
GPS + Inertial Sensor Fusion

Group Members:
Aleksey Lykov, William Tarpley, Anton Volkov

Advisors:
Dr. In Soo Ahn, Dr. Yufeng Lu

Bradley University ECE Department
May 9, 2014

Table of Contents
Abstract 3
Introduction 3
Background 3

Inertial Navigation 3
Dead Reckoning 4
Strapdown Solution 4

System Design 4
InvenSense MPU-9150 Inertial Measurement Unit 4
SkyTraq Venus634FLPx GPS 5

1

Bosch SensorTec BMP 180 Barometric Pressure Sensor 6
Raspberry Pi Single-Board Computer 6
Signal Operation 7

Methods and Procedures 8
Setting up the Raspberry Pi 8
Interfacing the Inertial Sensors 9
Writing MATLAB Post-Processing Code 9
Interfacing the GPS Unit 11
Writing Multithreaded Data Acquisition Code 12
Interfacing the Barometer 12
System Operation 13

Results 13
Conclusion 17
Acknowledgements 17
References 18
Appendix A: Project Code 18

2

Abstract

An inertial navigation system (INS) or inertial measurement unit (IMU) is a form of dead
reckoning navigation system that uses a combination of accelerometer and gyroscope sensors
working in concert to detect displacement relative to a starting point[1]. The system measures
both linear accelerations given by its accelerometer and angular velocity changes from its
gyroscope. World referenced-frame acceleration data can then be integrated to calculate the
velocity and position of the sensors over time, but because the INS can only measure motion
relative to a starting location, the initial position must be supplied by some outside system (in
the case of this project, using a Global Positioning System (GPS) receiver). Additionally, to
compensate for the drift in the inertial navigation system caused by various defects in inertial
sensors, the outside references (GPS and barometer) must be polled occasionally to correct for
the position error.

Using a Raspberry Pi microcomputer as the base system and an MPU 9150 IMU, an inertial
navigation system will be developed. Kalman Filtering with GPS and barometer data will be
used to complete a “strapdown solution” - a closed-loop system which can self-correct for error
[1].

Introduction

The objective of this project is to combine inertial and GPS sensors via I2C on the Raspberry
Pi single board computer for the purpose of maintaining accurate positioning in areas without
GPS or in the event of losing a GPS signal. This is accomplished with heavy post processing,
including Kalman filtering of the inertial measurements (accelerometer, gyroscope data)
combined with drift reduction using magnetometer data, and finally through sensor fusion with
GPS data.

Background

While much of the project work involved the physical interfacing of sensors, it is important to
understand the theory behind the operation of the sensors involved, namely the concepts of
inertial navigation.

Inertial Navigation

Inertial navigation refers to estimating a system’s position based on measured changes to
the motion of a system. To accomplish this, a combination of acceleration and angular rate

3

measurement is used to compute linear motion as well as attitude (yaw, pitch, and roll).
Accelerometers and gyroscopes are used to accomplish this task.

Dead Reckoning

Dead reckoning is the process of estimating a system’s position by using the previous position
value (such as a coordinate provided by the GPS system) and then calculating a new position
based on the sensed movement of the system[1]. In the scope of this project, the GPS provides
an initial position and the system calculates future positions based on the integration of world-
reference-frame acceleration derived from accelerometer and gyroscope measurements.

Strapdown Solution

Unlike a gimballed system, which is able to keep inertial sensors at a fixed attitude regardless of
system orientation, a strapdown solution has sensors mounted on the system body to measure
body-reference-frame changes in inertia[1]. In order to compute acceleration in the fixed or
world-reference-frame, any perceived changes in attitude must be integrated to determine
system orientation with respect to the starting orientation (in this case, a level orientation with
the accelerometer Y-axis facing north). With a known system attitude, it is both possible to
compute the direction of gravity’s acceleration to remove its influence on system data and
additionally to rotate the body-reference-frame acceleration into the world reference frame.

System Design

The complete signal and hardware block diagrams can be seen in figures 1 and 2, respectively.
Each system will be discussed in the following section.

InvenSense MPU-9150 Inertial Measurement Unit

The main sensor used for the project is the Invensense MPU-9150 IMU (Inertial Measurement
Unit) with breakout board designed by Sparkfun. This chip sends out nine axes of data: x-
acceleration, y-acceleration, z-acceleration, yaw-rate, pitch-rate, roll-rate, and three axes
dedicated to magnetometer data. Additionally, the chip has the capability to calculate the
quaternion and magnitude of the gravity vector in order to send world-reference-frame data
to the user. World reference frame, as opposed to body or system reference frame, is the
fixed coordinate frame denoted “North, East, and down” and does not change even as the
IMU rotates along any axis. This calculation is performed by the MPU-9150’s onboard DMP
(Digital Motion Processor) in the form of three 16-bit accelerations (N, E, down) relative to the
starting orientation. The magnetometer is used to help the user the system’s determine starting
orientation so that the north, east and down reference frame of the inertial sensor corresponds

4

to that of the GPS.

InvenSense MPU-9150 Inertial Measurement Unit

SkyTraq Venus634FLPx GPS

A GPS unit, the SkyTraQ Venus634FLPx (breakout board by Sparkfun), is used to give
the program its initial position and to correct for inertial sensor error during the course of
operation for X and Y axis measurements. The GPS receiver outputs standard National Marine
Electronics Association (NMEA) sentences over UART serial communications.

SkyTraq Venus638FLPx GPS Receiver Unit

Bosch SensorTec BMP 180 Barometric Pressure Sensor

5

The GPS unit provides accurate X and Y coordinate positions, however, the application is for
navigation in the event GPS is lost. As a result, the BMP 180 (breakout board by Adafruit) was
added to correct for deviations in the Z direction even when the GPS is unavailable. The sensor
reads surrounding pressure and temperature data which are then used to calculate altitude.

Bosch SensorTec BMP180 Barometric Pressure Sensor

Raspberry Pi Single-Board Computer

The heart of the system is the Raspberry Pi single-board computer. Its Linux operating system
is used to run the multi-threaded C++ code which interfaces with sensors and saves processed
sensor data to file. The IMU, GPS, and barometer are attached to the I/O pins of the Raspberry
Pi via I2C, UART, and I2C, respectively. The program starts three threads which read and
timestamp data from the external sensors, at which point a fourth thread processes the data and
formats it for saving to file. Once the user stops data acquisition via a GPIO push button, the
program writes all saved data to file.

