
1

Smart Autonomous Vehicle in a Scaled Urban
Environment

Devon Bates, Frayne Go, Thomas Joyce and Elyse Vernon,
Student, Bradley University: Department of Electrical and Computer Engineering

James Irwin and Jose Sanchez,
Faculty Advisors, Bradley University: Department of Electrical and Computer Engineering

Abstract—Autonomous vehicles are of increasing interest to
researchers. However, analysis of full-scale autonomous vehicle
technology is costly. The focus of this project is the design of an
autonomous control system such that a 1/14 scale vehicle (RC
MAN TGX 26.540 6x4 XLX) can navigate a proportionally scaled
roadway. The top level behavioral objective is for the vehicle
to approach an intersection, halt at the stop line, execute a
right turn, and stay within lane lines at all times. A camera
module (OV7670) is to be interfaced with two digital signal
processors (TMS320C5515) to perform the image processing.
The primary controller is implemented using a microcontroller
(Stellaris LM4F120) and its output is received by a secondary
controller for motor interfacing. The TMS320C5515 communi-
cates with the Stellaris LM4F120 through an inter-integrated
circuit bus. Lane detection is implemented on the TMS320C5515
using Canny/Hough estimation of vanishing points to generate a
steering angle of correction. Stop sign detection is implemented
using histogram oriented gradients with a support vector ma-
chine for sign classification, and has an 80% detection rate
in simulation. The Stellaris LM4F120 communicates intelligent
speed and steering commands to the vehicle. The control loop
is closed with a photomicrosensor used for speed sensing. Speed
sensor interpretation in software is within 0.4% precision; speed
regulation is within 0.658% precision; tracking control is within
2% precision; and deceleration control is within 5% precision.
This research has the potential to decrease the costs associated
with autonomous vehicle technology thus accelerating technical
advancements in the field.

Index Terms—Autonomous, Canny/Hough estimation of van-
ishing points, Hough transform, kinematics, proportional-integral
Control, pulse-width modulation,

I. INTRODUCTION

DEFENSE research has become increasingly interested in
autonomous vehicles. The Defense Advanced Research

Projects Agency (DARPA) held its first Grand Challenge in
2004. The competition pitted some of the most elite schools
against each other to design an autonomous vehicle that would
navigate the Mojave Desert. The purpose of the event was
to design an autonomous vehicle so that supplies could be
moved through a war-torn region without endangering the
lives of soldiers. In 2005, the team from Stanford University
successfully completed the Grand Challenge along with teams
from four other universities. With the successful completion
of the Grand Challenge, DAPRA upgraded the event to the
Urban Challenge, which took place in an abandoned Air Force
base [1]. The objective of the Urban Challenge was to design
an autonomous vehicle such that the vehicle could obey all
traffic regulations while avoiding other obstacles and merging

with traffic. The main difficulty of the Urban Challenge was
to design software to make intelligent decisions in real-time,
unlike the Grand Challenge, which was more structured [1].
Recently, Google announced its Google Driverless Car project,
a fleet of full-scale autonomous vehicles which have logged
over 300,000 hours on roadways, navigating them completely
accident free [2]. Because of the work done by Google and
researchers for the DARPA competitions, autonomous vehicles
have been legalized in three states as of 2013: Nevada, Florida,
and California [2].

Autonomous vehicles have far reaching benefits, includ-
ing increasing road safety and allowing those with physical
disabilities an independence not otherwise afforded to them.
Autonomous vehicles have the potential to increase road safety
by reducing the number of motor vehicle related deaths. The
U.S. Census Bureau estimates that over 35,000 people died in
2009 alone in motor vehicle related accidents [3]. By reducing
the amount of human error, autonomous vehicle technology
may dramatically reduce the number of automobile-related
deaths once fully integrated into society. The lead engineer
of Google’s driverless car project, Sebastian Thrun, estimates
that autonomous vehicle technology has the potential to reduce
the number of automobile accidents by 90% [4]. Autonomous
vehicles will also allow those with physical impairments the
ability to drive. People who suffer from seizures and those
who have full or partial paralysis will now be afforded the
independence of driving.

The Smart Autonomous Vehicle in a Scaled Urban En-
vironment project was designed to bring specific research
applications of autonomous vehicle analysis to a small scale.
The smaller scale allows schools with limited research funding
the ability to examine autonomous vehicle technology without
the high costs associated with full-scale analysis.

II. PROBLEM FORMULATION

The primary objective is the design of a vision-based control
system such that a vehicle autonomously reaches a constant
speed, detects a stop sign, engages brake lights and a right
turn signal, decelerates to a halt at the stop line, executes a
right-hand turn into the appropriate lane, and navigates within
lane boundaries at all times during operation. For the vehicle
operate autonomously, the design requires an environment-
detecting sensor, means for interpretation of data from the
environment-detecting sensor, and motion control capabilities.

2

Therefore, the system was designed by integrating two sub-
systems: an image processing subsystem and a vehicle control
subsystem.

A. Architecture Design

The high-level system architecture design is shown in Fig. 1.
The image processing subsystem consists of a camera to
gather data from the environment and a digital signal processor
(DSP) to analyze the data. The choice of the Omnivision
OV7670 camera was due to its relatively low cost and low
power dissipation. The use of the DSP (TMS320C5515) is
necessary because these devices have high speed performance
as required for real-time image processing. The vehicle control
subsystem is comprised of a microcontroller (MCU) (Stellaris
LM4F120H5QR), a secondary, commercial-off-the-shelf con-
troller called the Multi-Function Controller (MFC), and other
peripheral circuitry. The MCU is used for its ability to output
pulse-width modulated (PWM) signals, its low cost, and its
robust diagnostic software tools. The PWM signal generation
is necessary to communicate with the MFC for control of the
vehicle motors used for throttle, steering, and gear shifting.
A low-cost speed sensor was implemented with the use of a
photomicrosensor to create closed-loop motion control.

Fig. 1: System Architecture

The vehicle chosen was the Tamiya MAN TGX 26.540 6x4
XLX semi-truck cab, which is a replica at a 1/14-scale. The
vehicle is radio-controlled in its original application, which
simplified the initial modeling and ultimately provides the
means to manually override the vehicle control software for
emergency stopping. The bed of the truck also provides space
for housing the system.

B. Functional Requirements

Achieving the project objective required elaboration of
specific functional requirements. These requirements were
established based upon the high level objectives for the vehicle
behavior, for the image processing software on the DSP, and
for the controller software on the MCU.

1) Vehicle Behavior: To emulate safe driving in an urban
environment, the vehicle’s behavioral requirements are based
on scaling down the rules of the road for a full-size truck
operating in the state of Illinois. One critical requirement is
that the vehicle shall come to a full and complete stop at or
before the stop line before proceeding into the intersection.
The vehicle shall wait for a minimum of 2 seconds before
proceeding into the intersection and the vehicle shall drive at a

speed no more than 3.2 miles per hour. The speed requirement
is based on a full-size vehicle speed of 45 mph scaled down to
a 1/14 scale. The vehicle shall also be able to stay within the
lane lines at all times for the safety of all drivers, passengers,
and pedestrians. A radio-controlled safety switch shall be
included to stop the vehicle immediately for protection of the
equipment. The Illinois rules of the road states that a driver
must engage a turn signal at least 100 ft away from the stop
sign in non-highway areas [5]. When 100 ft is reduced to the
1/14 scale, this distance is approximately 7 ft. Therefore, the
vehicle shall engage a turn signal and brake lights at least 7
ft from the stop line.

2) Image Processing: To integrate the image processing
subsystem into the overall system, there are several require-
ments regarding equipment compatibility, sufficient opera-
tional speed, and performance of specific tasks. The camera
shall be able to output 1 megapixel of image data. The camera
shall be able to send data at a rate of 30 frames per second. The
image data from the camera shall be a color image containing
3 layers in order to perform the stop sign detection.

