw angle for your helicopters
to move from their initial positions and you select
a control algorithm, which is talked about later.
The algorithm selector will enable one of the three
algorithms while disabling the other two. Then the
enabled algorithm takes in the desired pitch and yaw
angles and the actual pitch and yaw angles, which
are recorded from the helicopter, as inputs. The
actual pitch and yaw angles will also be displayed
on the mobile device. With the inputs going into the
desired algorithm, voltages are calculated for each

1https://www.quanser.com/products/
quanser-aero/

https://www.quanser.com/products/quanser-aero/
https://www.quanser.com/products/quanser-aero/


Parameter Description Value Unit
Lbody length of horizontal body 0.1651 [m]
mbody mass of horizontal body 0.094 [kg]
Jbody Moment of Inertia of helicopter body 0.0026 [kg ·m2]
mprop mass of dc motor + shield + propeller shield 0.43 [kg]
rprop distance from center of mass to center of pitch axis 0.1588 [m]
Jprop moment of inertia from motor + guard assembly about pivot (mp ∗ r2p) 0.0108 [kg ·m2]
Jp equivalent moment of inertia about pitch axis (Jbody + 2 ∗ Jprop) 0.0215 [kg ·m2]
myoke mass of entire yoke assembly 0.526 [kg]
rfork radius of each fork 0.02 [m]
Jyoke moment of inertia of yoke fork that rotates about yaw axis (0.5 ∗my ∗ r2f ) 0.00010520 [kg ·m2]

Jy equivalent moment of inertia about yaw axis (Jbody + 2 ∗ Jprop + Jyoke) 0.0237 [kg ·m2]

Ksp stiffness (found experimentally) 0.037463 [N ·m · rad−1]
Kpp (found experimentally) 0.0011 [N ·m ·V−1]
Kyy (found experimentally) 0.0022 [N ·m ·V−1]
Kpy thrust acting on pitch from yaw (found experimentally) 0.0021 [N ·m ·V−1]
Kyp thrust acting on yaw from pitch (found experimentally) -0.0027 [N ·m ·V−1]

Dp viscous damping pitch axis (found experimentally) 0.0071116 [N ·m · s · rad−1]

Dy viscous damping yaw axis (found experimentally) 0.0220 [N ·m · s · rad−1]

TABLE I: Quanser Aero Parameters

of the two motors on the helicopter to move to the
desired angles.

C. Control Algorithms

We will be using three algorithms: LQR, LQG,
and ADP.

1) LQR: LQR (Linear Quadratic Regulator)
minimizes a cost function given by the parameters
Table I for the system.

The Quadratic term, Equation 7, and Regulator
term, Equation 8, are used to solve the cost function.
They are solved using algebraic Riccati equation.
Quanser proved the values shown in the matrices.

Q =


3500 0 0 0

0 500 0 0
0 0 0 0
0 0 0 0

 (7)

R = 0.005 ∗
[
1 0
0 1

]
(8)

The steps of the LQR technique are given in algo-
rithm 1.

2) LQG: Once LQR is completed, we will
investigate LQG (Linear Quadratic Gaussian). This
method uses a Kalman filter to eliminate noise in
the system.

3) ADP: Once LQG is completed, we will
investigate ADP (Approximate Dynamic Program-
ming). This method uses machine learning to opti-
mize the system.

Algorithm 1: LQR Algorithm

1 begin
2 Initialize state variable θ, ψ, θ̇, and ψ̇
3 Initialize parameters in state-space model

matrices Equation 3, Equation 4,
Equation 5, Equation 6

4 Define cost function∫∞
0

(xTQx+ uTRu)dt
5 repeat
6 Compute u
7 • u = ke
8 • e = xd − x
9 • ė = −ẋ

10 • ė = −Ax−Bu
11 • ė = −A(xd − e)−Bu
12 • ė = −Ae−Bu−Axd
13 • ė = −Ae−Bke−Axd
14 Apply u to helicopter actuators

Measure states
15 until done

The steps of the ADP technique are given in algo-
rithm 2.

D. Specifications

For the proposed system, there are a few specifi-
cations that need to be met. First, any extra materials
we might need have to have an overall cost that is
less than $500 in order to stay within the budget



Algorithm 2: ADP Algorithm

Input: x[d]

Output: x
1 begin
2 repeat
3 • t = kτ
4 • Apply u[k] to system model → x[k]
5 • Apply ẋ(t) = Ax(t) +Bu(t)

→ x[k + 1]
6 • Constrain ψ on [−180◦, 180◦] and

θ on [−90◦, 90◦]
7 • Calculate error

→ e[k] = xref[k]− x[k]
8 • Calculate updated wc if t = T
9 repeat

10 • wlast = wc, i = 0
11 repeat
12 • u[i] = [0, 0]T , j = 0
13 repeat
14 • ulast[i] = u[i]
15 • Find e[i+ 1] using

collected error data and
e[k+1] = f(e[k])+Gu[k]
to x[k]