Raspberry Pi Single-Board Computer

Signal Operation

6

Using the IMU-9150’s Digital Motion Processor which performs six-axis sensor fusion to
compute a quaternion representation of attitude, the world-reference-frame acceleration is
calculated by rotating a linear acceleration vector (raw acceleration with the magnitude of
gravity subtracted). This data is then integrated to calculate a displacement from the starting
position which the barometer and GPS data is then used to correct in MATLAB.

Figure 1. Signal Block Diagram

7

Figure 2. Hardware Block Diagram

Methods and Procedures

The project work can be divided into several sections, including the initial setup of the
Rapsberry Pi, the interfacing of inertial sensors, the writing of MATLAB post-processing code,
the interfacing of the GPS receiver, the writing of multi-threaded data acquisition code, and the
testing methods used to acquire data:

Setting up the Raspberry Pi

The first step in making the data acquisition system was to set up the Raspberry Pi linux-based
single board computer. This was achieved in the following steps:

1. Installing the “Raspbian” Linux distribution
2. Setting up SSH control of the system through PuTTY on Windows
3. Setting up samba file sharing between the Raspberry Pi and Windows
4. Setting up internet connection sharing via ethernet (sharing the host computer’s WiFi)
5. Setting up WiFi on the Raspberry Pi via USB wireless adapter

8

6. Setting up cross-compilation on the Pi via NetBeans in Windows (this was later replaced
by onboard g++ compilation)

7. Setting up bluetooth keyboard and composite display output for portable operation (later
testing was controlled with a GPIO pushbutton and LED for information)

8. Installing program-related drivers (wiringPi[7] for GPIO and serial control, i2cdev for
reading and writing to the I2C bus, and ncurses for additional I/O while running program)

Once setup was complete, it became possible to write code on a Windows PC, send it to the Pi
via PSCP or samba file sharing, and control the Pi via SSH in PuTTY. Additionally, the Pi could
be powered by an external 5V battery for an extended period of time (several hours) and taken
on indoor/outdoor tests to collect data to file for later analysis.

Interfacing the Inertial Sensors

The MPU-9150 was connected to the Raspberry Pi via the I2C interface. It is composed of a
MEMS accelerometer and gyroscope (which together make up the MPU6050 IC) and a MEMS
magnetometer (making up the AK8975 IC). Using open-source drivers[5] written for the MPU-
6050 six-axis accelerometer+gyroscope IC, it is possible to read either raw acceleration,
gyroscope, and magnetometer data from the respective devices or to make use of the onboard
digital motion processor (DMP) which performs 6-axis sensor fusion with the accelerometer and
gyroscope data. In the following steps, the DMP data can be used to determine world-reference
frame data suitable for a strapdown solution:

1. Read quaternion data from the DMP
2. Read raw acceleration data from the DMP
3. Compute the gravity vector using the quaternion data
4. Remove the gravity component from the raw acceleration data
5. Convert body-reference-frame acceleration to world-reference frame acceleration with

quaternion data
The DMP also has the ability to return euler angles for yaw, pitch, and roll of the MPU6050
since initialization. In this project, the above procedure with DMP data was in favor of reading
raw acceleration and gyroscope data.

Writing MATLAB Post-Processing Code

Data was saved to a text file using the Raspberry Pi in a predetermined format for timing, GPS,
INS, and Barometric data. In MATLAB, the following tasks were completed and implemented as
functions:

1. Read in saved data
2. Integrate acceleration data to velocity and position
3. Filter Data
4. Present Data

9

Data was read in using the textscan function. This saves data matching the passed format into
a cell array. The code then saves each array location to a corresponding variable and returned
to main. Then, the read acceleration and time data is used to integrate data and determine
velocity and position using the trapezoidal method. Any filtering would be completed at this time.
Methods for filtering included the following:

1. Removing acceleration offsets which occurred after an acceleration.
2. Removing accumulated offsets which occurred as acceleration was sensed.
3. Implementing a “deadzone” to compensate for idle noise and vibration.

In order to remove an offset, MATLAB searched for areas where the min and max deviation
fell within a certain difference. The area size and difference were determined by variables and
could be changed in post processing. The accumulated offset was removed by searching where
one offset ended and the next began. Since each acceleration resulted in an offset, any space
between offsets were built by a gradually increasing or decreasing offset. This was removed by
assuming the growth was linear and removing the slope of acceleration. Lastly, the data was
compared to the deviance recorded during initialization and all point falling within these bounds
were pulled to 0. Figures 3 and 4 show the unfiltered and filtered data respectively. Finally, the
data is plotted to show information such as velocity over time, displacement, or acceleration
over time.

Figure 3. Accelerations in the X and Y axes before filtering

10

Figure 4. Accelerations in the X and Y axes after filtering

Interfacing the GPS Unit

The Venus634FLPx GPS receiver was connected to the Raspberry Pi via the serial port. In its
default configuration, the chip sends standard NMEA messages at a rate of 1 Hz over a 9600
baud serial interface while a GPS lock is maintained.

The receiver has several modes of data presentation, and they are all available simultaneously,
and are constantly sent over the serial bus. This data was parsed and the desired format
(GPGGA) of GPS data was used for position measurements.

The GPGGA format of GPS data provides the following information:
● Time - in 24hr format
● Latitude
● Longitude
● Fix quality -indicating whether a GPS fix is present and whether differential GPS is

available
● The number of satellites
● The horizontal dilution of precision - that indicates the accuracy of horizontal position
● Altitude
● Height of geoid above the WGS84 ellipsoid - specified in meters
● Time since the last DGPS update - if DGPS is available
● DGPS reference station ID - if DGPS is available
● Checksum - used to check for transmission errors

From this signal the latitude and longitude data was parsed for position calculation.

Writing Multithreaded Data Acquisition Code

11

Once multiple sensors were being read from reliably, the next task was to write multithreaded
C++ code in order to reliably take data from multiple sensors without delays or overflows – the
DMP of the MPU6050 chip has a 1024-byte FIFO buffer which will overflow if readings are not
taken as soon as they are available.