For the image processing algorithms to complete in time
for the vehicle control subsystem to adequately respond to
visual data, the DSP shall be able to complete the required
image processing within 50 ms. The DSP shall send a stop
sign detection flag to the MCU after having detected a stop
sign. Once the stop sign has been detected, the DSP shall begin
to search for the stop line to calculate the distance between
the vehicle and the stop line. For the lane line detection
functionality, the DSP shall be able to detect and transmit the
orientation of the vehicle within the lane lines within 250 ms.

3) Vehicle Control: Functional requirements have been
established for the vehicle control subsystem to achieve the
necessary control over the vehicle’s motion and light-emitting
diode (LED) indicators. Analysis of the high-level behav-
ioral objective prompted the requirement that vehicle control
software shall contain algorithms for speed regulation, lane
tracking, deceleration control, and turning.

The MCU shall be able to communicate to the steering servo
a desired steering angle given in degrees. The MCU shall be
able to set the transmission to gear 1, 2, or 3. It shall also be
able to control vehicle velocity and determine from a speed
sensor the actual velocity at which the vehicle is operating. The
main loop of the MCU shall focus on vehicle speed regulation
and lane tracking. The MCU shall be set up to receive from
the DSP a variable that describes the distance between the
vehicle and the stop line, as well as a variable that describes
the vehicle’s required corrective steering angle. The MCU shall
repeatedly use kinematic equations to calculate the required
deceleration to come to a full and complete stop. The MCU
shall engage the brake lights and turn indicator immediately
after a stop sign has been detected by the image processing
subsystem. One iteration of the deceleration control algorithm
shall execute within 50 ms. After being stopped at the stop line
for two seconds, the MCU shall instruct the vehicle to make
a 90◦ right turn of smallest possible radius after the vehicle
reaches the distance of straight travel necessary to reach the

3

center of the lane. After completion of the turn, the MCU shall
communicate to the DSP that the turn has been completed and
the DSP shall resume looking for a stop sign.

III. METHODS

The image processing and vehicle control subsystems were
independently developed. System development required mod-
ular implementation of a camera, image processing software,
inter-integrated circuit communication, and a vehicle control
subsystem.

In the image processing subsystem, the image data is
processed to determine the location of the lane lines and to
detect a stop sign. MATLAB (Mathworks, Natick, MA) was
used to perform algorithm verification and testing. Algorithms
were chosen based on their compatibility with the hardware
and functional requirements. Once the algorithms had been
selected and completed in simulation, they were implemented
in C on a DSP.

The DSP sends a bit to the MCU indicating the detection
of a stop sign as well as a corrective steering angle for use
by the vehicle control system. The signals are sent across an
inter-integrated communication (I2C) bus. Detection of a stop
sign initiates a deceleration control algorithm stored in code
memory of the MCU. Communication of a corrective angle
initiates a lane tracking algorithm to orient the vehicle straight
within the lane.

Modeling and analysis of the vehicle was performed using
ground testing data. These procedures produced an overall
model of vehicle motion. Motor control has been achieved
by reverse engineering the MFC designed by Tamiya Inc. In
its intended application, the MFC receives instructions from a
radio receiver. Software on the MCU has been implemented
to replace the de-modulated radio signals to achieve vehicle
motion. These radio signals were analyzed and replicated in
the initial stages of the project.

A. Capturing Images from Camera

The camera was chosen because of its high signal-to-noise
ratio, low operating voltage, low power consumption, and high
frame rate. Figure 2 shows the interface between the camera
and DSP. The interface consists of four different signals for
communication grouped into three buses. The external clock
is the operation bus which allows for synchronized operation
between the DSP and the camera. The Serial Camera Commu-
nication Bus (SCCB) is used to configure the parameters of
the camera. The parallel data line and the sync line form the
image bus which is responsible for the transmission of image
data.

1) Operation Bus: In order for the communication between
the camera and the DSP to be established, the camera requires
both a power source and a clock source. The DSP is responsi-
ble for controlling how fast the camera outputs image data by
transmiting a clock signal. An external clock source between
10 and 54 MHz is ideal for image output [6]. 12.5MHz was
used in the design.

Fig. 2: Camera interfacing with I/O signals

2) Configuration Bus: For the communication between the
camera and the DSP to be established, the camera requires
both a power source and a clock source. The DSP is respon-
sible for controlling the image data rate by transmitting a
clock signal to the camera. An external clock source between
10 and 54 MHz is ideal for image output [6]. A frequency
of 12.5 MHz was selected to allow the DSP to be able to
synchronize and read the image bus based on the limited
sampling frequencies on its IO ports.

Fig. 3: Phase Information

At idle state, SIO C and SIO D are high. To start a
transmission, SIO C will pull down from idle state to activate
SCCB protocol between the devices. This allows the trans-
mission of phases through SIO D line, which consists of a
set of 9-bit data as shown in Fig. 3. A phase is transmitted
from most significant bit to least significant bit. The first 7-
bits, D6 through D0 are data used for register addresses or
commands, while the 8th bit, R/W, is the read or write bit.
The last bit is the acknowledge bit, X, which is ignored by
Omnivision SCCB standards [6]. The 9-bit phases are read at
active high when SIO C generates pulses. Once transmission
is complete, SIO C and SIO D will pull up to idle state to
halt SCCB protocol.

The camera performs two functions: reading from the DSP
and writing to the DSP. The write transmission shown in Fig. 5
can be divided into three phases. The DSP first transmits the
IP address of the camera to notify the camera to begin SCCB
communication. In the second phase, the camera receives a
7-bit address which is associated with one of its configuration
registers and allows the DSP to transmit data to the associated
configuration register in the last phase. The read transmission
illustrated in Fig. 5 is divided into two 2-phase transmissions.
The master first broadcasts a pointer to a camera’s configura-
tion register, which then transmits what information is within
the register.

The OV7670 has the ability to adjust the images transmitted
to the DSP. By default, the camera is setup to output a lumi-
nance, red-luminance, and blue-luminance (YUV), 640x480

4

Fig. 4: 3-Phase Write Transmission

Fig. 5: 2-Phase Point and Read Transmission

VGA resolution image. Instead of VGA resolution the output
is adjusted to be a 320x240 quarter video graphic array
(QVGA) resolution image. This choice was made because the
DSP has a limited amount of space to process the image and
a QVGA image takes up less memory than a VGA resolution
image. Also, a red, green, and blue (RGB) image is preferred
to avoid color transformation computation of an YUV image
to a RGB image.

3) Image Bus: In total, there are 11 signals on the image
bus including three sync lines and eight parallel data lines.
The parallel data lines operate at the same frequency of the
external clock signal. The sync lines are used for timings to
read information pixel by pixel, read the next row of pixels,
and read the next image. The 12.5 MHz clock provided by
the DSP is also the same frequency for the data lines. Sync
timings for the image bus indicate that a transmitted image will
be captured within 30-32 ms [6]. For the stop detection, DSP
will have 18-20 ms remaining after receiving the transmitted
image to process an image and send data to the MCU. For lane
line detection, the processing window for the image processing
and data transfer is 218-220 ms.

B. Image Processing

Two algorithms are operating on the DSP that comprise
the image processing subsystem. One of the algorithms is
locating the lane lines on the road and the other is detecting the
stop sign. The two independent algorithms run concurrently
to analyze each frame imported from the camera. Within each
frame, a 320x240 image is acquired from the camera. Once the
stop line and stop sign detection calculations are performed,
the DSP will transmit the stop-bit and lane correction signals
to the MCU. The stop sign detection function transmits a bit
to the MCU when a stop sign is positively classified. The lane
line detection transmits the calculated value for the corrective
steering angle to the MCU every 250 ms. The steering angle
(in degrees) is transmitted to the MCU so that lane tracking
can be performed in the vehicle control subsystem. Once a stop
sign has been detected, the lane line detection also transmits
the distance between the vehicle and the stop line to the MCU.

The intention for the project is to process the visual en-
vironment by utilizing two separate DSPs which are both
connected to the camera. Using two DSPs allows each function
to utilize more memory space and processing time. Also, using
two DSPs allows the lane detection and stop sign detection
functions to be performed simultaneously.

