
Distributed Vision-Based Target

Tracking Control Using Multiple

Mobile Robots

Anthony Le and Ryan Clue

Abstract

Coordination control of multiple robots has been an active research
topic in recent years. The fundamental question is how to control individ-
ual robots for object tracking using limited local sensing/communication
information. In the following, review of the literature, system, and engi-
neering efforts are discussed.

1

Contents

1 Introduction 3

2 Review of literature and prior work 3

3 Standards Applicable 4

4 Subsystem Level Function Requirements 4
4.1 Top Level Design . 4
4.2 Subsystem Level Design . 5
4.3 Modes of Operation . 6

5 Engineering efforts completed to date 7
5.1 Testing Results . 7
5.2 The Kinetic Model . 8
5.3 Simulation of Kinetic Model . 10

6 Parts List 15

7 Deliverables, Division of Labor, and Schedule for Completion 15

8 Discussion and future directions 15

9. References 16

10 Appendix 17

2

1 Introduction

Coordination control of multiple robots has been an active research topic in
recent years. There are a lot of potential applications in this field - for ex-
ample, environmental monitoring, search and rescue missions, threat/obstacle
evasion are useful applications. The fundamental question is how to control
individual robots for object tracking using limited local sensing/communication
information.

2 Review of literature and prior work

Previous work from the Class of 2016 Senior Project Cooperative Control of
Heterogenous Mobile Robots Network was reviewed. The exact same platform of
robots using the QBot2 are used for our project. Cooperative control was tested
using QBot2 platform. Camera for localization and Wifi communication to
exchange position information. Consensus and formation stabilization problems
were studied.

Vision-based interception of a moving target with a nonholonomic mobile
robot by Luigi Freda and Giuseppe Oriolo investigates control law based on
angles of a camera image to track a target. In their proposed theory, a simplified
explanation results in the angular velocity of the robot,

ω = −K ∗ tan−1(ξx/f) (1)

where ξx is the x-coordinate of the ball on the image plane, f is the focal length;
Driving velocity of the robot:

V = K ∗ d (2)

where d is the distance to the target obtained from the kinect infrared sensor.
The relation between ξx and f can be seen in Appendix-Figure 10.

The following block diagram is a summed up explanation of kinematic con-
trols:

3

Decentralized multi-robot encirclement of a 3D target with guaranteed col-
lision avoidance by Franchi, Stegagno, and Oriolo is one work referred to for
object tracking. This article delivers a control framework for achieving encir-
clement of a target moving in 3D using a multi-robot system with fully decentral-
ized and only requires local communication among robots. Each robot locally
estimates all the relevant global quantities and allows for the applicability to
both 3D(spatial) and 2D(planar) encirclement without modications. An inte-
grated scheme for estimating in a decentralized wayin all the global quantities
is needed by the control law. It also has a provably effective strategy for inter-
robot collision avoidance. The article presents an extensive numerical validation
showing applicability of the method to both holonomic point robots and under-
actuated UAVs and an experimental implementation on nonholonomic ground
vehicles using only onboard sensors (i.e., without any external localization sys-
tem) Refer to Appendix-Figure 11 and 12 to see how encirclement works.

3 Standards Applicable

In this project, the objectives are: to design distributed vision-based control
algorithms for mobile robots and to implement and validate the proposed algo-
rithms. The main tasks of the project is for target identification using camera-
based images, target following using camera-based images, and multiple robot
formation control with target following. Some constraints may need to be met.
For example, environment will be a well-lit, indoor area - no direct sunlight;
target will remain on the same level plane as the robots (2D motion tracking);
target will not move faster than the Qbot 2s maximum velocity (0.7 m/s); target
will be a solid colored, basketball-sized sphere; the environment will be reason-
ably free of similarly colored objects; and multiple robots must use same control
strategy.