Multithreading was accomplished via the POSIX C library, enabling multiple concurrent
threads (the main function, one additional thread for each sensor, and a final thread for post-
processing). Mutexes were initially used to control access to variables in shared memory (the
data logged by each thread) between the data acquisition threads and the post-processing
thread (which would format and save the data for printing to file). It was discovered, however,
that mutexes are not required unless both threads are writing to the same variable. Since the
processing thread only read from the variable, neither thread needed to use mutex locks, and
they were removed. Finally, string streams were implemented for use by the post-processing
thread instead of constant file writes (the latter resulted in inconsistent data acquisition times).
See Appendix A for the complete main.cpp function. Finally, in addition to including necessary
libraries in the working directory, the following command was used to compile the final code:

g++ -Wall main.cpp Adafruit_BMP085_U.cpp I2Cdev.cpp MPU6050.cpp -o test1 -lncurses
-pthread -lrt -lwiringPi

Interfacing the Barometer

Adding the BMP180 Barometric Pressure Sensor was a late decision when it was discovered
that barometric sensors were very useful for altitude measurements. In the absence of GPS,
this sensor can help correct the inertial measurement data for altitude change calculation.
Just as with the MPU-9150, the sensor was connected to the system via I2C. The greatest
challenge with interfacing this sensor was the particular process for reading pressure and
temperature data from its registers and converting it into the desired units of Pascals and
degrees Celsius. A close inspection of the BMP180 datasheet to decipher the I2C registers’
little- and big-endian notation as well as expected datatype lengths was necessary in order to
modify the Adafruit-supplied C++ drivers[6] (intended to be used on 16-bit microprocessor).

The sensor provides the system with both barometric pressure and temperature measurements,
which are used to calculate altitude.

System Operation

The system functioned in the following states:
1. In order to relay that the system has completed startup, the program notifies that user

that it is ready to begin with a solid LED, waiting for the user to press the push button.

12

2. The program reads data from the magnetometer and lights the LED when the system
faces North. This state is advanced by pressing the pushbutton.

3. The program enters the initialization process which allows for the DMP to stabilize. After
25 seconds of fast LED flashing during this time, the program continues.

4. The program begins storing accelerometer, gyroscope, and GPS data to memory. The
LED pulses at 1 Hz and the state is advanced by pressing the pushbutton.

5. The LED turns off and the string buffer is written out to the SD card, ending the program.

After the program terminates the user can move data from the SD card to a PC. Resetting the
Raspberry Pi will cause the program to restart at state 1 and will create a different save file
allowing for multiple data collections without loss of data.

Results

The resulting system is a reliable data acquisition system using a Raspberry Pi with integrated
inertial and GPS sensors. A summary of final system specifications is seen in Table 1.

Specification Final Result
Accelerometer/Gyroscope Rate 100 Hz from DMP (raw data available at 1 kHz) [3]

GPS Rate 1 Hz (scalable up to 20 Hz) [4]

Barometer Rate 1 Hz (scalable up to 100 Hz) [2]

Time to Acquire GPS Lock 3-4 Minutes from Cold Start
30 Seconds to Reacquire Lock

Program Structure C++, 5 Threads (Main, 3 Sensor Threads, Post-Processing)
Data Log Storage Text file on SD card

Fill rate: ~539 kB/min
Post-Processing GPS displacement/velocity calculations performed onboard

Sensor fusion and integration performed offboard in MATLAB
CPU Utilization Under 17% average usage with current data acquisition code

RTIMULib[5] 4-state Kalman filter code tested, <20% usage

Table 1. Final system Specifications

The system can be operational within 30 seconds of startup. Gyroscope stabilization is
completed in the 30 seconds following power-up. The system acquires a GPS lock within three
to four minutes and, provided it has sufficient power and makes use of the added capacitor to
remain powered up when power is removed, is able to reacquire a GPS lock in 30 seconds after
a loss when GPS is available.

Data is acquired from the external sensors without any delays, FIFO buffer overflows (of the INS
module), or delayed timestamps. Inertial sensor data is recorded at 100 Hz, GPS data at 1 Hz,
and barometer data at 1 Hz. All of this data is stored to the SD card with timestamps at a rate
of approximately 539 KB per minute. The SD card data log includes the following timestamped

13

data: N/E/Down (Y/X/Z) accelerations; GPS latitude, longitude, the change in GPS displacement
since last coordinates, and the change in GPS velocity since last coordinates; barometer-
measured altitude and temperature.

Data rates for the various sensors as well as system sensitivity can be adjusted if needed.
The raw data from the accelerometer, gyroscope and magnetometer can be read in at speeds
up to 1kHz, though the Digital Motion Processor is limited to 100 Hz to reduce the amount of
noise. The barometer data can be read in at speeds up to 200 Hz and the GPS data can be
read at speeds up to 20 Hz, if desired. Additionally, the sensitivity of the accelerometer can be
adjusted to ±2g, ±4g, ±8g, or ±16g. The gyroscope angular rate is set to ±250 degrees/second
for maximum resolution, but can be increased to ±2000 degrees/second for faster response
times.

While maintaining a GPS lock, it is possible to correct inertial data velocity and position to
maintain accuracy within several meters of true position even after extended periods of time.
However, if GPS is not available, stationary displacement reported is within approximately one
meter, but when moving, odometer distance error is often more than 50%, with an even greater
absolute displacement error.

Through testing, it was discovered that the MEMS accelerometer sensors were not reliable on
their own for purposes of position estimation due to accumulating error. Figure 5 shows the
sensor fusion method in which the velocity and displacement integration is corrected to GPS
coordinates once per second, and the significant influence of a simulated GPS outage.

14

Figure 5. Sensor fusion and GPS outage during highway test

On a smaller scale, the system can appear to move much farther than it actually has due to the
accumulating displacement error which results from the double integration from acceleration
to displacement. Figure 6, depicts the displacement of the system as it is moved in a square
holding pattern with one foot side lengths.

15

Figure 6. X-Y displacement during one foot square test without rotation

Linear tests show that when a system is displaced in a single dimension, an offset in
acceleration data is introduced when the system is stopped. Worse yet, an additional
acceleration is sensed in an axis perpendicular to the system’s movement. This problem causes
a drift that can be seen when the acceleration is integrated to show a displacement.