Fig. 6: Image Processing High Level Software Flowchart

1) Stop Sign Detection Algorithm: Stop sign detection is
performed in two main steps: feature description and image
classification. The feature description is performed using the
histogram of oriented gradients (HOG). The feature data is
then classified as being a stop sign or not by a support
vector machine (SVM). The SVM has two main processes, the
teaching process, which is performed externally in MATLAB
and the testing process, which classifies the image and is
performed on the DSP in real-time.

a) Histogram of oriented gradients:
The first step in detecting a stop sign is generating the

feature data from the image. The feature values are calculated
for each ith sub-block, jth template and kth orientation. The
sub-block is a 3x3 block in the image; the template is a
3x3 masking template; and the orientation is the discrete
representation of the edge direction. The feature values are
calculated using gradient magnitudes and edge direction. A
gradient magnitude is the difference between pixel intensity
when comparing a pixel and its adjacent pixels. To calculate
the gradient intensity, the derivatives are calculated in the x-
and y-direction [7]

5

Grx(x, y) =
[
−1 0 1

]
∗ Ir(x, y) (1a)

Gry(x, y) =
[
−1 0 1

]T ∗ Ir(x, y), (1b)

which are then used to calculate the magnitude and direction
of the gradient [7]

Gr(x, y) =
√
Grx(x, y)2 +Gry(x, y)2 (2a)

Θr(x, y) = tan−1
Gry(x, y)

Grx(x, y)
. (2b)

The direction is originally calculated over the range from -
180◦ to 180◦; however, for calculation purposes the angles are
sorted into 8 bins. For bin sorting, which is shown in Fig. 7(b),
any angles contained in the yellow triangle are sorted into Bin
1. Each of the pixels in the k bin arrays, Ψrk, contains the
magnitude of the pixel if its corresponding edge orientation
is sorted into that particular bin or a 0 if the edge orientation
is sorted into a different bin (3). The gradients are calculated
on each layer of the RGB image. Although the main layer is
the red layer, the green and blue layers are used to weight
the results which accounts for changes in lighting. Once the
gradient magnitudes and edge directions have been calculated
for each pixel, templates are used to organize the data into
feature values. A template is a 3x3 pixel sub-block that masks
out, or ignores, irrelevant pixel data. There is a set of four
templates that are used which are shown in Fig. 7(a). Blue
shaded pixels would be masked out in each template.

Ψrk(x, y) =

{
Gr(x, y) if Θr(x,y) ∈ bink

0 otherwise (3)

The gradient calculations for the red layer are divided by
the summation of the calculations for all three layers and
combined using masked sub-blocks, where Cj is the set of
non-masked pixels in the jth template and Bi denotes the ith

sub-block.

fr(i, j, k) =

∑
(x,y)∈Cj

ψrk(x, y)∑
(x,y)∈Bi

Gr(x, y) +Gg(x, y) +Gb(x, y)
(4)

The weighting of the gradients is important for the robust-
ness of the algorithm. Weighting the red layer with the sum-
mation of the three layers allows the HOG algorithm to be an
effective image descriptor regardless of variations in levels of
ambient light. In addition, HOG uses the RGB color scheme,
which cuts out the need for color space transformations lower
the overhead computational time. The number of feature values
in the resulting feature value vector depends on the number
of sub-blocks, templates, and bins.

(a)

(b)

Fig. 7: (a)Masking Templates and (b) Gradient Calculations
for HOG

b) Support Vector Machine:
The second step in recognizing the stop sign is classifica-

tion, which is implemented using a Support Vector Machine
(SVM). A SVM is a supervised learning model that is used to
analyze data and recognize patterns, usually used for classifica-
tion and regression analysis. The SVM is based on the margin
maximization principle. To train the SVM, feature vectors are
extracted from multiple images of the target classification.
Each set of feature values is classified based on whether it
contains a stop sign or not. The types of classifications can
be diversified to include full stop signs and partially obscured
stop signs, distant stop signs, etc. so the detection algorithm
would be robust in every circumstance. For the scaled urban
environment, the algorithm will focus solely on full stop
sign recognition. The SVM maps input vectors into a high
dimensional feature space through non-linear mapping [8]. A
hyperplane is a plane present in the high dimensional space
that separates the two classifications. Equation (5) outlines the
representation of the linear optimal hyperplane, u, which is
defined by the normal vector, w, and the threshold vector, b
[9].

6

u = −→w · −→x − b (5)

The hyperplane separates the two classifications of stop
signs at u equals to 0. An optimal hyperplane is part of the
linear decision function and is the hyperplane with maximal
margin between the vectors of the two classes. The SVM
computes the solution for the optimal hyperplane using the
example support vectors in the training stage. The optimal
hyperplane is made of the specific solution of w0 and b0 that
separates the training data into two groups with a maximal
margin. In other words, the SVM determines the hyperplane
so that the distance between the projections of the two dif-
ferent classes is maximal. Equation (6) shows the formula for
determining the maximum margins between the hyperplane.

m =
1

‖w‖2
(6)

The normal vector, w, and the threshold, b, are the compo-
nents used to calculated the maximal margins which can be
calculated using the Lagrangian multipliers. Typically, calcu-
lating w and b is a quadratic programming problem. However,
without access to any quadratic programming libraries, the
hyperplane was calculated using sequential minimal optimiza-
tion (SMO). Instead of solving the problem for the entire set
of Lagrangian multipliers, SMO solves the problem for two
individual Lagrangian multipliers and then uses several testing
states to determine when the solution is optimized for the
whole system. The two components of the optimal hyperplane
are calculated using (7) once the Lagrangian multipliers are
calculated [8]. The optimal solution for the normal vector, w0,
is the summation of the products of the Lagrangian multipliers
αi and the support vectors zi.

w0 = Σαizi (7)

Once the learning step has been performed, the optimal
hyperplane is loaded into memory for the testing stage. The
testing stage begins with the calculated feature data as the
input into the SVM as a vector z. The decision function for
an image to be classified as a stop sign is [8]

I(z) = sign(w0 · z + b0). (8)

If I(z) is greater than 0, then the vector is classified as a
stop sign. If I(z) is less than 0, then the data is classified as
not a stop sign.

2) Lane Detection Algorithm: The lane detection function
detects and calculates the lane lines for navigation purposes.
The algorithm being used is the Canny/Hough edge detection
with vanishing points. There are three main stages of the lane
detection algorithm. First, Canny edge detection analyzes the
image, producing binary edge data that describes all edges
in the image. Second, the Hough transform uses the binary
edge data and performs line fitting to calculate the line data.
Lastly, the line generated by the Hough transform is used to

calculate the vanishing points which can be used to determine
the navigation angle for the car to adjust the orientation.

a) Canny Edge Detection:
Canny edge detection is performed on a black and white

image. The first step in Canny edge detection is to perform
Gaussian smoothing to eliminate any noise present in the
image. To perform the Gaussian smoothing, a 1D Gaussian
kernel is multiplied across the image in the x- and y-directions.
The second step is to perform gradient calculations on the
smoothed image. The gradient magnitude and edge direction
are determined in the same way as the gradient calculations
in the histogram of oriented gradients. Similarly to the HOG
algorithm, the angles are sorted into a discrete number of bins.

After all of the gradient values are calculated, the function
performs non-maximum suppression on each pixel in the
image. Non-maximum suppression takes the calculated bin
values for each pixel and compares the gradient magnitudes
from the pixels in the indicated bin direction.