4 Subsystem Level Function Requirements

4.1 Top Level Design

In our top level system designs, the project is split into two distinct stages;
image processing and trajectory control. The image processing stage is used to
determine the centroid of not only the object being tracked but also the loca-
tion of objects that the Qbot2 might collide with. The RGB Image will be used
primarily to determine the target object location, while the IR Image will be
used to corroborate that target image location as well as detecting obstacles in
the Qbot2s immediate path, including other Qbot2s.

4

Figure 1: Top Level Design

4.2 Subsystem Level Design

We obtain our image values from the Kinect camera mounted on the Qbot2.
The Kinect also performs the very significant processing work of converting the
infrared image to a depth image.

Image thresholding involves checking whether or not an elements values fall
within a certain range. Each pixel of a color image is a combination of several
magnitudes of colors – in our case red, green, and blue. We set a range of
acceptable values, and any pixels that do not meet all of these values are replaced
by a 0. Pixels that do meet this value are replaced by a 1. This gives us a binary
image in which (ideally) our target object is represented by the largest grouping
of pixels

Blob Detection is a method of determining which pixels are grouped together
and which are not. Different tolerances of the space between pixels may be
selected (ie pixels must be directly adjacent to neighboring pixels, alternatively
pixels must be adjacent or diagonal to neighboring pixels) when constructing
the blobs. We then select the largest blob to calculate our target centroid. This
means that color thresholding does not need to eliminate all non-target pixels
from the environment. It does, however, need to remove enough such that the
target blob is the largest in the image. Otherwise our results will be off.

5

Figure 2: Subsystem Level Design

4.3 Modes of Operation

Startup Mode- The QBot2 enters this mode after being powered on. Here
the QBot2 will perform all necessary initialization steps. After the basic steps
have been completed, the Qbot2 will calibrate its camera and connect to a host
computer via wifi. This host computer will handle all the image processing and
control logic. After performing some self diagnostics the Qbot will proceed to
search for a target by switching to Target Detection Mode.

Target Detection Mode - The Qbot will enter this mode if it has gone more
than a couple seconds without seeing the target. In this mode the Qbot will
rotate in place until it has successfully located a valid target. When a target
is found, the Qbot will switch to Target Following Mode. However if after a
minute of searching the Qbot has still not located a target, it will switch itself
to re-calibrate mode to adjust the camera.

Target Follow Mode - In this mode the QBot2 will move to a position near
the target object (note the object may be either stationary or moving at a rela-

6

tively low speed). During this stage the Qbot will attempt to detect and avoid
collisions with its surroundings. The initial movement of a Qbot entering this
stage will be determined by data from the previous Target Detection Mode re-
sults. The Qbot will continue to process updated camera images while moving
towards the position of the target. If the target is not in view, however, the
Qbot will switch back to Target Detection Mode and try to re-acquire the target.

Recalibration Mode - During this mode the Qbot will remain stationary
while attempting to automatically calibrate its camera to current light of its
environment. After this mode is completed, the Qbot will return to whichever
operational mode it was in before switching to Recalibration Mode.

5 Engineering efforts completed to date

5.1 Testing Results

We have completed a very rudimentary design for a Qbot2 to visually track an
object. The image processing portion of this experiment involved the use of
color thresholding and blob detection. The kinematic model was similar to the
one described earlier, which uses the target centroid to determine direction. We
use the target centroid obtained from this RGB image to determine the wheel
velocities. Forward velocity is calculated by omitted from the command to set
wheel velocity, so that the robot will remain in place while turning to face the
object.

Below this a link to a demonstration:

https://youtu.be/aCppCa-5ouU

Here is a step-by-step illustration of the sequence of image processing stages
we used to calculate the target centroid.

We start with the unmodified RGB image (left image). Using a predetermined
range of red, green, and blue intensities we ignore all values that do not fall
within this range – this stage is called color thresholding (center image). Fi-
nally we apply a method known as blob detection (right image) to determine
the largest grouping of pixels and then calculate the central location of that
pixel. For the demonstration, we mark that central point of the pixel grouping
on the processed image with a 3x3 square of red pixels. This red dot is a vi-
sual representation of the XY values that will be passed to the kinematic control.

