
1

Quadrocopter Flight Control

Department of Electrical and Computer Engineering

Bradley University

Eric Backman

Advisor: Dr. Malinowski

May 13, 2012

2

Abstract

The goal of Quadrocopter Flight Control is to implement digital remote control for a quadrocopter with

an aerial collision avoidance system. The quadrocopter is controlled semi-autonomously using a Linux

microcontroller (LUC) running collision avoidance algorithm, and interfaced to wireless communication

system. The LUC utilizes an Atmel microprocessor to interface to the array of infrared distance sensors

and a flight stabilizing controller that is built in into the quadrocopter. A computer controlled by a

remote operator sends commands wirelessly to the on-board LUC. This controller alters these

commands as necessary to avoid colliding with nearby objects using the data from the infrared

sensors. The distances from the infrared sensors is adjusted to account for the tilt of the

quadrocopter. To prevent accidents if the wireless connection is lost, the quadrocopter is capable of

stabilizing the flight and an emergency landing. A successful system has been implemented but could

not do any flight testing in limited time.

3

Table of Contents

Abstract.. 2

Introduction .. 4

System Description ... 4

Hardware ... 5

Power Distribution ... 6

Infrared Sensors .. 7

Serial Port Communication ... 7

RC Standard PWMs .. 8

Joystick .. 9

Results ... 10

Future Work ... 10

References .. 12

Appendix A: 11.1V to 5V Switching Voltage Regulator 13

Appendix B: BeagleBoard Code... 14

Appendix C: Joystick Code ... 21

Appendix D: Atmega 168 Code .. 27

4

Introduction

Quadrocopters are the small aircraft of choice for many people due to their ability to fly through the air

much like a plane while maintaining the helicopter’s ability to hover and move at low airspeeds. By

equipping such a copter with distance sensors a simple object avoidance scheme can be added to

provide safety through human error. These sensors could eventually be used to map the surrounding

terrain and navigate through tight areas.

This project uses microcontroller Linux to control a quadrocopter. Most of the work was integrating the

BeagleBoard with the sensors and joystick in order to create simple flight. The BeagleBoard sends these

commands to a slave microcontroller that simulates the RC standard signals required by the

quadrocopter flight controller. The quadrocopter takes wireless signals from a joystick initially to allow

for manual control. Simple object avoidance was implemented using infrared sensors.

System Description

Quadrocopters are ideal for small scale flying robots due to their ability to hover like a helicopter

without the need to change the rotor blade pitch angle. This simplifies their design and control. In the

prior year, Brad Bergerhouse, Nelson Gaske, and Austin Wenzel worked on an autonomous

quadrocopter. They constructed the quadrocopter platform, installed a real time operating system on

BeagleBoard, and started sensor implementation.

The primary goal for this project was to get the quadrocopter flying and responding to inputs from

sensors using microcontroller Linux. The platform was already built but it needed controllers and

sensors to function. A joystick was connected to another BeagleBoard or PC that connects wirelessly to

the onboard controller. This allows a user to control the quadrocopter. Simple object avoidance was

programmed to prevent the quadrocopter from crashing into walls, as well as simple flight patterns to

allow for semi-autonomous flight and navigation.

The project was to replace the remote control portion of the remote control quadrocopter platform

with my semi-autonomous control system. The quadrocopter already has a built in flight controller with

accelerometers to maintain stability without user input. Controlling this requires me to simulate the RC

signals to the flight controller. This was done by using the Atmega’s timers to create 50 Hz pulse width

modulation (PWM) signals with different duty cycles corresponding to different commands.

The Atmega controller uses the built in analog to digital converters to take the inputs from the sensors

and send them to the BeagleBoard through a serial connection. The BeagleBoard takes these inputs and

uses them to influence the command coming either from a joystick. It generates a signal for yaw, pitch,

roll and elevation and it sends these signals to the Atmega controller that generates the required PWMs

and give them to the built-in flight controller. The flight controller takes the commands and generates

the PWMs for the four motors.

This system is shown in Figure 1 below.

5

Joystick PC

Beagleboard

Wireless

Atmega 168 SerialInfrared Sensors

Flight Controller

4 Control PWMs

Motor ESCs Motors

Figure 1. System Block Diagram

The following hardware was used in the design

 BeagleBoard xM

 Xaircraft X650 Quadrocopter

 Atmega 168

 Max 232

 6 IR distance sensors (Sharp GP2Y0A02YK0F)

 Battery (11.1V 3S LiPo)

 Belkin Wireless USB network card

 5V Switching Power Regulator

The Beagleboard xM acts as the main controller, deciding the eventual PWMs of the system based on

joystick and sensor inputs. The Quadrocopter includes a flight controller, Motor Electronic Speed

Controllers(ESCs), Motors, and the body that everything is mounted on. This is controlled using RC

standard PWMs generated by the Atmega controller. The Atmega controller reads the analog voltages

sent out by the infrared sensors and generates the PWMs to interact with the flight controller. The

MAX232 chip corrects the voltage levels for the serial communication between the BeagleBoard and

Atmega controller as shown in Figure 1. The battery and the switching power regulator provide the

6

power for the system. The wireless network card allows the BeagleBoard to wirelessly connect to the

computer running the joystick. The specifics of each subsystem are explained below.