Fig. 8: Non-maximum Suppression for Canny Edge Detection
where (a) is a maximum and (b) is a non-maximum

Fig. 8 shows two instances of non-maximum suppression.
The bin of the center pixel in fig. 8(a) is 1, so the center
pixel is compared to the pixel in the Bin 1 direction and
the reverse direction. In the first example, the magnitude is
a maximum, so the gradient magnitude would be kept. In
fig. 8(b), the magnitude is not a maximum, so the center
pixel would be masked out in the results. The last step is to
perform thresholding on the remaining gradient magnitudes.
Thresholding involves comparing the magnitude of each pixel
with a threshold level of 10. If the pixel is greater than the
threshold, that pixel is set to 1. If not, then it is set to 0. After
thresholding, the image contains the binary edge data of the
lane line that is used for the Hough transform.

b) Hough transform:
The Hough transform is a technique that can be used to

detect lines or other parametric forms. In this study, the linear
version of the Hough transform is used. The line is described
by ρ and θ variables where θ is the angle of the line and
ρ is the distance from the line to the origin. The Hough
transform examines each pixel that is an edge. For that pixel,
it cycles through all of the available θ values and calculates
the corresponding value and then increments the accumulator
at the indices that are equal to ρ and θ.

A simplified version of the Hough transform is shown in

7

Fig. 9: Hough Transform line calculation

Fig. 9. The two points marked with an X highlight two edge
pixels in the image data. The yellow line would be the linear
fit between the two edge pixels. The highest value stored in the
two-dimensional accumulator is representative of the line that
is fit. One index represent the θ value and the other index
represents the ρ value. The Hough transform is performed
twice, once for the left lane and once for the right lane.

c) Vanishing Points:
The Vanishing points calculation projects the resulting lines

from the Hough transform into the distance. The intersection
is determined by converting the lines into slope-intercept
representation. Equations (8a) and (8b) are used to determine
the slope, m, and intercept, b.

m = tan(θ) (8a)

b =
ρ

θ
(8b)

The intersection point between the left and right lane lines
is used to determine the angle of orientation that needs to be
transmitted to the MCU for navigation purposes. The mapping
of the lines into a navigation angle requires the location and
orientation of the camera on the car.

C. Inter-Integrated Circuit Communication

To facilitate communication between the MCU and the
DSPs, an inter-integrated circuit (I2C) bus was implemented.
The I2C bus allows bi-directional data transfer between two
or more devices. Because the DSP performs the computation-
ally intensive operations, the DSP serves as the master. The
MCU receives and responds to the information obtained from
calculations performed on the DSP through the I2C bus. The

MCU is the slave device on the bus. To communicate between
devices, I2C protocol requires two lines: a clock line (SCL)
and a data line (SDA). The SCL line is used to synchronize
data transfer while the SDA line contains the information to be
communicated between devices. The process for data transfer
between the master and the slave is as follows: first, the master
selects which slave it shall communicate with by transmitting a
slave address; second, the slave with the corresponding slave
address responds by transmitting an acknowledge bit to the
master, which verifies that the master is ready to receive data;
third, the master transmits the 8-bits serial data across the
SDA line; finally, the slave transmits another acknowledge bit
to confirm that the information has been received.

D. Vehicle Control

The vehicle control subsystem accepts information about
the vehicle’s visual environment and responds with motion
and LED indicator control. The subsystem responds by ex-
ecuting software which has been instantiated on the MCU.
The software controls PWM signals for motor control to the
MFC. There are three PWM signal outputs for control of
the following motors: throttle (direct current motor), steering
(servo motor), and gear shift (servo motor). The vehicle control
subsystem also consists of peripheral circuitry including a
speed sensor, a brake light amplifier, and a radio-controlled
shutoff signal.

1) Software Design: The high level flowchart for the MCU
software is shown in Fig. 10. The software is designed to
iterate indefinitely between a speed regulation algorithm and
tracking algorithm. The main loop is interrupted only when
the DSP engages a stop sign detection flag. Along with stop
detection information, the distance between the vehicle and the
stop line is communicated by the DSP such that the vehicle
can decelerate from its current speed to zero velocity upon
reaching the stop line. Following the deceleration control loop,
the vehicle pauses for two seconds at the stop line before
finally executing a turning algorithm so that it moves into the
center of the new lane.

a) Speed Regulation Algorithm:
The speed regulation model is given by the block diagram

in Fig. 11. The symbolic digital multiplexer shown in Fig. 11
selects the top path only upon the first iteration of the speed
control algorithm. The top path initializes the throttle PWM
signal based on vehicle modeling data. The signal initialization
is given by the linear model

PWM Timer Value = kp ∗ Command + c, (9)

where Command is a command signal of the desired steady-
state vehicle velocity in m

s , kp is a constant defining the slope
of the linear relationship, and c is a constant defining the
zero crossing. To determine the parameters kp and c, vehicle
modeling data was measured for the vehicle with free-spinning
wheels (unloaded) and on the ground (loaded). The vehicle
modeling data is shown in Fig. 12. Measurements performed
on the loaded system suggests that kp = 8,321.5 and c =

8

Fig. 10: MCU main loop

592,150. The unloaded system measurements suggest a linear
relationship with a lower zero crossing and a larger slope than
the loaded system, which further suggests that the vehicle’s
weight has an effect on the relationship between vehicle
steady-state speed and signal pulse width. The data in Fig. 12
could be used to determine a relationship between the weight
of the vehicle and the constants kp and c if the vehicle weight
was to vary significantly. However, small variations in system
weight were anticipated, suggesting that such a relationship
was unnecessary for the loaded system design.

After initialization of the PWM signal, the multiplexer in
Fig. 11 selects the bottom path for all remaining iterations. The
bottom path is a digital proportional-integral control structure.
Proportional-integral control operates by generating an error
signal as the difference between the command signal (intended
vehicle velocity) and system output (actual vehicle velocity).
The error signal is multiplied by gain kI and integrated.
kI can be analytically designed or tuned to optimize the
output response. Integration of the error signal is performed
to decrease steady-state error. the proportional-integral control
structure was therefore chosen for its low steady-state error
characteristic. kI was tuned to be 1000 based on observation
of vehicle behavior. The choice for kI yields satisfactory
overshoot and steady-state error for the loaded system. In
ground testing, no measurable overshoot was detected; this
is important for the urban operating conditions of the system,
in which speeding is not acceptable. Steady-state error was

Fig. 11: Speed Control Block Diagram

Fig. 12: Vehicle Modeling Results

measured to be within a mean value of 0.658% error, which
was determined to be tolerable based on analysis of full-scale
operating conditions. The command signal of 0.64 m/s being
used for testing corresponds to a command signal of 20 MPH
in a full-scale system. The 0.658% error suggests that for
an intended command signal of 20 MPH, the system would
respond with a steady-state speed between 19.86 MPH and
20.14 MPH. The variability of human drivers’ cruising speed
is much greater than the error for a given sample of drivers
on the road, which justifies the kI choice.

b) Tracking Algorithm:
The vehicle’s control tracking algorithm uses the corrective

angle transmitted by the DSP to correct the vehicle’s orien-
tation. The geometric analysis in Fig. 13 was used for initial
corrective angle modeling. The geometric model assumes that
for a given vehicle’s steering angle, the turn radius, R, is given
by [10]

R =
Wheelbase

sin(θsteer)
+
Track

2
, (10)

where Wheelbase is the distance between the front and rear
axle of the vehicle (0.2885 m), Track is the distance between
wheels along the axle (0.171 m), and θsteer is the steering
angle on the front axle. Given R and a corrective steering
angle, θcorr, in degrees, the distance of travel along the
perimeter of the circle is given by

D = 2πR ∗ θ
◦
corr

360◦
. (11)

9

Using (11) and assuming constant vehicle velocity, the
steering time interval, Tsteer, can be determined by

Tsteer =
D

V
. (12)

After correcting the vehicle’s orientation, the steering servo
returns to a 0◦ steering angle for every iteration of the
algorithm.

Fig. 13: Tracking Algorithm Geometric Analysis

After geometric analysis was performed, a new model for
the turn radius was determined based on empirical data specific
to the vehicle by measuring turn radii for a set of software-
controlled steering angles. By testing three trials each of 6◦,
18◦, 21◦, 24◦, and 25◦ steering angles (see appendix A), a
relationship was interpolated as given by

R =
x

sin(θsteer)
, (13)

where x is a constant of proportionality for all steering angles.
From test data, x was determined to be 0.340 with 2.59%
standard deviation. Using the model obtained from empirical
data, the steering time interval is represented by

Tsteer = 0.00593

[
θ◦corr

v ∗ sin(θsteer)

]
. (14)

After tracking control testing resulted in consistent error
of 15% below desired orientation, the time interval in (14)
was adjusted accordingly to account for this error correction
by multiplying the constant 0.00593 by 115% to yield Equa-
tion (15).

