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Speaker Verification Background

» ldentify people by the sound of their voices
» Alternative to security passwords
» Similar system to speech recognition

» Text-dependent vs. text-independent
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Relevance and Motivation

» Voice command system security threats:
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» Threats mitigated by speaker verification:
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Project Overview

» Integrate speech recognition with speaker
verification

» Operate in real time on a digital signal processor
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Project Overview
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Project Specifications

» True speaker rejection under 1%

» Imposter acceptance preferably under 2%
» 8 kHz audio sampling rate

» System response time under 50 ms

» Implemented on Tl eZdsp5535 DSP
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Pre-processing
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Pre-processing

» Audio stored in 25 ms circular buffer
» 50% frame overlap

» Neglect frames of silence
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Pre-processing

» Hamming window characteristics:
> First side-lobe attenuation: -43 dB
- Main lobe width: 1.30 frequency bins
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Feature Extraction
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Feature Extraction

» 15 Mel-warped cepstral coefficients (MWCC)
extracted per frame

» Measure of short term power spectral density
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Feature Extraction

» Mel scale mimics response of the human ear

Mon-linear Mel Warping of Herz Scale
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Model Comparison
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Model Comparison

» Artificial Neural Networks (ANN) perform
cluster analysis
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Model Comparison

ANN Partitions in 2D Cluster Analysis
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Model Comparison

» ANN training done externally in MATLAB
» Weights updated via back-propagation

» Adaptive learning utilized

thousands of iterations

S Average squared error over time
5 25% T T . T . T
3 20%¢ :
S 15% : ; -
100'; al 1 E 1 E 1
e 0 10 20 i 30 i 40 50
thousands ofiiterations  :
® Learning rate adaptation ovér time
® 04 . . R [
o . . .
£ 02¢ z : : -
= ) N A A
D 1 1 . 1 . 1
— 0 10 20 30 40 50




Scoring and Decision Making
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Scoring and Decision Making

» Speech recognition and speaker verification
both accomplished with two text-dependent
ANN’s

» Decision thresholds chosen for optimal error
ratios

» Comparing recognition and verification
scores yields final command identification
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Simulation Conditions

» ANN’s trained over 100,000 iterations each

» Training population:
> 1 true speaker (6 takes) and 11 imposters
- 2 command words and 4 additional “foreign words”

» Programmed in MATLAB without real time
consideration
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Simulation Results

Final Simulation Errors

TSR - True speaker rejection
error

IA - Imposter acceptance
error

TSFWA- True speaker foreign
word acceptance error

-Imposter foreign word
0% acceptance error

TSR 1A TSEWA  IFWA MC MC-Mistaken command error




Implementation Conditions

» ANN’s trained over 1,000,000 iterations each

» Training population:
> 1 true speaker and 5 imposters (10 takes each)
- 2 command words and 10 “foreign words”

» Programmed in C on a Tl eZdsp ¢5535
development board for real time operation
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Implementation Results
Final Implementation Errors

TSR - True speaker rejection
14.9% error

12.9%

IA - Imposter acceptance error

TSFWA- True speaker foreign
word acceptance error

-Imposter foreign word
acceptance error

0% I 0% MC-Mistaken command error
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Conclusions

» DSP implementation negatively affects
accuracy

» Voice volume and timbre affect accuracy
» Method is poor at rejecting foreign words

» System shows substantial promise
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Recap

» Security mechanism

» Methods
- Windowing
- MWCC extraction
- ANN model comparison
- Decision making

» Simulation results

» Implementation results
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