16

Figure 7. Linear acceleration test to showing raw acceleration data errors

Using Kalman filtering, it is possible to combine sensor data to help mitigate any errors within
a single sensor. For example, the gyroscope and digital compass sensors can be combined
to create a more reliable system attitude measurement. Combining barometer and z-axis
acceleration data, it is possible to get a more reliable estimate of altitude changes. Finally,
combining GPS and X and Y axis accelerometer data, it is possible to get reliable displacement
estimate within a couple of meters of actual, real-world displacement. However, when GPS data
is not available, such as indoors of a large building, in a heavily forested area, inside a large
city, or underground, the system has to rely entirely on the MEMS acceleration data for X and Y
displacement, and this has been proven to not be reliable for purposes of navigation.

In its current state, the sensor fusion as well as position estimation is done offboard using a
MATLAB, however system testing indicates that implementing this process on the system as it
is today should not cause any trouble.

Conclusion

The project was successful in building a reliable Data Acquisition system for Inertial Navigation
with GPS integration. The system is able to get data from sensors, perform some computation
and store the results. After building and extensively testing a data acquisition platform, it
was determined that the current MEMS accelerometer is insufficient to provide accurate
indoor positioning via dead reckoning or double integration - even constrained to a single
axis, the accelerometer it was found to report positioning errors well over 100%. Conclusions
therefore include that for accurate indoor navigation, our platform must rely on either
additional positioning sensors with which a Kalman filter can correct the world-reference-frame
acceleration data, such as a tachometer for a mobile robot application, or it must rely on an
application-specific algorithm, such as a pedometer algorithm for pedestrian applications.
Future project work should revolve around the creation of such an algorithm or investigation into
corrective indoor position sensors.

Acknowledgements

The authors would like to thank Dr. Yufeng Lu and Dr. In Soo Ahn for their invaluable support
and expertise throughout the duration of the project.

References

17

[1] D. Titterton and J. Weston, Strapdown Inertial Navigation Technology,
2nd ed. Reston, VA: AIAA, 2005.

[2] Bosch SensorTec. BMP180 Datasheet, 5 Apr. 2013. Web. http://www.adafruit.com/
datasheets/BST-BMP180-DS000-09.pdf

[3] InvenSense. MPU-9150 Datasheet, 18 Sept. 2013. Web. http://www.invensense.com/mems/
gyro/documents/PS-MPU-9150A-00v4_3.pdf

[4] SkyTraq Technology, Inc. Venus638FLPx GPS Receiver Data Sheet, 24 Feb. 2010. Web.
https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/GPS/Venus/638/doc/
Venus638FLPx_DS_v07.pdf

[5] A. Weiss and J. Rowberg. 9 Degrees of Freedom - MPU-9150 Breakout (2013), GitHub
repository. https://github.com/sparkfun/MPU-9150_Breakout

[6] K. Townsend. Adafruit Unified BMP085/BMP180 Driver (2013), GitHub repository. https://
github.com/adafruit/Adafruit_BMP085_Unified

[7] G. Henderson. Gordon’s Projects - WiringPi (2011), Web. https://projects.drogon.net/
raspberry-pi/wiringpi/

Appendix A: Project Code

Main.cpp:

/*
* File: main.cpp
* Author: Anton Volkov, Aleksey Lykov, William Tarpley
* Multithreaded version with hardware (3 separate threads: GPS, INS, PROC)
*
* Created on November 5, 2013, 2:33 PM
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#include <math.h>

#include <iostream>
#include <iomanip>
#include <time.h>
#include <fstream>
#include <sstream>
#include <ncurses.h>

//Serial Libraries:
#include <wiringPi.h>
#include <wiringSerial.h>

//BMP180 Library:
#include "include/Adafruit_BMP085_U.h"

18

//MPU-9150 Libraries:
#include "include/I2Cdev.h"
#include "include/MPU6050.h"
#include "include/MPU6050_6Axis_MotionApps20.h"
#include "include/helper_3dmath.h"

//For delays in no-HW Windows testing:
// #include <windows.h>

//POSIX
#include <pthread.h>
#define NUMTHREADS 4 //ins, gps, bar, proc
// #define NUMTHREADS 3

using namespace std;

pthread_mutex_t insfile_mutex; //ins.txt file control mutex
pthread_mutex_t gpsfile_mutex; //gps.txt file control mutex
pthread_mutex_t barfile_mutex; //bar.txt file control mutex
pthread_mutex_t procfile_mutex; //proc.txt file control mutex
pthread_mutex_t procrawfile_mutex; //procraw.txt file control mutex

pthread_t insThread;
pthread_t gpsThread;
pthread_t barThread;
pthread_t procThread;

///

//output files (text documents accessed by all functions one at a time)
// FILE * procFile;
// FILE * procRawFile;
ofstream procFile;
ofstream procRawFile;

stringstream ssBuffer1, ssBuffer2; //temporary storage of data to be saved to SD card
int resMem = 50; //Megabytes
///

//Thread functions:
void *thread_INS(void*);
void *thread_GPS(void*);
void *thread_BAR(void*);
void *thread_PROC(void*);
//Mag start procedure functions:
void magInit();
void getMag(int16_t* mx, int16_t* my, int16_t* mz);
void readMagData(int16_t* mx, int16_t* my, int16_t* mz);
int selfTest(int16_t* mx, int16_t* my, int16_t* mz);
int checkNorth(int16_t* mx, int16_t* my, int16_t* mz);
//Post processing functions:
double gpsDisplacement(double *lat1, double *long1, double *lat2, double *long2);

//Global variables (passing b/w threads):
volatile double INSrecT, BARrecT, GPSrecT; //Timestamps
volatile float INSrecX, INSrecY, INSrecZ; //Accelerometer (X, Y, Z)
volatile double GPSrecN, GPSrecE; //GPS (Northing, Easting)
volatile float BARrecA, BARrecC; //Barometer (Altitude, Celsius)