7

The kinematics for this experiment were simply

vright = −1 ∗ sin(centroidx − screenx) (3)

and,

vleft = sin(centroidx − screenx) (4)

The variables vright and vleft are what will be used to set the current wheel
velocities. The variable centroidx is the X value of the centroid location, while
screenx is the size of the X dimension of our image size.

5.2 The Kinetic Model

In a certain problem statement, a given trajectory and two robot postures are
given. To track a given robot’s trajectory is a problem that can be solved using
nonlinear feedback and dynamic feedback linearization. A standard kinematic
model must be used:

x1 = θ (5)

x2 = xcosθ + ysinθ (6)

x3 = xsinθ − ycosθ (7)

And by using,
ẍ = z̈1 = u1 (8)

ÿ = z̈2 = u2 (9)

where,
ẋ = ξcosθ (10)

ẏ = ξsinθ (11)

and when the kinematic model is not moving,

ξ = v = 0 (12)

We can construct a dynamic state feedback model for exact linearization
purposes with nonholonomic constraints. Following the proposed model, we can
implement trajectory tracking using the dynamic feedback linearization method.

The feedback design of the nonlinear controller based on dynamic feedback
linearlization is fairly straightforward. Using a linear and decoupled system, the
following feedback for desired trajectory has been postulated:

8

u1 = ẍd + kp1(xd − x)kd1(ẋd − ẋ) (13)

u2 = ÿd + kp2(yd − y)kd2(ẏd − ẏ) (14)

Under the proposed dynamic feedback linearization method, the second or-
der linear model is obtained as given in equations(4,5). The PD controller in
equations(9,10) is then applied to solve the trajectory tracking control problem.
How should control gains kp and kd be selected in our simulation one may ask?

The gains can be set arbitrarily. Following,

k1 = k3 = 2ξ
√
ω2
d(t) + bv2d(t) (15)

k2 = b (16)

where ξ is any number between 0 and 1, and b > 0.

To set better defined values for trajectory tracking gains, we set:

k1 = K3 = 2ξ
√
a (17)

k2 = (a2 − (wd(t))2)/vd(t) (18)

where a > 0 and ξ is any number between 1 and 0. For our values of ξ and a,
we use .7 and 1, respectively.

In the proposed PD control, velocities ẋ and ẏ are required. To generate
those values in your simulation, we compute the values from the kinematic model
given in equations (1-8). Generating the derivative values for the kinematic
model, we can start to develop the trajectory path of the circle. This is done
by using these equations:

x = center(1) +R ∗ cos(γ ∗ dt); (19)

y = center(2) +R ∗ sin(γ ∗ dt); (20)

where dt is the time-step for interation implementation, gamma is the parameter
for reference trajectory, and center referring to the center of the circle.

The equation for the figure-8 path is as follows:

x = center(1) +R ∗ sin(2 ∗ γ ∗ dt); (21)

y = center(2) +R ∗ sin(γ ∗ dt); (22)

Computing the ÿ and ẍ values are essential to determine the relativistic
trajectories. The equations for ẏ and ẋ are just the derivatives of equations
(15,16 and 17,18).

9

Matlab’s ODE45 helps integrates and solve the system of differential equa-
tions given with initial conditions. To find appropriate values for a circle or
figure 8 shape, differential equations of the desired trajectory are also generated
within Matlab. Given the approximately-linearized tracking error dynamics,

εx = xd − x, εy = yd − y, εθ = θd − θ (23)

we can develop a algorithm that minimizes error based on the kinematic and
linearized model. The proposed error model (19) can be translated and turned
into the matrix array:

(24)

From here, another set of u1 and u2 values can be utilized.

u1 = −k1e1 (25)

u2 = −k2vd(sine3/e3)e2 − k3e3 (26)

With initial conditions for posture being set to,

x = 1.5, y = 1.5, θ = pi/2 (27)

we can work with a kinematic model with initial conditions for trajectory
tracking control.