16 • Compute new u[i] using
u∗ =
− 1

2R
−1GT∇∗ (e(k+1))

17 • j = j + 1
18 until ‖u[i]− ulast[i]‖ < ε or

j = jmax

Output: u[i]
19 • Find V (i) using

V (e(k)) = eT (k)Qe(k) +
uT (k)Ru(k)+wT

Cφ(e(k+1))
20 • Λ(i) = φ(e(i))
21 • i = i+ 1
22 until i = n̄− 1

Output: Λ,V
23 • Update wc using

wc = (ΛT Λ)−1Λ−1V
24 until ‖wc − wlast‖ < εc

Output: wc

25 • Calculate state-feedback gain using
u∗ = − 1

2R
−1GT∇ ∗ (e(k + 1))

26 and V (e(k)) = eT (k)Pe(k)
27 • Constrain optimal inputs on

[−18, 18]
28 • k = k + 1
29 until t = tf
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Fig. 4: Communication model.

of the department. Second, we need to have local
WiFi capabilities for the connection of the mobile
device to the Raspberry Pi 3. Third, we will be using
MATLAB and Simulink to generate C code for the
Raspberry Pi 3. Finally, we will be using an Android
cell phone as our mobile device for user interfacing.

E. Communication Protocols

The smart motion control algorithm runs on a
single board computer which has back and forth
communication between the mobile devices and the
helicopter. Fig. 4 shows the overall communication
structure of the current work. The mobile device
running the user application sends command sig-
nals, which are then formed into a data packet to
be sent over the wireless network. In this work, the
user datagram protocol (UDP), which is a TCP/IP
protocol, is used for the communication between the
mobile device and the helicopter. It has low-latency
and more tolerant to lost packets. Next, routing
information and logical addressing information are
added to the packet including the internet proto-
col (IP) address. The link layer includes physical
functions, such as the media access control address
(MAC) of the network interface card (NIC) in
the packet and transmits it along a medium. This
framework utilized IEEE 802.11 which transmits
the packet wirelessly through the air using radio
waves. The single board computer then removes the
extraneous information until all that is left is the
original data.

1) SPI: SPI will be used to facilitate communi-
cation between our micro-controller (Raspberry Pi
3) and the Quanser Aero. Table II contains the pin
functions of the Q-flex2 embedded panel used to
create the connection. [5] SPI communication in-
volves a master/slave relationship between devices.
In our case the Raspberry Pi 3 is the master device
while the Aero is the slave. What SPI allows is for
the master device to send and receive data to the
slave device bit by bit. The major issue using SPI



Wire Color Function
1 White VCC (1.8V-5V)
2 Yellow MOSI
3 Blue MISO
4 Green CLK
5 Gray QCLK (Not Used)
6 Purple CS (Digital Output Line)
7 Red GND

TABLE II: Embedded Wiring

with the Quanser Aero is that SPI is meant for small
quantities of data; however, the Aero sends about 51
bytes, which is not small. Last year’s group actually
came up with a solution to this issue by setting the
SPI clock to have a two microsecond period.

2) Wireless: The Raspberry Pi 3 has a network
card that uses IEEE 802.11ac to be able to send
and receive transmission of a wireless network. We
will use this to create a SSH connection between
the Raspberry Pi and a desktop so we can interface
with the terminal. This will also be used for the
communication between the Raspberry Pi and the
smartphone.

3) UDP: UDP (User Datagram Protocol) will
be used to send and receive information between
the Raspberry Pi and the Android smart phone.
This is much faster than (TCP Transmission Control
Protocol) because the sender and receiver do not
make sure that the last transmission was received.
This is important because we want commands to be
sent as quickly as possible to the Quanser and are
not concerned if one out of many packets fails to
be transmitted.

IV. PRELIMINARY WORK

This project is a continuation of the work done
last year by Tony Birge and Andrew Fandel. We
started the lab work for this project after we had our
first meeting with Dr. Miah. We choose this project
because of our interest in the field of robotics. The
following subsections contain the work we have
already completed. It includes the implementation
of the LQR algorithm on one of the Quanser Aero
helicopters.

A. LQR Simulation Results

Before we implemented LQR using a USB con-
nection, we ran simulations in MATLAB to make
sure that our algorithm would run as expected.
Figure 5 shows the position error of the pitch, yaw,
speed of pitch, and speed of yaw. Figure 6 shows
the position in degrees of the desired pitch, actual
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pitch, desired yaw, and actual yaw. Figure 7 shows
the voltages applied to the motors.

B. LQR USB Implementation

Our first task that needed to be accomplished
was testing and implementing the LQR algorithm
onto the Aero using a USB connection. Figure 8
shows our Simulink model for controlling the Aero
with the USB connection. Figure 9 through Fig-
ure 20 are our MATLAB implementation figures for
testing different types of inputs to our model. The
inputs we used were of three types: square wave,
sine wave, and constant. We recorded the positions
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Fig. 8: LQR USB Simulink Model
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Fig. 9: LQR USB Pitch Encoder w/ Square Wave

of both pitch and yaw angles and the voltages that
were applied to the motors.