19

volatile double ACLrawT, MAGrawT; //Timestamps
volatile float ACLrawX, ACLrawY, ACLrawZ; //Accelerometer Raw Data (X, Y, Z)
volatile float GYRrawX, GYRrawY, GYRrawZ; //Gyroscope Raw Data (X, Y, Z)
volatile float MAGrawX, MAGrawY, MAGrawZ; //Magnetometer Raw Data (X, Y, Z)

volatile int gStop;
struct tm * timeinfo;
struct timespec gettime_now;
struct timespec startTime;
time_t rawtime;
//

int main() { //create files, start INS, GPS, and post processing threads, listen for user input to end
program
{
 //Set up GPIO
 wiringPiSetupGpio(); //set up using Broadcom GPIO pin numbers

 pinMode(11, OUTPUT); //set LED pin to output
 pinMode(7, INPUT); //set PB pin to input
 pullUpDnControl(7, PUD_UP);
 digitalWrite(11, 1); //turn on LED on to signal start of program to user
 sleep(2);
 digitalWrite(11, 0); //
 usleep(200000);
 while(digitalRead(7)){ // flash to inform user that program has started
 digitalWrite(11, 1);
 usleep(100000);
 digitalWrite(11, 0);
 usleep(100000);
 }
 while(!digitalRead(7)){ usleep(10000); } //wait for user to let go of button
 usleep(250000); //wait .25 seconds for de-bouncing

 //File creation
 // Get current time with which to timestamp filenames:
 time (&rawtime);
 timeinfo = localtime (&rawtime);

 char str[60];

 // Create PROC file:
 pthread_mutex_lock(&procfile_mutex);
 strftime(str, 60, "/home/pi/SP14/Data/PROC_%F_%H-%M-%S.txt", timeinfo);
 // procFile = fopen(str,"w");
 procFile.open(str);

 if(procFile == 0){
 cout << "PROC file creation failed!" << endl;
 return 0;
 } else {
 cout << "File " << str << " opened successfully!" << endl;
 }
 pthread_mutex_unlock(&procfile_mutex);

 // Create PROCraw file:
 pthread_mutex_lock(&procrawfile_mutex);
 strftime(str, 60, "/home/pi/SP14/DataRaw/PROCraw_%F_%H-%M-%S.txt", timeinfo);
 // procRawFile = fopen(str,"w");
 procRawFile.open(str);

20

 if(procRawFile == 0){
 cout << "PROCraw file creation failed!" << endl;
 return 0;
 } else {
 cout << "File " << str << " opened successfully!" << endl;
 }
 pthread_mutex_unlock(&procrawfile_mutex);

 // Reserve ssBuffer1/ssBuffer2 memory:
 try{
 ssBuffer1.str().reserve(resMem*1024*1024);
 cout << "String Stream Buffer 1: " << resMem << "MB Reserved successfully." << endl;
 }catch (std::bad_alloc e){
 cout << "Failed to reserve " << resMem << "MB of space." << endl;
 return(0);
 }

 try{
 ssBuffer2.str().reserve(resMem*1024*1024);
 cout << "String Stream Buffer 2: " << resMem << "MB Reserved successfully." << endl;
 }catch (std::bad_alloc e){
 cout << "Failed to reserve " << resMem << "MB of space." << endl;
 return(0);
 }
}
{ //Initialization and Main Loop

 //Starting conditions:
 gStop = 1; //threads will wait while gStop > 0

 //Set up magnetometer to notify user of northern direction
 magInit(); //makes magnetometer separate I2C device
 int16_t mx, my, mz;
 if(!selfTest(&mx, &my, &mz))
 cout << "Magnetometer self test failed! Readings (X, Y, Z): "
 << mx << ", " << my << ", " << mz << endl;

 //Wait for user to push button (ideally when facing North)
 cout << "Orient Device North, Press Button to Start (Press again to stop)..." << endl;
 while(digitalRead(7)){
 getMag(&mx, &my, &mz);
 if(checkNorth(&mx, &my, &mz)){
 digitalWrite(11, 1); //turn on LED on
 cout << "N" << flush;
 } else {
 digitalWrite(11, 0); //turn on LED off at start
 cout << "." << flush;
 }
 usleep(150000);
 } //wait for user to press button

 while(!digitalRead(7)){ usleep(10000); } //wait for user to let go of button
 usleep(250000); //wait .25 seconds for de-bouncing

 digitalWrite(11, 0); //turn LED off
 cout << endl << endl;

 //Set Global Start Time:
 clock_gettime(CLOCK_REALTIME, &gettime_now);

21

 startTime = gettime_now;

 gStop = -1; //threads will run while gStop < 0
 //Start threads
 int rc;
 rc = pthread_create(&insThread, 0, thread_INS, 0);
 if (rc){
 cout<< "ERROR; return code from pthread_create(ins) is " << rc << endl;
 exit(-1);
 }
 rc = pthread_create(&gpsThread, 0, thread_GPS, 0);
 if (rc){
 cout<< "ERROR; return code from pthread_create(gps) is " << rc << endl;
 exit(-1);
 }
 rc = pthread_create(&barThread, 0, thread_BAR, 0);
 if (rc){
 cout<< "ERROR; return code from pthread_create(bar) is " << rc << endl;
 exit(-1);
 }

 //Wait 25 seconds to start PROCthread (don't record data until gyro is stable)
 for(int i = 0; i < 250 && digitalRead(7); i++){ // flash to inform user that program has started
 digitalWrite(11, 1);
 usleep(49000);
 digitalWrite(11, 0);
 usleep(49000);
 }

 //Reset Global Start Time:
 clock_gettime(CLOCK_REALTIME, &gettime_now);
 startTime = gettime_now;

 rc = pthread_create(&procThread, 0, thread_PROC, 0);
 if (rc){
 cout<< "ERROR; return code from pthread_create(proc) is " << rc << endl;
 exit(-1);
 }

 //initiate curses (ideally to clear the screen)
 initscr();
 timeout(0);
 intrflush(stdscr, FALSE);
 cout << endl << "Running" << flush;
 char key = ' ';
 int t = 0;
 while(key != 'e' && digitalRead(7)){ //check for button press
 //threads are running

 //grabbing key to stop operation (former INS code):
 key = getch();

 usleep(499000);
 if(t%2 == 0){
 cout << " (" << (t/2)/60 << " m, " << (t/2)%60 << " s) " << flush;
 refresh();
 digitalWrite(11, 0); //turn LED off
 }else if(t%10000 == 0 && t > 1){ //~50 MB after 5200 seconds (5k seconds =~ 1.44 hrs)
 procFile << ssBuffer1.str(); //write stringStream to file
 ssBuffer1.str(std::string());

22

 procFile << ssBuffer2.str(); //write stringStream to file
 ssBuffer2.str(std::string());
 }else{
 clear();
 refresh();
 digitalWrite(11, 1); //turn LED on
 }
 t++;
 }
 endwin();
 digitalWrite(11, 0); //turn LED off