Tsteer = 0.00682

[
θ◦corr

v ∗ sin(θsteer)

]
. (15)

Observation of vehicle’s behavior during tracking testing
revealed that for sequential corrective angles in opposing
directions, the vehicle’s steering performed with mechanical
undershoot in the new direction. To compensate for the un-
dershoot, a value with a magnitude of 1000 was added to the

to the PWM timer value corresponding to a 0◦ angle after
completion of each tracking algorithm iteration. In effect, a
small left turn command follows a corrective angle in the right
direction, and a small right turn command follows a corrective
angle in the left direction. The value of 1000 was found
using a tuning method and has improved vehicle orientation
performance based on observation of vehicle behavior during
testing.

c) Deceleration Control Algorithm:
Before the first iteration of the deceleration control algo-

rithm, the software determines the constant deceleration, Acc,
required to bring the vehicle from its initial velocity, vi, to zero
velocity over the distance between the vehicle’s initial position
and the stop line, D. Equation (16) shows the computation of
Acc [11].

Acc = − v2i
2D

(16)

The initial velocity, vi, in (16) is determined using speed
sensor estimates. The distance D between the vehicle and the
stop line is calculated by the image processing subsystem and
is communicated to the MCU over the I2C bus. The total
stopping time, Tstop, is given by [11]

Tstop =
2D

vi
. (17)

The update rate was set at 250 ms to allow for deceleration
accuracy while allowing sufficient iteration time for each
tracking algorithm. Thus, the number of deceleration control
iterations is calculated as

N =
Tstop
0.250

. (18)

Fig. 14 shows a flowchart of the deceleration control algo-
rithm, which functions to update the new velocity command
each iteration using the deceleration model. To make the
deceleration control update interval 250 ms, the algorithm
delays for an amount of time equal to the difference between
the tracking algorithm update time Tsteer and 250 ms. For
the case in which the steering time is less than 250 ms, the
new velocity is set as shown in (19). When Tsteer is larger
than 250 ms, there is no additional delay and the new speed is
immediately updated by multiplying the deceleration by Tsteer

as in (20).

vn = vn−1 +Acc ∗ Tsteer (19)

vn = vn−1 +Acc ∗ 0.250 (20)

10

Fig. 14: Deceleration Control Algorithm Iteration

d) Turning Algorithm:
The turning algorithm executes in two stages. The first stage

is the distance of straight travel, in which the vehicle drives
forward at a straight steering angle for a finite distance beyond
the stop line. The second stage is the 90◦ turn. The purpose
of the first stage is to line up the vehicle’s center of rotation
appropriately to ensure that the vehicle ends up in the center
of the lane upon completion of the second stage. The distance
of straight travel, Dstraight, is a function of the vehicle’s turn
radius, Rveh trn, the intersection turn radius, Rint, and the
distance between the front of the vehicle and its center of
rotation, L. Based on measurements of the vehicle’s 90◦ turn
using a maximum 25◦ steering angle, the vehicle’s turn radius
is 0.80 m. The distance L was measured as 0.60 m. Therefore,
to determine the distance of straight travel, Equation (20a)was
derived using vector addition. Using the measured constants
for Rveh trn and L, Equation (20a) was reduced to (20c),
which is only a function of the intersection radius.

Dstraight = (Rint −Rveh trn) + L (20a)
Dstraight = (Rint − 0.80) + 0.60 (20b)

Dstraight = Rint − 0.20 (20c)

Completion of the first stage is determined by the speed
sensor and peripheral timers within the MCU that are used
to update a cumulative summation distance variable compared
with the constant Dstraight. This is accomplished by solving
for Dstraight in (16) for an update time of 125 ms and
sampling the speed sensor upon timer overflow.

In the second stage of the turning algorithm, the vehicle’s
steering servo is engaged to 25◦ until the vehicle has made

a 90◦ turn. Based on the measured Rveh trn, the 90◦ turn
is accomplished in a distance of 1.25 m based on (15) for
θcorr equal to 90◦. Upon completion of the second stage, the
steering column is returned to 0◦. The MCU software finally
returns the program counter to the main loop to resume speed
regulation and tracking.

Fig. 15: Turning Algorithm

2) Interfacing with Vehicle Peripherals: To achieve control
of the vehicle’s motion, the design requires communication
between the MCU and MFC. In addition, communication is
required between the MCU and analog circuitry including
a speed sensor, a brake light signal amplifier, and a radio-
controlled shutoff signal.

a) PWM Signal Generation:
Interfacing the MCU with the motors on the Tamiya RC

MAN TGX 26.540 6x4 XLX vehicle required specific com-
munication between the MCU and the MFC. Communication
required observation of the radio receiver output signals so that
they could be emulated by the MCU. Fig. 16 shows recorded
signals transmitted by the radio receiver corresponding to gear
1 (top) and gear 2 (bottom). These signals were observed
and recorded using a TDS 2024B oscilloscope (Tektronix,
Portland, OR). Command signals for each motor (DC throttle
motor, steering servo motor, and gear shift servo motor) are
identical in frequency and positive pulse width range. Each is
a 56.15 Hz PWM signal with a positive pulse width in the
range of 1 ms to 2 ms.

Forward vehicle velocity is achieved by setting the positive
pulse width of the throttle PWM signal to a value in the range
of 1 ms to 1.5 ms. 1.5 ms corresponds to zero velocity and
1 ms corresponds to maximum speed for a given gear. For
the steering PWM signal, the extreme values of positive pulse

11

Fig. 16: PWM Signals Generated by the Radio Receiver

widths are limited in software to the range of 1.19 ms to 1.88
ms. The limitation accounts for mechanical considerations to
prevent contact between the front axle and the undercarriage
of the vehicle. The range corresponds to steering control in
the range of approximately -25◦ to 25◦. Because the vehicle
has three gears in which it can operate, there are three discrete
values of gear shift PWM signal positive pulse widths: 1 ms
for first gear, 1.5 ms for second gear, and 2 ms for third gear.

b) Speed Sensor:
The method of speed sensing chosen for the project was

optical encoder of a transparent disk. The optical encoder is
the Omron EE-SG3 photomicrosensor. The circuit designed
for the EE-SG3 is shown in Fig. 17. The choice of Rf as
100 Ω allows for complete transistor gating and the choice of
RL as 330 Ω and Rc as 120 Ω allows for an output of 3.3
V given a battery voltage of 4.625 V, which is the voltage
of the AAA battery pack mounted on the vehicle. Ensuring
transistor-transistor logic (TTL) output voltage levels is critical
for proper signal interpretation and for safe interfacing with
internal MCU circuitry. Note that as battery voltage declines
over time, the logic level high output voltage will remain above
the minimum TTL level of 2 V until the battery voltage drops
below 3 V.

The resistor design choices for the photomicrosensor exter-
nal circuit are based on typical operating conditions in the EE-
SG3 data sheet [12]. Specifically, the diode current is 34.25
mA with a forward voltage of 1.2 V across the diode (30
mA diode current is typical). The voltage drop across Rc is
approximately 1.2 V, the collector-emitter saturation voltage
is approximately 0.1 V, and the output voltage across RL is
approximately 3.3 V for an emitter current of 10 mA. The
design allows for collector current at approximately half of

Fig. 17: Omron EE-SG8 Photomicrosensor External Circuit

maximum ratings and for typical collector-emitter saturation
voltage.

The transparency disk for the optical encoder is mounted
on the vehicle’s propellor shaft outside of the transmission.
The ratio of propellor shaft speed to vehicle wheel speed is
2.666:1 [rev

rev]. The measured wheel diameter is 0.08334 m,
indicating that wheel circumference is 0.2618 m. Using the
previous constants, the vehicle speed can be extracted from
disk speed by (21a). Equation (21a) is reduced to (21b) in
code memory to reduce calculation time and memory space.