C. LQR Raspberry Pi Implementation

For using the Raspberry Pi 3 we needed to use
a local network for wireless communication with
the PC. This took a little time, but we did achieve
this. Next was the issue of using SPI communication
between the Raspberry Pi and the Aero. Luckily
for us, since this project is a continuation, last
year’s group already had a Simulink model that
can implement SPI communication between the
Raspberry Pi and the Aero. After recreating every
block and matching every configuration, we were
able to send Figure 21 to the Raspberry Pi 3.
Figure 22 is the inside of the SPI Communication
block in Figure 21. These Simulink models are just
the basic implementation of the SPI communication.
After testing it we learned a few things. One, the
initial position of the Aero is set when the Aero is
started up. Two, we need some type of user interface
to be able to change the desired angles while the
program is running. That second difficulty is what
we hope to be solved by the android application.
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Fig. 10: LQR USB Pitch Motor w/ Square Wave
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Fig. 11: LQR USB Yaw Encoder w/ Square Wave

D. LQR Android Implementation

Figure 23 is our Simulink model that will be
loaded onto the Raspberry Pi 3 to control the
helicopter using LQR algorithm. For the android
connectivity blocks we followed the model of last
year’s group. Again, checking and rechecking all the
configurations to make sure they are the same, ex-
cept targeting one of our phones instead. Figure 24
is the Simulink model for the android application.
It will have two slider bars to set desired pitch and
yaw, and will display what the actual pitch and
yaw of the helicopter currently is. Fig. 25(b) and
Fig. 26(b) show the voltages that are applied to the
pitch and yaw motors to move the helicopter to the
configurations depicted in Fig. 25(a) and Fig. 26(a).

V. FUTURE WORK

Moving forward with this project, we plan on
continuing with our other two algorithms. We are
in the process of simulating LQG using MATLAB.
Once this is completed, we will implement this
on the Quanser Aero using USB. However, with
the teaching materials that were provided to us by
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Fig. 12: LQR USB Yaw Motor w/ Square Wave
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Fig. 13: LQR USB Pitch Encoder w/ Sine Wave

Quanser, we were able to implement and test an
LQG algorithm that controls only pitch or yaw, but
not both. So, we are currently in the process of
researching a way to couple the control for both
pitch and yaw angles. After we figure out this
coupling issue and test it using the USB connection
and wirelessly, we will implement LQG on an
android phone.

After we complete implementing LQG all the
way to the smart phone level, we will start sim-
ulating the ADP algorithm. Like the other two
algorithms we will start testing ADP using USB,
then wireless communication using the Raspberry
Pi. After we get the algorithm working on the smart
phone level, we will combine all three algorithms
so the user may choose which algorithm they wish
to use on the Aero.

VI. PARTS LIST

For our project, we need a two-DOF helicopter
platform to incorporate our algorithms. Bradley
University acquired a Quanser Aero in 2016. A
second one was purchased in 2018. In order to
interface this platform with a micro-controller, we
need a module that will facilitate communication
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Fig. 14: LQR USB Pitch Motor w/ Sine Wave
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Fig. 15: LQR USB Yaw Encoder w/ Sine Wave

between these two devices. The first Aero came with
a Qflex2 embedded panel as part of a promotion.
We were to convince Quanser to send us as second
Qflex2 in September of 2018.

We have chosen to use a Raspberry Pi as our
micro-controller. The ECE department has several
they are willing to loan out to students. We are
currently borrowing two Raspberry Pis. In order
to communicate with the Raspberry Pi using the
desktop, we require a wireless network card for the
PC. The ECE department has loaned us two USB
dongles for each PC.

We are also considering some add-ons to our
project. When testing, we would like to use a fan to
provide some turbulence to see how each algorithm
reacts. We would also like to purchase a LCD screen
that would attach to the Raspberry Pi and display
the current pitch, yaw, and current algorithm. If we
progress far enough, we may be able to purchase
six-DOF helicopter to implement a full range of
motion.

VII. TIMELINE

The workload for this project is split by
semester. In the Fall of 2018, Figure 27, we hope to
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Fig. 16: LQR USB Yaw Motor w/ Sine Wave

0 5 10 15 20 25 30

Time [s]

0

5

10

15

P
it
c
h
 [
D

e
g
]

Pitch Encoder

Fig. 17: LQR USB Pitch Encoder w/ Constant Input

complete LQR and LQG up to implementation on
an Android phone. In the Spring of 2019, Figure 28,
we plan to complete the ADP implementation as
well as testing for all three methods.
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Fig. 21: Basic Top Simulink Model

Fig. 22: SPI Communication Simulink Model

Fig. 23: Simulink Model of LQR with Android Compatibility

Fig. 24: Simulink Model of Phone App
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Fig. 25: Performance in following user’s command (a) tracking pitch angle, and (b) pitch motor
input voltage.
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Fig. 26: Performance in following user’s command (a) tracking yaw angle, and (b) yaw motor
input voltage.
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