 /*** EXIT THREADS ***/
 gStop = 1; //threads will stop when !(gStop < 0)
 while(gStop < NUMTHREADS){}
 /*** WAIT FOR INSFILE MUTEX LOCK ***/
 pthread_mutex_lock(&insfile_mutex);
 /*** WAIT FOR GPSFILE MUTEX LOCK ***/
 pthread_mutex_lock(&gpsfile_mutex);
 /*** WAIT FOR BARFILE MUTEX LOCK ***/
 pthread_mutex_lock(&barfile_mutex);
 /*** WAIT FOR PROCFILE MUTEX LOCK ***/
 pthread_mutex_lock(&procfile_mutex);
 /*** WAIT FOR PROCRAWFILE MUTEX LOCK ***/
 pthread_mutex_lock(&procrawfile_mutex);
 /*** CLOSE ALL FILES ***/
 procFile << ssBuffer1.str(); //write stringStream to file
 ssBuffer1.str(std::string());

 procFile << ssBuffer2.str(); //write stringStream to file
 ssBuffer2.str(std::string());

 procFile.close();
 procRawFile.close();
 /*** RELEASE/DELETE ALL MUTEXES ***/
 pthread_mutex_destroy(&insfile_mutex);
 pthread_mutex_destroy(&gpsfile_mutex);
 pthread_mutex_destroy(&barfile_mutex);
 pthread_mutex_destroy(&procfile_mutex);
 pthread_mutex_destroy(&procrawfile_mutex);
}
return(0);
}

// INS THREAD ///
void *thread_INS(void*){
//Variable instantiation
// MPU control/status vars
MPU6050 mpu;
char sensitivity = 1; //sensitivity: 0 = +/- 2g, 1 = +/- 4g, 2 = +/- 8g, 3 = +/- 16g
//uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// For Raw Data:
int16_t ax, ay, az;
int16_t gx, gy, gz;
//int16_t mx, my, mz;

23

// Orientation/Motion vars - used by INS_thread
Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
//float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

{ //Initialization
 // Initialize the DMP (talks with accel/gyro):
 // initialize device
 //cout << "Initializing I2C devices..." << endl;
 //insFile << "Initializing I2C devices..." << endl;
 mpu.initialize(sensitivity);
 // verify connection
 //cout << "Testing device connections..." << endl;
 //insFile << "Testing device connections..." << endl;
 if(mpu.testConnection()){
 //cout << "MPU6050 connection successful" << endl;
 //insFile << "MPU6050 connection successful" << endl;
 }else{
 //cout << "MPU6050 connection failed" << endl;
 //insFile << "MPU6050 connection failed" << endl;
 //insFile.close();
 //pthread_exit(0);
 }
 // load and configure the DMP
 //cout << "Initializing DMP..." << endl;
 //insFile << "Initializing DMP..." << endl;
 devStatus = mpu.dmpInitialize();
 // make sure it worked (returns 0 if so)
 if (devStatus == 0) {
 // turn on the DMP, now that it's ready
 //cout << "\nEnabling DMP..." << endl;
 //insFile << "\r\nEnabling DMP..." << endl;
 mpu.setDMPEnabled(true);
 //mpuIntStatus = mpu.getIntStatus();
 // set our DMP Ready flag so the main loop() function knows it's okay to use it
 //cout << "DMP ready!" << endl;
 //insFile << "DMP ready!" << endl;
 // get expected DMP packet size for later comparison
 packetSize = mpu.dmpGetFIFOPacketSize();
 } else {
 // ERROR!
 // 1 = initial memory load failed
 // 2 = DMP configuration updates failed
 // (if it's going to break, usually the code will be 1)
 //cout << "DMP Initialization failed (code " << devStatus << ")" << endl;
 //insFile << "DMP Initialization failed (code " << devStatus << ")" << endl;
 //insFile.close();
 //pthread_exit(0);
 }
 //
}
while (gStop > 0){ usleep(1000); } //wait to start

double curTime = 0.0; //seconds since start
double curTimeR = 0.0;

24

while(gStop < 0){ //Main loop
 ////////////////////////////////// DATA ACQUISITION:
 // get current FIFO count
 fifoCount = mpu.getFIFOCount();
 clock_gettime(CLOCK_REALTIME, &gettime_now);
 curTime =
 (gettime_now.tv_sec - startTime.tv_sec) +
 ((double)(gettime_now.tv_nsec - startTime.tv_nsec)/(double)1E9);
 if (fifoCount == 1024) {
 // reset so we can continue cleanly
 mpu.resetFIFO();
 cout << "FIFO overflow!" << flush;
 // otherwise, check for DMP data ready interrupt (this should happen frequently)
 fifoCount = mpu.getFIFOCount();
 } if (fifoCount >= 42) {
 //if(fifoCount > 42) //used as a sort of warning message. Overflow occurs at 1024 bytes.
 // cout << "!!! fifoCount = " << fifoCount << endl;
 // read a packet from FIFO
 mpu.getFIFOBytes(fifoBuffer, packetSize);
 // Process:
 mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetAccel(&aa, fifoBuffer);
 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
 mpu.dmpGetGravity(&gravity, &q);
 //adjust for gravity based on sensitivity (��2g, others)
 mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity, sensitivity);
 mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
 mpu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
 clock_gettime(CLOCK_REALTIME, &gettime_now);
 curTimeR =
 (gettime_now.tv_sec - startTime.tv_sec) +
 ((double)(gettime_now.tv_nsec - startTime.tv_nsec)/(double)1E9);
 ////////////////////////////////// DATA OUTPUT/RECORDING:
 /*** WAIT FOR INSFILE MUTEX LOCK ***/
 // pthread_mutex_lock(&insfile_mutex); // Determined to be unnecessary

 //save data to memory for PROC.txt:
 INSrecT = curTime; //timestamp
 INSrecX = aaWorld.x;
 INSrecY = aaWorld.y;
 INSrecZ = aaWorld.z;

 //save data to memory for PROCraw.txt:
 ACLrawT = curTimeR; //timestamp
 // ACLrawX = ax;
 // ACLrawY = ay;
 // ACLrawZ = az;
 ACLrawX = aa.x;
 ACLrawY = aa.y;
 ACLrawZ = aa.z;
 GYRrawX = gx;
 GYRrawY = gy;
 GYRrawZ = gz;

 /*** RELEASE INSFILE MUTEX LOCK ***/
 // pthread_mutex_unlock(&insfile_mutex);
 //release mutex lock before next line, allowing thread_PROC to read INSdata.txt
 }
 usleep(1000); //~3ms is the maximum without causing FIFO overflow as of 10/22/13
 //as of 3/31/14, 3ms causes overflow (with multithreading). Adjusted down to 1ms.