V ehicleSpeed
[m

s

]
=

DiskSpeed
[m

s

]
∗ 0.2618[m] ∗ 1

2.666

[rev
rev

]
(21a)

V ehicleSpeed
[m

s

]
= DiskSpeed ∗ 0.09821 (21b)

Refer to Fig. 18 for speed sensor interpretation by MCU
software. The speed sensor speed is estimated in MCU soft-
ware by sampling the encoder input pin every 1 ms, based on a
timer overflow interrupt. The count variable Count 1 increases
from 1 until a rising or falling edge is detected, at which time
the count value is added to a cumulative summation variable
before resetting to 1. A second count variable Count 2 is used
to count the total number of edges detected on the signal.
Once 16 edges have been counted, a revolution has occurred
on the disk. The number stored in the cumulative summation
variable is multiplied by 0.001 to produce the total time in one
revolution. Therefore, the inverse of this number is the disk
speed in revolutions per second.

The sampling time of 1 ms was chosen to ensure reliable
accuracy while allowing for sufficient processing time. For the
MCU clock speed of 40 MHz used in the design, 40,000 clock
cycles occur between samples. Because the method of speed
sensing is less precise for higher vehicle velocity (in effect,
less sampled data per revolution), the largest speed sensing
imprecision will occur during the highest operational vehicle
velocity. The steady-state vehicle velocity has been chosen to
be 0.64 m/s, which is 20 MPH on a 1/14 scale. At 0.64 m/s

12

Fig. 18: Speed Sensor Software Interpretation

and at the sampling period of 1 ms, either 153 or 154 samples
occur per revolution, depending on when the first edge is
detected. These detected samples correspond to 0.297% error
and 0.354% error in vehicle speed software interpretation,
respectively.

c) Brake Light Amplifier:
For the system to meet the objectives, turn signals and

brake lights were required. The vehicle’s brake light LED
requires greater voltage than the 3.3 V at MCU output to fully
forward bias. Thus, it was necessary to design a brake light
amplifier circuit to achieve LED functionality. Functionality is
accomplished through the use of a PNP switching transistor
circuit shown in Fig. 19. The circuit uses the 4.625 V battery
pack to pull the output signal high. The 22 Ω gating resistor
was chosen as a standard TTL gating value, and the 300 Ω
was designed using a tuning method until the brake light LED
was at optimal brightness. Due to the PNP transistor circuit
configuration, the brake light gating signal from the MCU
operates with active-low logic.

Fig. 19: PNP Transistor Circuit for Brake Signal Amplification

d) Radio-Controlled Safety Shutoff Signal:
To maintain the integrity of the equipment during ground

testing, a safety shutoff signal was designed. The safety signal
is transmitted by the radio receiver and is input to the MCU.
Once the human-operated radio transmitter is turned on, a

PWM signal is transmitted by the radio receiver which triggers
an interrupt in code memory to halt output to the throttle. Upon
safety signal trigger by the human operator, the vehicle comes
to a stop in less than 1 ft when at operating speed of 0.64 m/s.

IV. RESULTS

Results of the subsystems were measured using physical
and analytical methods. Testing was performed for the camera,
the image processing software, the inter-integrated circuit bus,
and the vehicle control subsystem. The image processing
subsystem was tested analytically. The lane detection has been
fully implemented on the DSP and the stop sign detection
has been successfully implemented in simulation. The vehicle
control subsystem has been fully implemented and the physical
results has been tested with the vehicle on the ground. While
the subsystems were never integrated, the individual results
demonstrate the potential for full system integration.

A. Camera

Results required direct implementation of test code onto
a DSP using Texas Instrument’s Code Composer Studio V4
and Texas Instrument’s Chip Support Library. A TDS 2024B
oscilloscope was used to measure the signal outputs while a
HP E3630A triple output power supply and an Agilent 33220A
waveform generator was used for isolation testing to check
specific functionalities of the camera.

1) Operation Bus/Image Bus: Initially, a general purpose
I/O (GPIO) port was to be used to provide the clock signal.
Because the DSP was using all eight GPIO ports for the
parallel data line to send image data, the inter-integrated sound
(I2S) peripheral was used instead to provide the external clock.
I2S has a sourceable clock line where the 100 MHz system
clock from the DSP is processed through a clock divider. Using
the clock divider, the I2S clock source can output a 12.5 MHz
clock, which is used with the camera. Fig. 20(a) shows the
result of the I2S clock signal after it has been run through
the clock divider, which was transmitted through an I/O port
from the DSP. Fig. 20(b) shows the signal provided to the
camera’s external clock port, which has the correct frequency
of 12.5 MHz but due to transmission line effects, the signal
is degraded. The I2S maximum amplitude is expected to be
around 4 V. However, at the camera end of line, the signal
attenuates to 178 mV as shown in Fig. 20(b), which is below

13

activate high state according to [6]. It is hypothesized that the
cause of the attenuation is due to non-matching impedance.

(a)

(b)

Fig. 20: Measuring the external clock (a) is measured at the
DSP’s I2S clock and (b) is measured at the camera’s external
clock port

A solution to this problem is to create a PCB. The PCB
functions as an interconnection interface with the DSP, camera,
and the MCU allowing any signal including the parallel data
lines to minimize transmission line effects. By creating a
PCB, the impedance can be matched on the lines and reduce
transmission line effects on the data lines to increase cleaner
digital signals. Due to time constraints, a PCB could not be
designed. In lieu of a PCB, the DSP was isolated from the
camera. Since the DSP’s external clock was being attenuated,
a wave generator providing a 12.5 MHz signal was used.
Also an external power supply providing 2.4V was sourced
for the safety of the camera where the DSP voltage source
is 3.3V, which is 0.3V above the tolerated input voltage [6].
Both a clock and voltage source was needed for testing of the
configuration bus.

(a)

(b)

Fig. 21: SCCB (a) Point and (b) Read Transmission

2) Configuration Bus: Using test code, the DSP repeatedly
used SCCB protocol to read from the product ID control
register (0x0A) of the camera, which holds the value 0x76. The
TDS 2024B was used to validate the transmission between the
devices. As shown in Fig. 21, Fig. 21(a) represents the point
transmission while Fig. 21(b) represent the read transmission.
Channel 1 is the data line, while channel 2 is the clock line.
Inspecting the signals closely, the master transmitted a pointer
value to control register 0x0A and a camera output value 0x76
was registered on the data line.

B. Image Processing

The image processing results were acquired using both
simulation in MATLAB and the implementation on the DSP.
The stop sign detection results were gathered from simulations
and show that the algorithm can detect the stop sign. The
results of the lane line detection show that the lane line can
be detected by the algorithm.

1) Stop Sign Detection Results: The HOG algorithm is
implemented as a simulation in MATLAB. The gradient mag-
nitude and edge detection correctly describe the test image.

14

(a)

(b)

Fig. 22: (a) original image and (b) feature data

The result of the gradient magnitude calculations is shown
in Fig. 22. In Fig. 22(b), larger gradient magnitudes result in
brighter pixels. The simulation program then aggregates the
gradients of the image into the relevant feature data vector
to feed into the SVM. The simulation of the SVM was built
around a teaching set of 30 images, of which 15 are stop signs
and 15 are not. The test set of contains 15 images. The image
size was 250x250 pixels. The stop sign detection does not
analyze the entire image that is captured by the camera; only
the top right corner is used.. The test set for the simulation
results is shown in Fig. 23. Each image in the test set is a
subsection of a larger image.

Fig. 23: Support Vector Machine Test Set

The SVM showed a success rate of 80% when simulated

with the set of 15 test images in Fig. 23. The only failures were
three false negatives. The SVM categorized those three images
that contained a stop sign as not being a positive classification.
Some potential causes of failure in those three images are
heavy shadows across the stop sign, extra sign edges in the
image, and extreme angles. Those characteristics would be
expected in a real world environment, but not in the scaled
urban environment. The SVM would be able to adapt to those
variations in stop sign images by using a broader teaching set,
which is unnecessary for the environment and objectives.