A wall or obstacle avoidance problem can also be solved assuming these con-
traints: Given a robot put inside a circular chamber, a trajectory that maps
out the walls can be used in order to solve a wall avoidance problem. Here, a
circular trajectory is given to guide the inside of the chamber. The simulated
robot must be placed within bounds of the wall and must follow the trajectory
in order to avoid wall collision.

5.3 Simulation of Kinetic Model

The following are simulation results for the given problem and solutions:

10

Figure 3: Demonstration of trajectory tracking avoiding a circular wall

A demonstration of how a following a trajectory can help avoid wall collision
are seen in figure 3. The larger band implies a wall. We can see the robot starts
at initial pose (1.5, 1.5) and follows the trajectory of a circle given. Based
on simulation, obstacle or wall avoidance is possible if given a trajectory path
avoiding the wall.

In the following figures, figure 4 and figure 5, we can see how the robot fol-
lows the given circular trajectory path.

11

Figure 4: Initial demonstration of trajectory tracking avoiding a circular wall

Figure 5: After several timesteps, trajectory tracking avoiding a circular wall

Figure 6: Linear and angular speeds of simulated control for circular path

As we can see, trajectory following can be implemented given a circular tra-
jectory.
Following, trajectory tracking of a figure-8 path using a nonlinear feedback
model was simulated.

12

Figure 7: Initial conditions of trajectory tracking following a figure-8 path

Figure 8: After several timesteps, trajectory tracking following a figure-8 path

13

Figure 9: Trajectory tracking following a figure-8 path - finished

Figure 10: Linear and angular speeds of simulated control for figure-8 path

Based on figure 5-10, we can see trajectory control is reliably implemented.
Using non-linear control from equations 13 and 14 transformed to 25 and 26,
we can see the implementation for dynamic feedback linearization is possible.

14

6 Parts List

The only parts we are using for this project are the three Qbot2s in the Bradley
University robotics lab. They were purchased for about $1,000. The Matlab
software suite that we use to program the Qbot2s also came packaged with the
original purchase I believe. We also must use a Wifi USB module so that we
can connect to two networks at the same time; the Qbot2s are configured for
an ad hoc network while the Matlab certificate is obtained through Bradley
Universitys secure network.

7 Deliverables, Division of Labor, and Schedule
for Completion

Ryan will be handling the image processing portion of the experiment, while
Anthony will be focusing on the kinematic models.

8 Discussion and future directions

Originally we thought that the work of image processing would be limited to
blob detection and color thresholding, but after getting some feedback on our
project its looking like we will have to use some more sophisticated methods
to detect the target object. Currently we are looking at edge detection and
background subtraction as alternatives to color thresholding.

15

9. References

[1] G. Oriolo. Wmr control via dynamic feedback linearization: design, imple-
mentation and experimental validation. IEEE Trans. on Control Systems
Technology, 10:835852, 2002.

[2] Franchi, Stegagno, and Oriolo. Decentralized multi-robot encirclement of a
3D target with guaranteed collision avoidance. 2016

[3] Freda and Oriolo. Vision-based interception of a moving target with a non-
holonomic mobile robot. 2007

[4] S. Miah, Lab 2: Trajectory Tracking Using Differential Drive Mobile
Robots. 2016 .

[5] Cap 02.pdf. [Online]. Available: http://mayerle.deps.prof.ufsc.br/private/eps6405/Cap
2002.pdf. [Accessed: 14-Nov-2016]

[6] MRNProposalDocument.pdf. [Online]. Available:
http://ee.bradley.edu/projects/proj2016/mrn/MRNProposalDocument.pdf.
[Accessed: 14-Nov-2016]

[7] Quanser - QBot 2 for QUARC. [Online]. Available:
http://www.quanser.com/products/qbot2. [Accessed: 14-Nov-2016].

16

10 Appendix

Figure 10: Example of ξx and f

17

Figure 11: Encirclement Example 1 taken from Oriolo et al. [2]

18

Figure 10: Encirclement Example 2 taken from Oriolo et al. [2]

19