25

}
gStop++;
pthread_exit(0);
}

// GPS THREAD ///
void *thread_GPS(void*){
//Variable instantiation
//Serial and GPS variables
char gpsData; //number of GPS bytes available
char gpsMessage[100]; //serial string read in from GPS unit
char gpgga[] = "$GPGGA";

unsigned char arPos; //array position char
double easting;
double northing;

{ //GPS data acquisition
 /*Initialize serial*/
 /*Note: has to be done in order! Cannot access GPS without initializing serial port!*/

 bool ok = false;

 // GPS connection handle
 char serialPort[] = "/dev/ttyAMA0";
 char handle = serialOpen(serialPort, 9600);
 // Serial port opened.

 while (gStop > 0){ usleep(1000); } //wait to start

 double curTime = 0.0;
 while(gStop < 0){ //infinite loop, each iteration fetches/writes a new GPS coordinate to file
 ok = false;
 do{
 gpsData = serialDataAvail(handle);
 if(gpsData > 0){
 ok = true;
 arPos = 0;
 do{
 gpsMessage[arPos] = serialGetchar(handle);
 arPos++;
 }while(gpsMessage[arPos-1] != 10 && arPos < 100);
 //ASCII 10 is the line feed (LF) character
 for(int i = 0; i < 6; i++){
 if(gpsMessage[i] != gpgga[i])
 ok = false;
 }
 }
 }while(!ok && gStop < 0);
 string gpggaMessage(gpsMessage);

 easting = strtold(gpggaMessage.substr(30,3).c_str(), NULL) +
 (strtold(gpggaMessage.substr(33,7).c_str(), NULL)/60.0000D);
 northing = strtold(gpggaMessage.substr(18,2).c_str(), NULL) +
 (strtold(gpggaMessage.substr(20,7).c_str(), NULL)/60.0000D);

 if(gpggaMessage[41] != 'E')
 easting *= -1;
 if(gpggaMessage[28] != 'N')
 northing *= -1;

26

 clock_gettime(CLOCK_REALTIME, &gettime_now);
 curTime =
 (gettime_now.tv_sec - startTime.tv_sec) +
 ((double)(gettime_now.tv_nsec - startTime.tv_nsec)/(double)1E9);
 /*** WAIT FOR GPSFILE MUTEX LOCK ***/
 // pthread_mutex_lock(&gpsfile_mutex);

 GPSrecT = curTime; //timestamp
 GPSrecN = northing;
 GPSrecE = easting;
 /*** RELEASE GPSFILE MUTEX LOCK ***/
 // pthread_mutex_unlock(&gpsfile_mutex);
 usleep(999000); //~1s delay
 }
 serialClose(handle);
 /*END SERIAL CODE*/
}
gStop++;
pthread_exit(0);
}

// BAROMETER THREAD ///
void *thread_BAR(void*){
Adafruit_BMP085_Unified bmp180;
int errorCode = bmp180.begin();
if(errorCode < 0){
 //barFile << "Unable to connect to the BMP180! Reason: " << errorCode << endl;
 pthread_exit(0);
}

float pressure = 0;
float temp = 0;
float seaLevel = 1021; //This should be a local value. From website in 3/25/14 documentation (hpa)
float altitude = 0;

{ //Barometer data acquisition

 while (gStop > 0){ usleep(1000); } //wait to start

 double curTime = 0.0;
 while(gStop < 0){ //infinite loop, writes a new pressure/magnetometer reading to mem
 //get pressure
 bmp180.getPressure(&pressure);
 bmp180.getTemperature(&temp);
 altitude = bmp180.pressureToAltitude(seaLevel, pressure/100.0, temp);
 //pressure in hPa required (1 hPa = 100 Pa)

 clock_gettime(CLOCK_REALTIME, &gettime_now);
 curTime =
 (gettime_now.tv_sec - startTime.tv_sec) +
 ((double)(gettime_now.tv_nsec - startTime.tv_nsec)/(double)1E9);

 /*** WAIT FOR BARFILE MUTEX LOCK ***/
 // pthread_mutex_lock(&barfile_mutex);
 //update BAR file

 BARrecT = curTime; //timestamp
 BARrecA = altitude;

27

 BARrecC = temp;
 /*** RELEASE BARFILE MUTEX LOCK ***/
 // pthread_mutex_unlock(&barfile_mutex);
 usleep(998000); //~1s delay
 }
}
gStop++;
pthread_exit(0);
}

// PROC THREAD //
void *thread_PROC(void*){
//Variable instantiation
//Kalman filter variables - used by PROC_thread
pthread_mutex_lock(&procfile_mutex);
pthread_mutex_lock(&procrawfile_mutex);
{ //Post-processing loop
 //wait for mutex lock to read any files

 while (gStop > 0){ usleep(1000); } //wait to start
 //post-processing variables
 double INSprevT = -1.0;
 double GPSprevT = -1.0;
 double BARprevT = -1.0;

 double INSdeltaT, GPSdeltaT, BARdeltaT;
 double aWNorm[3]; // This is "N, E, Up" - "+Y, -X, +Z" from accelerometer
 double prevLat, prevLong, curLat, curLong; //Lat == Northing, Long = Easting
 double GPSdispX = 0, GPSdispY = 0, GPSvelX = 0, GPSvelY = 0;

 while(gStop < 0){
 // pthread_mutex_lock(&insfile_mutex);
 INSdeltaT = INSrecT - INSprevT;
 if(INSdeltaT > 0){
 if(INSprevT != -1.0){
 //Process raw acceleration data
 aWNorm[0] = ((double)INSrecX/(double)0x7FFF)*4*9.81;
 aWNorm[1] = ((double)INSrecY/(double)0x7FFF)*4*9.81;
 aWNorm[2] = ((double)INSrecZ/(double)0x7FFF)*4*9.81;
 //Save raw acceleration data to file
 ssBuffer1 << " INS: @" << setprecision(12) << INSrecT << " s, " <<
 "N: " << aWNorm[0] << " E: " << aWNorm[1] << " Up: " << aWNorm[2] << endl;
 ssBuffer2 << "@" << setprecision(8) << ACLrawT << " s,"
 << " aX: " << ACLrawX << " aY: " << ACLrawY << " aZ: " << ACLrawZ
 << " gX: " << GYRrawX << " gY: " << GYRrawY << " gZ: " << GYRrawZ << endl;
 }
 INSprevT = INSrecT;
 }

