Fixed-Wing Survey Drone

Danielle Johnson and Ben Gorgan Advisor: Dr. Joseph Driscoll

Outline

- Project Summary
- The Drone Market
- Performance Specifications and Subsystems
- Research
- Hardware and Software Components
- Data
- Conclusions

Project Summary

- Create an autonomous drone to survey a field
- Stitch GPS-registered images into one image
- Precision Farming
- Low-cost

Outline

- Project Summary
- The Drone Market
- Performance Specifications and Subsystems
- Research
- Hardware and Software Components
- Data
- Conclusions

The Drone Market

Growing Market

- Precision Agriculture and UAVs
- Existing ProductsCropCam \$7,000

FAA Regulations

- Below 400 ft
- Manual Override

Outline

- Project Summary
- The Drone Market
- Subsystems and Performance Specifications
- Research
- Hardware and Software Components
- Data
- Conclusions

Project Description

Autopilot System

- Entirely autonomous UAV
- Follows an imported set of waypoints
- PID flight stabilization
- Manual override available at all times during flight

Aircraft Subsystems

Pitch, Roll, and Yaw

Ailerons, Elevator, and Rudder

http://quest.nasa.gov/aero/planetary/atmospheric/control.html

Project Description

Image Processing

- Tag images with GPS data
- Stitch together all images
- Filter for NDVI image

http://petapixel.com/2013/06/06/this-zoomable-composite-aerial- **11** photo-of-san-francisco-is-like-a-1938-google-earth/

Image Processing Subsystem

Components

RC Airplane **RC Receiver and Control 2 BEC Power Converters LiPo Battery RC Servo Multiplexer** Microcontroller IMU **GPS Receiver PWM Servo Driver Flight Controller Near-Infrared Camera**

Bixler Aircraft Turnigy 9x 2.4GHz 9 Channel Turnigy 5V 5A Turnigy 2.2 Pololu 4-Chan BeagleBone Black Adafruit 10 dof Adafruit MTK3339 Chip Adafruit 16 Channel 12-bit Driver Implemented in software Infragram Plant Analysis Webcam

Performance Specifications

- Electrically powered
- Hand launched
- Battery life long enough to complete a survey in one charge (~20 minutes)
- Capable of carrying the weight of all components

http://www.hobbyking.com/hobbyking/store/catalog/mainbix(6).jpg

Performance Specifications

- Near-Infrared Camera
 - 5 Megapixel
 - Captures near infrared pictures
 - Tags all ground images with GPS information

http://cdn.shopify.com/s/files/1/0198/8618/products/Filter-1_1024x1024.jpg?v=1373565426

Outline

- Project Summary
- The Drone Market
- Performance Specifications and Subsystems
- Research
- Hardware and Software Components
- Data
- Conclusions

Research

Finding products

- Plane
- GPS
- Controllers
- Autopilot
- IMU
- Cameras
- Obstacle Avoidance

Research

Image Processing

- Images that assess crop health
- Requires a camera without an infrared filter
- Plants absorb visible light and reflect infrared
- Normalized Difference Vegetation Index

http://publiclab.org/wiki/near-infrared-camera

Preliminary Lab Work

- BeagleBone Black and Atmel board robotics labs
- Aircraft construction
- Test flight of manual controls

http://ozancaglayan.com/2013/11/14/ubuntu-13-10-for-beaglebone-black-part-1/

Outline

- Project Summary
- The Drone Market
- Performance Specifications and Subsystems
- Research
- Hardware and Software Components
- Data
- Conclusions

Linux and Python

- Linux
 - BeagleBone Black
 - Angstrom

- Python
 - PWM servo driver
 - IMU
 - \circ GPS
 - Waypoint Navigation
 - PID Flight Stabilization
 - Open Source

Hardware I/O

Familiarization with hardware I/O

- I2C
 - PWM servo driver
 - IMU
- Serial
 - GPS
- USB
 - Camera

GPS Data Retrieval

- Adafruit MTK3339 chipset
 - NMEA protocol
 - GGA Sentence Identifier
 - Python

IMU Data Retrieval

- Adafruit 10 DOF IMU
 - L2GD20 gyroscope
 - LSM303 accelerometer+compass
 - BMP180 barometer and temperature

https://www.adafruit.com/products/1604

Mounting Hardware

Mounting Hardware

Google Earth Waypoints

Google Earth "GUI" - waypoint input interface

- 1. Open Google Earth
- 2. Locate survey area
- 3. Draw path of waypoints
- 4. Save path as a .kmz file
- 5. Transfer file to BeagleBone Black
- 6. Input file name to navigation program

Autopilot

GPS Navigation System

- 1. Reads .kmz file to determine waypoints
- 2. Reads current GPS location
- 3. Calculates distance and bearing to next waypoint
- 4. Switches to next waypoint

PID Flight Control System

Maps changes in IMU sensor data to servo positions in PID loop

GPS Navigation System

PID Servo Control System

Crop Image Capture

- Infragram Plant Analysis Webcam
 - USB interface
 - Infrared red channel
 - Visible blue channel
 - Measures Photosynthetic activity
 - Infrapix converts to NDVI

https://www.adafruit.com/products/1722

Hugin

Image stitching software

- Open source
- Automatic control point generator
 - Autopano-sift-c plugin

In Assistant:

- 1. Load all images
- 2. Select "Align"
- 3. Select "Generate Panorama"

Aircraft Equipment List

Bixler Aircraft		50
Turnigy RC Controller and Receiver		60
BeagleBone Black		45
Adafruit MTK3339 GPS		40
Adafruit IMU		50
Adafruit PWM servo driver		15
BEC power converter (x2)		10
Turnigy 2.2 LiPo Battery		8
Pololu RC Servo Multiplexer	10	
Infragram DIY Plant Analysis Webcam		55

Outline

- Project Summary
- The Drone Market
- Performance Specifications and Subsystems
- Research
- Hardware and Software Components
- Data
- Conclusions

Outline

- Project Summary
- The Drone Market
- Performance Specifications and Subsystems
- Research
- Hardware and Software Components
- Data
- Conclusions

Conclusion

Completed Plane Specs

- Prototype Autopilot System
- GPS Waypoint Entry
- Near-Infrared Image Retrieval and Filtering
- Image Stitching

Moving Forward with UAVs

Platform for Future Work

- Delivery
- Search and Rescue
- Multi-Drone Collaboration

Questions?