Fixed-Wing Survey Drone

Ben Gorgan and Danielle Johnson Advisor: Dr. Joseph Driscoll

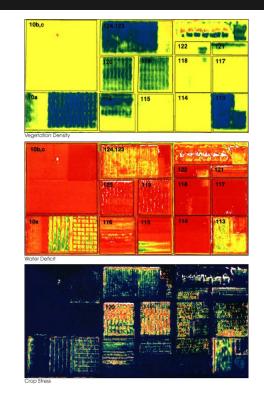
Outline

- Project Summary
- Previous Work and Constraints
- Project Description
- Equipment and Parts List
- Task Schedule

Project Summary

• Create an autonomous drone

• Take GPS-registered images

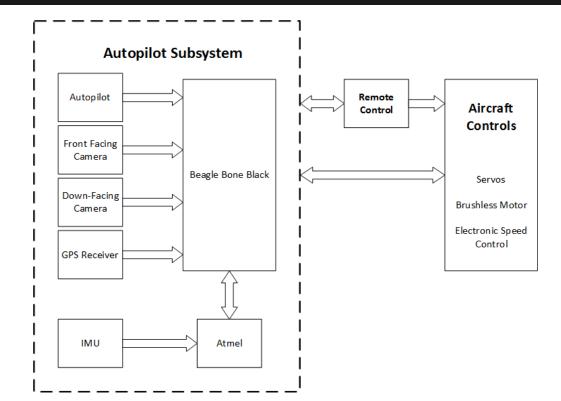


• Low-cost

Previous Work and Constraints

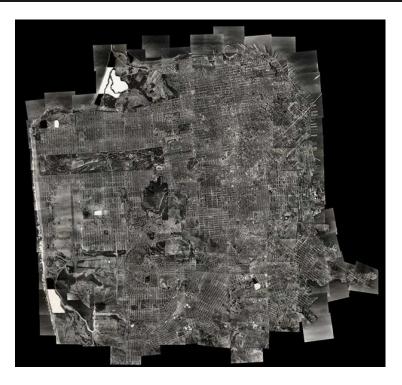
• Growing Market

- Precision Agriculture and UAVs
- Existing Products
 CropCam
- FAA Regulations
 - o Below 400 ft
 - Manual Override


Project Description

Autopilot System:

- Generate waypoints
- Control all flight
- Obstacle Avoidance
- Allow for manual control


Aircraft Subsystems

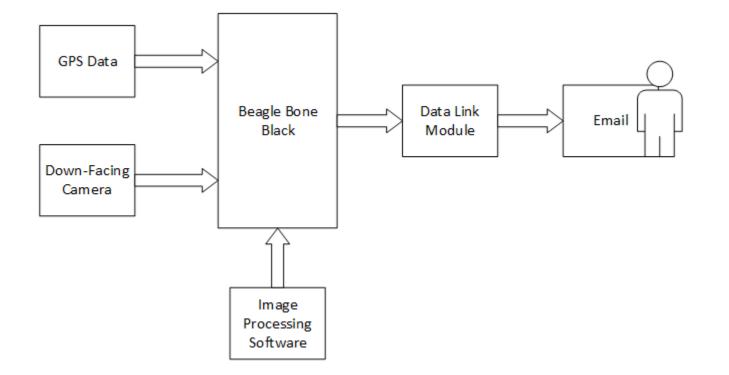

Project Description

Image Processing

- Tag images with GPS data
- Stitch together all images
- Send final data to the user

Image Processing Subsystem

Component Requirements

- Components:
 - IMU
 - GPS receiver
 - Autopilot
 - Flight controller
 - Two digital cameras
 - Microcontroller
 - Data link module

Functional Requirements

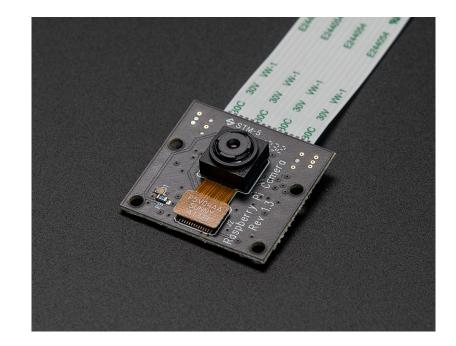
• One high resolution image is created by combining all of the acquired images and their GPS tags in software

• Survey completion within 25 minutes

• Survey summary alert via email, using the data link module

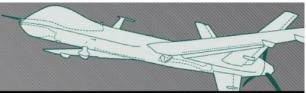
Autonomous Requirements

- Entirely autonomous UAV
- Generates its own waypoints to cover the entire user defined area
- Autonomous flight adjustment to avoid object collisions
- Manual override available at all times during flight


Airplane Requirements

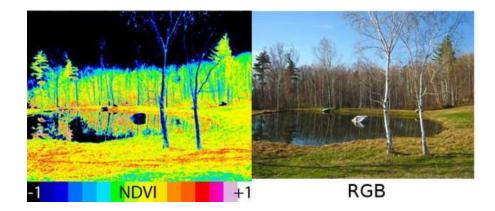
- Electrically powered
- Hand launched
- Battery life long enough to complete a survey in one charge (~20 minutes)
- Capable of holding the payload of all components

Camera Requirements


- Front facing camera
 - Lower resolution
 - Used for obstacle detection
- Ground facing camera
 - High resolution
 - Captures near infrared pictures
 - Tags all ground images with GPS information

Research Conducted:

- Finding products:
 - Plane
 - Flight Controller
 - GPS
 - Cameras
 - Controllers
 - Autopilot

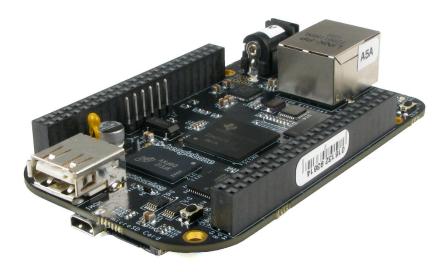


DIY DRONES

AMATEUR UAVs, CONTESTS, RESOURCES and MORE

Image Processing:

- Images that assess crop health
- Requires a camera without an infrared filter
- Plants absorb visible light and reflect infrared
- Using software, useful images can be created
- Normalized Difference Vegetation Index


Obstacle Avoidance:

- Intersections with waypoints
- Multiple algorithms
- Consider object radius, angle, height, and distance from aircraft
- Corner detection/image frame correlation
- Movement detection and optical flow
- Aviones Simulator & City Maker App

http://www.et.byu.edu/~beard/papers/thesis/BrandonCall.pdf

- BeagleBone and Atmel board robotics labs
- Aircraft construction
- Test flight of manual controls

Equipment List

- Bixler Aircraft
- LiPo Battery
- RC Controller
- BeagleBone Black
- GPS
- Autopilot
- IMU
- Data transfer unit

Task Schedule

- Week 1: Image processing with BeagleBone Black
- Week 2: Image processing with BeagleBone Black and GPS-tagged images
- Week 3: Autostitch software
- Week 4: Obstacle avoidance software
- Week 5: Obstacle avoidance simulations
- Week 6: Waypoint Generation
- Week 7: Waypoint Generation
- Week 8: Integration of waypoint software with autopilot and GPS
- Week 9: Test Flight
- Week 10: Work through any remaining issues
- Week 11: Create senior project webpage
- Week 12: Fly and correct any problems
- Week 13: Final Presentation