2) Lane Line Detection Results: The CHEVP algorithm
is implemented on the DSP in C, and was tested using the
subsections of a larger image to test the left and right lane.
The algorithm is designed to work on images that are 160x20
pixels.

Fig. 24: Sample lane line images

The output from the DSP is illustrated in Fig. 25 in each of
the corresponding steps in the Canny edge detection algorithm.
The input image which is not shown was taken from the left
lane side of a test image. The program also performs the
transform on the right side of the lane. The Hough transform is
then performed upon the output of the Canny edge detection,
which is shown in the thresholding image of Fig. 25(a). The
DSP outputs the contents of the accumulator.

Fig. 25: Results of Canny edge on DSP

The results of the Canny edge detection were determined
from the lane image shown in Fig. 24(a). The results of
the Canny edge detection are shown in Fig. 25(a-b). Each

15

section corresponds to a step in the canny edge detection
algorithm. The results of Gaussian smoothing are shown in
Fig. 25(a). The smoothing reduces the noise in the image,
which could potentially create extraneous edges that would
affect the outcome of the Hough transform. The gradient
magnitudes in Fig. 25(b) designate the two lines that represent
the edges of the lane line. The input image, shown in Fig.
24(c), was taken from the left side of a full test image. The
canny edge detection is performed for the left and right lane
lines. The Hough transform is then performed on the outputs of
the canny edge detection, which is shown in the thresholding
results shown in Fig. 25(d). Fig. 26 shows the DSP output of
the contents of the accumulator calculated from the edge data
found in Fig. 25.

Fig. 26: DSP Accumulator Results

The contents of the accumulator gathered from the binary
output in Fig. 25 is displayed in Fig. 26. There are two
main focal points in the accumulator. They represent the two
different edges of the lane line. The largest magnitude in the
accumulator corresponds to the correct ρ and θ values of a
lane line.

Fig. 27: DSP Accumulator Results with Calculated Line

C. Inter-Integrated Circuit Communication
The DSP has been configured to output the first transmission

of data to the MCU as shown in Fig. 28. Channel 1 corre-
sponds to the SDA line and channel 2 corresponds to the SCL
line. Because the MCU’s I2C program is not functional, the
DSP forced the acknowledge bits high so the master protocol
could be tested. Testing was done by setting the MCU slave
address to a value of 0x36 and setting the data to be transmitted
as 0x01. Fig. 28 shows the representation of the transmission.
The DSP first transmits the value of the MCU slave address
(0x36) followed by a forced acknowledge bit, the data (0x01),
and another forced acknowledge bit.

Fig. 28: DSP I2C Communication

The data for the MCU is configured correctly such that the
SDA line is at a high voltage level in the idle state. However,
the SCL line remains in the low state after configuration. Due
to this discrepancy, the MCU and DSPs were never able to be
connected along the I2C bus to validate communication.

D. Vehicle Control

Vehicle control results can be described by the performance
of software algorithm design and by the functionality of
peripherals in the vehicle. Software algorithms were tested
by observing vehicle behavior using both bench testing and
ground testing. Refer to appendix A for the testing data.

1) Software Algorithm Results: Testing results indicate that
the speed regulation algorithm achieves the desired steady-
state vehicle velocity to a mean value of 0.658 % error. Data
was taken by performing bench testing of the unloaded vehicle
for a command of 0.6386 m/s and comparing actual steady-
state vehicle velocity with the command signal. The vehicle
velocity was measured by reading TDS 2024B oscilloscope
data from the Omron EE-SG8 speed sensor. Because testing
conditions were performed for an unloaded model, testing
reaffirms that the proportional-integral control structure has
low steady-state error regardless of initial error magnitude.

The tracking algorithm produces vehicle orientation precise
to within 2% error. The error was found by testing a 90◦

corrective corrective angle command after allowing for a
calibration period for vehicle speed regulation. The testing
result suggests that for smaller corrective angle commands,
which are realistic for the intended operating conditions, lane
tracking precision is well within 1◦.

Deceleration control stops the vehicle at a specified distance
within 5% error. The error measurement was obtained by
performing ground testing with a command signal stopping
distance of 3 m and measuring the distance from the point
of initial deceleration to the point of zero velocity. Note that
testing used a single distance command signal throughout a
given deceleration control trial. In the fully integrated system,

16

the DSP will communicate updates of the distance variable
throughout deceleration control to improve the system’s pre-
cision.

The turning algorithm performs an accurate 90◦ right turn
within 5◦ of error. The algorithm uses the measured turning
distance of 1.25 m as the command distance of travel, and
consistently undershoots the 90◦ turn by approximately 5◦.
Since this is an error of 5.9%, the distance command of 1.25
m can be multiplied by a factor of 1.059 to obtain a command
of 1.32 m. This hypothetical software change is expected to
yield a large amount of error reduction.

2) Peripheral Interfacing Results: The speed sensor pre-
cision and accuracy was measured by comparing the speed
sensor variable in the Code Composer Studio software de-
bugger to TDS 2024B oscilloscope measurements. These
measurements were interpreted by project team members to
be precise to three significant digits based on observation
of TDS 2024B oscilloscope measurement variability. Results
from these measurements produced data indicating that speed
sensor interpretation was accurate to a mean value of 0.382%
error. The error range was expected and is very comparable
to calculations anticipated in the methods section.

During vehicle operational testing, unexpected system shut-
downs were occurring. The cause of these shutdowns was
theorized to be voltage spikes on the safety shutoff signal,
generated on a ground node that was common between the
vehicle’s DC motor and controller electronics. The shutdowns
were alleviated by adding a 1 µF capacitor in parallel with a
750 Ω resistor in order to resist sudden voltage changes and
provide a channel for current to flow to ground. Because the
real-time voltage spikes were theorized but not observed, an
optimized analog design was not attainable. Instead, a tuning
method was used until the design caused the cessation of the
shutdown problem.

V. DISCUSSION & CONCLUSION

The results of the image processing subsystem and the
completion of the vehicle control subsystem verifies the value
of small scale analysis of autonomous vehicles. In the im-
age processing subsystem, successful implementation of the
CHEVP algorithm on the DSP and positive simulation results
for the HOG algorithm provide a basis for full implementation
of image processing software. All vehicle control algorithms
were instantiated on the MCU and were integrated with
electronics and vehicle peripherals to achieve motion and
indicator control. All high-level system objectives could be
completed with further development. With the addition of a
PCB, communication between the DSP and the camera could
be achieved. Doing so would allow environmental image data
to be processed in real time. Serial communication between
the subsystems can be achieved by rectifying the I2C initial-
ization error. With continued research, small scale autonomous
vehicles will allow for more schools to explore autonomous
vehicle technology by eliminating extraordinary expenses.

