Closed Loop Magnetic Levitation Control of a Rotary Inductrack System

Students: Austin Collins Corey West

Advisors: Dr. Winfred Anakwa Mr. Steven Gutschlag

Presentation Outline

- I. Introduction
 - A. Background
 - **B. CLMLCRIS Project**
- II. Development
 - A. Motor Model
 - B. Controller
 - C. FPGA
- III. Conclusion
 - A. Work to be completed next semester
 - B. Questions

Halbach Array of Magnets

Halbach Array in an Actual Bullet Train

Our Inductrack System without Safety Enclosure

Copper Inductrack Rail

Magnetic Field Interaction

Vertical Force:

$$F_{y}(\omega_{e}, y) = \frac{B_{0}^{2}wA}{2kLd_{c}} \left[\frac{1}{1 + \left(\frac{R}{\omega_{e}L}\right)^{2}}\right] e^{-2ky}$$
[N]

Drag Force:

$$F_{x}(\omega_{e}, y) = \frac{B_{0}^{2}wA}{2kLd_{c}} \left[\frac{R_{\omega_{e}L}}{1 + \left(\frac{R$$

Objectives

- Selection of suitable platform for controller implementation, which will allow a user to enter desired levitation height.
- Use of the selected platform to generate a PWM signal to drive the power electronics.
- Design controller implementation for system autonomy.
- Selection and design of appropriate power electronics which will allow control of the PWM signal.

Common Dc Motor Circuit Schematic

Measurable Quantities:

 ω_m – machine rotational speed *i* – armature current V_a – source voltage

Parameters to determine:

- R_a armature resistance L_a armature inductance
- k_{v} motor torque constant k_{τ} back emf constant
- B motor viscous friction T_{cf} coulombic friction
- J moment of inertia

Values Used for Motor Model

 $\begin{array}{ll} R = 2.00 \ \Omega & L = 0.0216 \ \mathrm{H} \\ k_t = 0.615 \ ^{\mathrm{Nm}}/_{\mathrm{A}} & k_v = 0.615 \ ^{\mathrm{V}}/_{(\mathrm{rad/s})} \\ T_{cf} = 0.5105 \ \mathrm{Nm} & B = 0.0061 \ ^{\mathrm{Nm}}/_{(\mathrm{rad/s})} \\ & J = 0.216 \ \mathrm{kg} \ \mathrm{m}^2 \end{array}$

Motor Model

Green = Experimental Steady State

Blue = Model Simulation

Voltage	Velocity	SIMULINK Model	% Error
V _a (V)	ω _m (rad/s)	ω _m (rad/s)	
7.15	8.792	8.643	1.69%
11.15	14.915	14.947	0.22%
13.00	17.741	17.861	0.68%
16.85	23.864	23.925	0.26%
20.34	29.830	29.421	1.37%
45.35	70.650	68.815	2.60%
49.96	76.930	76.077	1.11%
54.86	85.958	83.795	2.52%
64.70	102.050	99.295	2.70%

Plant for Closed Loop Control

 $G(s) = 109.09 \frac{1}{s^2 + 92.62s + 69.25}$

 $p_1 = -91.86 \, [rad/s]$

 $p_2 = -0.75 \,[\text{rad/s}]$

Controller Transfer Function Using Matlab

Controller Transfer Function:

$$C(s) = k_p \frac{s+z}{s}$$

A more realistic Transfer Function:

$$C(s) = k_p \frac{s+z}{s(s+p)}$$

A lead network with integral action

Imag Axis Π

Design Specification 1: steady state error = 0 **Design Specification 2:** Less than 10% overshoot. $\zeta = 0.707$ **Design Specification 3:** $t_s < 6$ seconds

