

FPGA Implementation of Multiple Controllers for a Magnetic Suspension System Chris Olivera

Motivation

- System modeling and dynamics of magnetic suspension system are interesting and challenging due to the nonlinear nature of the system.
- A linear plant model has been studied, different controllers have been designed and implemented on various hardware platforms including xPC target box and Motorola ColdFire microcontroller using Simulink and real-time workshop[1,2].
- □ Field Programmable Gate Array(FPGA) has been widely used in embedded applications. It has advantages in design flexibility and functional enhancement.
- □ In this project, FPGA is used to implement controllers for magnetic suspension system.

Fig 1. Spartan3E FPGA board

Fig 2. Magnetic suspension system

Project Goals

The project aims to design and implement a stand-alone system to demonstrate various controllers for magnetic suspension system. Details are described below.

- □ The system includes Xilinx Spartan3E FPGA, digital- to-analog (D/A) converter, analog-to-digital(A/D) converter and conditioning circuitry.
- Design and simulate controllers using *Xilinx system generator*, a design tool for FPGA fixed-point implementation.
- □ Study finite word-length effect and determine appropriate precisions for FPGA implementation.
- Program controllers in VHDL and compare FPGA implementation results with those from xPC Target Box and Motorola ColdFire microcontroller in terms of steady-state error, overshoot, and settling time.

Advisors: Dr. Yufeng Lu and Dr. Winfred Anakwa

Bradley Department of Electrical & Computer Engineering