17

APPENDIX A
VEHICLE CONTROL TEST DATA

TABLE I: Speed Controls Test
* operation speed of 0.5 m/s is 15.625 MPH scaled by 1/14

Trial Command[
m
s

] PI Structure Zero Point Steady
State
Velocity
(Unloaded)[
m
s

]
Steady
State
Velocity
(Loaded)[
m
s

]
Average
Steady
State
Velocity
(Loaded)[
m
s

]

Sensor
Reading[
m
s

] Sensor
Error
(Unloaded)
[%]

Speed
Control
Error
(Loaded)
[%]

1 0.5 No PI; k =
0.1

592150 0.738 0.638 0.782 5.976 47.685 27.776

2 0.5 No PI; k =
0.1

592150 0.738 0.638 0.773 4.724 47.685 27.776

3 0.5 No PI; k =
0.1

592150 0.727 0.638 0.779 7.148 45.489 27.776

Avg 5.949 46.953 27.776

1 0.5 No PI; k =
1.0

591000 0.542 0.469 0.566 4.320 8.523 6.034

2 0.5 No PI;
k=1.0

591000 0.530 0.467 0.554 4.527 6.166 6.455

3 0.5 No PI;
k=1.0

591000 0.530 0.467 0.551 3.940 6.166 6.455

Avg 4.262 6.951 6.315

1 0.5 No PI;
k=0.707

591000 0.533 0.471 0.558 4.541 6.755 5.610

2 0.5 No PI;
k=0.707

591000 0.545 0.463 0.567 4.0379 9.132 7.285

3 0.5 No PI;
k=0.707

591000 0.533 0.459 0.559 4.839 6.755 8.100

Avg 0.333 8.335 3.657

* operation speed of 0.5 m/s is 15.625 MPH scaled by 1/14

1 0.638 Err = (Err +
newErr)/2

591000 0.687 0.612 0.689 0.291 7.579 4.061

2 0.638 Err = (Err +
newErr)/2

591000 0.673 0.609 0.674 0.295 5.386 4.620

3 0.638 Err = (Err +
newErr)/2

591000 0.692 0.616 0.696 0.654 8.362 3.495

Avg 0.413 7.109 4.059
1 0.638 No PI;

k=1.0
591000 0.687 0.616 0.689 0.320 7.579 3.495

2 0.638 No PI;
k=1.0

591000 0.701 0.602 0.704 0.359 9.84 5.719

3 0.638 No PI;
k=1.0

591000 0.687 0.627 0.689 0.320 7.579 1.757

Avg 0.333 8.335 3.657

1 0.638 var =
var+1000*Err

591100 0.642 0.641 0.015 0.532

2 0.638 var =
var+1000*Err

591100 0.638 0.639 0.283 0.093

3 0.638 var =
var+1000*Err

591100 0.630 0.635 0.899 1.346

Avg 0.399 0.657
Cumulative
Average

0.382

18

TABLE II: Stopping

Trial Velocity[
m
s

] Distance
com-
mand
[m]

Distance
Traveled
[m]

Error
[m]

Error
[%]

1 0.64 3 2.834 0.165 5.512
2 0.64 3 2.926 0.073 2.464
3 0.64 3 2.804 0.195 6.528

Avg 0.145 4.834

TABLE III: Turning

*90◦ Turn Test (25◦ steering angle)
Trial Error [◦]
1 5
2 6
3 2
4 5
Avg 4.5

* Operating speed at 0.4 m/s

TABLE IV: Tracking: 6◦ Turn Test
Trial Radius [in] Radius [m]
1 124 3.149
2 123 3.124
3 124 3.149
Avg 3.141

TABLE V: Tracking: 9◦ Turn Test
Trial y Radius

[in]
y Radius
[m]

x Radius
[in]

x Radius
[m]

1 108.312 2.751 113 2.870
2 113.312 2.878 111 2.819
3 113.312 2.878 110 2.79
Avg 2.835 2.827

TABLE VI: Tracking: 12◦ Turn Test
Trial y Radius

[in]
y Radius
[m]

x Radius
[in]

x Radius
[m]

1 79.312 2.014 77 1.955
2 79.312 2.014 79 2.006
3 79.312 2.014 78 1.981
Avg 2.014 1.981

TABLE VII: Tracking: 15◦ Turn Test
Trial y Radius

[in]
y Radius
[m]

x Radius
[in]

x Radius
[m]

1 61.3125 1.557 63 1.600
2 63.3125 1.608 63 1.600
3 61.3125 1.557 63 1.600
Avg 1.574 1.600

TABLE VIII: Tracking: 18◦ Turn Test
Trial Radius [in] Radius [m]
1 45.5 1.155
2 44.5 1.130
3 44.5 1.130
Avg 1.138

TABLE IX: Tracking: 21◦ Turn Test
Trial Radius [in] Radius [m]
1 38 0.965
2 37.25 0.946
3 37.5 0.9525
Avg 0.954

TABLE X: Tracking: 24◦ Turn Test
Trial Radius [in] Radius [m]
1 32.5 0.825
2 33.5 0.850
3 33 0.838
Avg 0.838

TABLE XI: Tracking: 25◦ Turn Test
Trial Radius [in] Radius [m]
1 31.5 0.800
2 31.5 0.800
3 31 0.7874
Avg 0.795

TABLE XII: Turn Radius Extrapolation
θ [◦] x = R*sin(θ)
6 0.328
18 0.352
21 0.342
24 0.341
25 0.336
Average 0.339
Std Dev [%] 2.585

TABLE XIII: Turn Radius Extrapolation
x = R*sin(θ) Command [◦] Error [◦] Error [%]
0.34 90 14 15.555
0.391 90 1 1.111

19

ACKNOWLEDGMENT

The authors would like to thank Dr. Jose Sanchez for his
guidance and help throughout the duration of the project, Dr.
James Irwin for his assistance in assembling the Tamiya RC
MAN TGX 26.540 6x4 XLX, and Dr. Yufeng Lu for advice
on how to interface the Omnivision OV7670 with the DSP.

REFERENCES

[1] Urban Grand Challence - Resources [Online] Available:
http://archive.darpa.mil/grandchallenge/resources.asp.

[2] O. Thomas. (2010, September 7). Google’s Self-Driving
Cars May Cost More Than A Ferrari [Online]. Available:
http://www.businessinsider.com/google-self-driving-car-sensor-cost-
2012-9.

[3] Motor Vehicle AccidentsNumber and Deaths: 1990 to 2009, U.S. Census
Bureau, Chicago, IL, 2010.

[4] C. Mui. (2013, January 22). Fasten Your Seatbelts: Google’s
Driverless Car Is Worth Trillions (Part 1) [Online]. Available:
http://www.forbes.com/sites/chunkamui/2013/01/22/fasten-your-
seatbelts-googles-driverless-car-is-worth-trillions/

[5] J. White. (2011, December). 2012 Illi-
nois Rules of the Road [Online]. Availavle:
http://www.cyberdriveillinois.com/publications/pdf publications/dsd
a112.pdf

[6] OmniVision. (2006). OV7670/OV7171 CMOS VGA (640x480)
CameraChipTM Sensor with OmniPixel Technology
[Online]. Available: http://www.eleparts.co.kr/data/design/
product file/Board/OV7670 CMOS.pdf

[7] C.H. Chen et. al. Detection and Recognition of Alert Traffic Signs,
Stanford University, Stanford, CA. 2003.

[8] C. Cortes. Support Vector Networks [Online]. Available:
http://image.diku.dk/imagecanon/material/cortes vapnik95.pdf

[9] J. C. Platt. (1998). Sequential Minimal Optimization: A Fast Al-
gorithm for Training Support Vector Machines [Online]. Available:
https://research.microsoft.com/pubs/69644/tr-98-14.pdf

[10] J. Kroll. (2010, September 24). How to Calculate a Turning Circle [On-
line]. Available: http://www.ehow.com/how 7225784 calculate-turning-
circle.html.

[11] The Kinematic Equations [Online]. Available:
http://www.physicsclassroom.com/Class/ n1DKin/U1L6a.cfm

[12] Omron. Photomicrosensor (Transmissive) EE-SG3 / EE-SG3-B [Online].
Available: http://www.omron.com/ecb/products/pdf/en-ee sg3 sg3 b.pdf

Devon Bates is a senior Electrical Engineering
student at Bradley University. She will be attending
graduate studies at UC Santa Cruz after graduation.

Frayne Go is currently a senior attending Bradley
University, pursuing a Bachelor of Science in

Electrical Engineering with Computer Option. He
received his Associate of Science in Engineering at
College of Lake County (Grayslake, Il) in August

2010. Frayne is pursuing a career in embedded
system design specializing in image processing.

Tom Joyce is a senior Electrical Engineering
student at Bradley University. He will be

working for UTC Aerospace Systems in Rockford,
IL as a circuit design engineer after graduation.

Elyse C. Vernon is currently
undergraduate student at Bradley University
where she is working towads her Bachelor’s

degree in Electrical Engineering with an expected
graduation date of May 2013. Upon graduation

she will be working for Ameren IL in Peoria IL.