Controller Transfer Function Using Matlab

$$C(s) = 75.71 \frac{s + 1.56}{s(s + 76.92)}$$

Open and Closed Loop System

Simulation Results for Open and Closed Loop System

Green = Controller Blue = Uncontrolled

Determining Sampling Time

$$C(s) = 75.71 \frac{s + 1.56}{s(s + 76.92)}$$

 $G(s) = 109.09 \frac{1}{s^2 + 92.62s + 69.25}$

$$G_{cl}(s) = 1.42 \frac{s + 1.56}{s^4 + 169.54s^3 + 7193.85s^2 + 13776.92s + 13207.69}$$

Determining Sampling Time

$$T_s < \frac{1}{40 \times BW}$$

$$T_s < \frac{1}{40 \times 10^{0.3}}$$

 $T_{s} < .0125 \, {
m sec}$

Converting continuous time to discrete time controller

$$C(s) = 75.71 \frac{s + 1.56}{s(s + 76.92)}$$

Discrete Time Controller:

 $T_s = 0.01 \, \text{sec}$

$$C(z) = \frac{0.5453 + 0.5369z^{-1}}{1 - 1.463z^{-1} + 0.4634z^{-2}}$$

Performance Specifications for Controller

- The controller selected is a Spartan 3E FPGA board.
- The ADC chip has enough resolution to handle changes of .0002v in displacement sensor voltage.
- The controller shall sample displacement at least every 50 ms.

High Level Block Diagram

Datasheets

Controller Flowchart

PWM Flowchart

PWM Oscilloscope Results

ADC Flowchart

ADC Simulation Results

ADC Input Results

Input Voltage and Output Voltage

Equipment and Parts List

- Oscilloscope
- Spartan 3E starter kit
- ADC chip
- VHDL
- Maglev system in power lab

Schedule for This Semester

• 11/26-12/10 Code rotary encoder

Schedule for Next Semester

- 1/28-2/4 Combine rotary encoder with PWM code to be able to vary duty cycle
- 2/11-2/18 Create lookup table to convert user input to PWM duty cycle
- 2/25-3/4 Select power electronics and design circuit to power motor

Schedule for Next Semester

- 3/11 Test power electronics
- 3/25-4/1 Implement controller design
- 4/8-4/15 Make system a stand-alone system and mount FPGA on a PCB
- 4/22-5/6 Prepare for final presentation

Richard F. Post Magnetic Levitation System for Moving Objects U.S. Patent 5,722,326 March 3, 1998

•Richard F. Post Inductrack Magnet Configuration U.S. Patent 6,633,217 B2 October 14, 2003

•Richard F. Post Inductrack Configuration U.S. Patent 629,503 B2 October 7, 2003

•Richard F. Post Laminated Track Design for Inductrack Maglev System U.S. Patent Pending US 2003/0112105 A1 June 19, 2003

Patents

•Coffey; Howard T. Propulsion and stabilization for magnetically levitated vehicles U.S. Patent 5,222,436 June 29, 2003

•Coffey; Howard T. Magnetic Levitation configuration incorporating levitation, guidance and linear synchronous motor U.S. Patent 5,253,592 October 19, 1993

 Levi;Enrico; Zabar;Zivan Air cored, linear induction motor for magnetically levitated systems U.S. Patent 5,270,593 November 10, 1992 •Lamb; Karl J. ; Merrill; Toby ; Gossage; Scott D. ; Sparks; Michael T. ;Barrett; Michael S. U.S. Patent 6,510,799 January 28, 2003

References

- Dr. Lu for help with VHDL coding
- Kyle Gavelek, Victor Panek, Christopher Smith. Senior Project. "Closed Loop Control of Halbach Array Magnetic Levitation System Height". Final Report, May 2013.
- Dirk DeDecker, Jesse Vanlseghem. Senior Project. "Development of a Halbach Array Magnetic Levitation System". Final Report, May 2012.
- Glenn Zomchek. Senior Project. "Redesign of a Rotary Inductrack for Magnetic Levitation Train Demonstration". Final Report, May 2007.
- Paul Friend. Senior Project. Magnetic Levitation Technology 1. Final Report, May 2004.
- Post, Richard F., Ryutov, Dmitri D., "The Inductrack Approach to Magnetic Levitation," Lawrence Livermore National Laboratory.