 // pthread_mutex_unlock(&insfile_mutex);

 // pthread_mutex_lock(&gpsfile_mutex);
 GPSdeltaT = GPSrecT - GPSprevT;
 if(GPSdeltaT > 0){
 //Process raw GPS data
 curLat = GPSrecN;
 curLong = GPSrecE;
 if(GPSprevT == -1.0){ //if first non-zero data point
 prevLat = GPSrecN;

28

 prevLong = GPSrecE;
 } else {
 //Calculate X and Y displacement (meters):
 GPSdispX = gpsDisplacement(&prevLat, &prevLong, &prevLat, &curLong); //E-W displacement
 if(curLong < prevLong)
 GPSdispX *= -1;
 GPSdispY = gpsDisplacement(&prevLat, &prevLong, &curLat, &prevLong); //N-S displacement
 if(curLat < prevLat)
 GPSdispY *= -1;
 GPSvelX = GPSdispX / GPSdeltaT;
 GPSvelY = GPSdispY / GPSdeltaT;
 //update previous lat/long values:
 prevLat = curLat;
 prevLong = curLong;
 //Save raw GPS data to file
 ssBuffer1 << "*******************GPS: @" << setprecision(12) << GPSrecT << " s, " <<
 "N: " << curLat << " E: " << curLong <<
 " dispX: " << GPSdispX << " dispY: " << GPSdispY <<
 " velX: " << GPSvelX << " velY: " << GPSvelY << endl;
 }
 GPSprevT = GPSrecT;
 }
 // pthread_mutex_unlock(&gpsfile_mutex);
 // pthread_mutex_lock(&barfile_mutex);
 BARdeltaT = BARrecT - BARprevT;
 if(BARdeltaT > 0){
 if(BARprevT != -1.0){
 //Process raw altitude data
 //Save raw altitude data to file
 ssBuffer1 << "** **BAR: @" << setprecision(12) << BARrecT << " s, " <<
 "A: " << setprecision(7) << BARrecA << " T: " << BARrecC << endl;
 }
 BARprevT = BARrecT;
 }
 // pthread_mutex_unlock(&barfile_mutex);

 usleep(100); //delay to lower CPU utilization
 }
}
pthread_mutex_unlock(&procfile_mutex);
pthread_mutex_unlock(&procrawfile_mutex);
gStop++;
pthread_exit(0);
}

void magInit(){
 MPU6050 mpu;
 mpu.initialize();
 I2Cdev::writeByte(0x68, 0x37, 0x02); //set i2c bypass enable pin to true to access magnetometer
}

void getMag(int16_t* mx, int16_t* my, int16_t* mz) {
 // Set single measurement mode
 I2Cdev::writeByte(0x0C, 0x0A, 0x01); //write 0x01 to CNTL register
 // Check Data Ready or not by any of the following method.
 uint8_t DRDY = 0;
 while(!DRDY){
 I2Cdev::readByte(0x0C, 0x02, &DRDY);
 }
 readMagData(mx, my, mz);

29

}

void readMagData(int16_t* mx, int16_t* my, int16_t* mz){
 uint8_t buffer[6];
 I2Cdev::readBytes(0x0C, 0x03, 6, buffer);
 *mx = (((int16_t)buffer[1]) << 8) | buffer[0];
 *my = (((int16_t)buffer[3]) << 8) | buffer[2];
 *mz = (((int16_t)buffer[5]) << 8) | buffer[4];
}

int selfTest(int16_t* mx, int16_t* my, int16_t* mz) {
 // (1) Set Power-down mode
 I2Cdev::writeByte(0x0C, 0x0A, 0x00); //write 0x00 to CNTL register
 // (2) Write ���1��� to SELF bit of ASTC register
 I2Cdev::writeByte(0x0C, 0x0C, 0x40);
 // (3) Set Self-test Mode
 I2Cdev::writeByte(0x0C, 0x0A, 0x08);
 // (4) Check Data Ready or not by any of the following method.
 uint8_t DRDY = 0;
 while(!DRDY){
 I2Cdev::readByte(0x0C, 0x02, &DRDY);
 }
 // When Data Ready, proceed to the next step.
 // (5) Read measurement data (HXL to HZH)
 readMagData(mx, my, mz);
 // (6) Write ���0��� to SELF bit of ASTC register
 I2Cdev::writeByte(0x0C, 0x0C, 0x00);

 //check self-test pass criteria (return 0 if fail):
 if(*mx < -100 || *mx > 100 ||
 *my < -100 || *my > 100 ||
 *mz < -1000 || *mz > -300)
 return 0;
 else
 return 1;
 }

 int checkNorth(int16_t* mx, int16_t* my, int16_t* mz) {
 float magnitude, normX, normY, normZ;
 magnitude = sqrt(pow(*mx, 2) + pow(*my, 2) + pow(*mz, 2));
 normX = *mx / magnitude;
 normY = *my / magnitude;
 normZ = *mz / magnitude;
 if(normX < 0.70 && normX > 0.55 &&
 normY < 0.85 && normY > 0.70 &&
 normZ < 0.10 && normZ > -0.10)
 return 1;
 else
 return 0;
}

double gpsDisplacement(double *lat1, double *long1, double *lat2, double *long2){

 double PI = 4.0*atan(1.0);

 double dlat1=*lat1*(PI/180);
 double dlong1=*long1*(PI/180);
 double dlat2=*lat2*(PI/180);
 double dlong2=*long2*(PI/180);

30

 double dLong=dlong1-dlong2;
 double dLat=dlat1-dlat2;

 double aHarv= pow(sin(dLat/2.0),2.0)+cos(dlat1)*cos(dlat2)*pow(sin(dLong/2),2);
 double cHarv=2*atan2(sqrt(aHarv),sqrt(1.0-aHarv));

 const double earth=6371009; //mean Earth radius (meters)
 double distance=earth*cHarv;

 return distance;
}

31