Power Distribution

BeagleBoard, Atmega 168, and infrared sensors run on 5V. A switching voltage regulator was needed to

run these this system using the 11.1 V battery. The electric circuit for the power converted is included in

appendix A. This resulted in a power distribution as shown below in figure 2.

Figure 2. Power Distribution

Infrared Sensors

The infrared sensors generate a voltage from about 0-3V as shown in Figure 3 below. The outputs of 6

sensors are continually read in a round robin fashion using an analog multiplexer connected to the

analog-to-digital converters located on the Atmega controller. The system uses a 5V reference voltage

and has 8 bits of resolution. This yields an error of +/- 20 mV which is acceptable for this project. Two

more bits of resolution could be utilized if needed.

7

Figure 3. Infrared Sensor Characteristics

The sensor array is made of 6 SHARP GP2Y0A02YK0F sensors with one pointing in each direction

(front, back, up, down, left, and right). This allows for simple object avoidance requiring

minimal sensors and complexity of controls. This is the simplest arrangement that allows full

coverage and gives me the time to finish the whole project.

This 8 bit value is converted back to an approximate voltage on the BeagleBoard using the

equation:

This allows us to compare it to Figure 3 to determine the approximate distance. This could be

done using a look-up table or a mathematical approximation. The reference voltage was

obtained experimentally by inputting a voltage and comparing it to the result. This assumes the

object is greater than 20 cm away which is a valid assumption due to the sensor arrangement.

Serial Port Communication

The serial port between the Atmega 168 and the BeagleBoard contains 2 pieces of information using a

9600 baud rate. One set of all infrared sensor readings is sent every 70 ms from the Atmega controller

to the BeagleBoard. This is slower than was originally planned but due to the set-up of the BeagleBoard

8

command loop the data lags behind. This could be solved by running multiple tasks at once using

threads and running at a faster baud rate.

The other information being sent is the PWM commands from the BeagleBoard to the Atmega

controller. The 5 byte packet is sent once every command loop cycle which takes about 10 ms. The first

byte lets the microcontroller know the message is starting and the next 4 are pitch, roll, throttle and yaw

respectively. These signals are put into an incoming data buffer which is used to update the PWM array

every 20 milliseconds when the PWM signals restart. These values are then compared with a counter

every microsecond to determine when the PWMs turn off.

The TTL logic voltage levels of the Atmega serial port are not compatible with the standard RS232 port

which is used on the BeagleBoard so a voltage conversion circuit is needed. A MAX 232 chip is used as

shown in figure 4 below to allow for serial communication.

Figure 4. MAX232 Circuit

RC Standard PWMs

The industry standard RC PWM consists of a number of pulses occurring with a frequency of 50Hz. The

pulses vary from -100%PWM to +100%PWM indicating a high voltage time of 1ms to 2ms respectively.

The remainder of the 20ms period is low voltage. The 0% PWM then becomes a pulse with a 1.5ms high

time followed by 18.5ms of low voltage. Figure 5 below demonstrates the shape of the RC pulses

9

Figure 5. RC Standard PWM

The FC1212 flight controller on the quadrocopter receives 4 PWM signals corresponding to yaw, pitch,

roll and throttle. The Atmega 168 receives 5 bytes of information from the serial port. The first byte

signals the start of the message while the next 4 contain the data which is thrown into an array. This

array is checked every 10 microseconds to turn off the digital outputs running the PWMs at the correct

times.

Joystick

A simple joystick reading application using the windows joystick libraries was used to read the joystick

inputs. The most significant byte for the x,y,z and r values as well as the first 8 buttons are sent to the

BeagleBoard to be read. They are sent over a wireless network with the BeagleBoard as a server and

the computer as a client. These signals are read on the BeagleBoard and analyzed to determine the

PWM signals to be sent to the Flight Controller.

10

Results

The system is completed and mounted on the quadrocopter. All subsystems were tested individually

and together as shown in Figure 6. However, there was not sufficient time to do any flight testing. This

means none of the object avoidance or stability was tested. The distance measurements and throttle

are the two things that can be checked and they work exactly as designed. The system quickly responds

to the joystick inputs but the infrared sensor data seems slower than expected.

Figure 6.Quadrocopter and its Complete Control System

Future Work

The first thing to do with the quadrocopter would be to perform basic flight testing to make sure the

system is stable. The object avoidance could be tested and tuned to desired performance. That would

finish up this project and allow expansion into stronger aerial navigation techniques.

The main command loop on the BeagleBoard seems slow and could harm high speed performance. This

could be remedied by adding threads to run communication. The processor is being wasted while

waiting to read the serial port and network packets. This would boost the performance greatly. One of

the things that were going to be added was some code that would compensate for the tilt of the

11

quadrocopter. This would be done by estimating the tilt using the command angle and using it to

calculate the distance if it were perpendicular to that surface. This would be effective in environments

with square walls and would allow more effective measurements.

A camera could be attached that would create opportunities for aerial image processing and allow the

quadrocopter to more accurately detect and avoid obstacles. The BeagleBoard has a built-in DSP and

the processing power to do many more interesting things.

Following the integration described above, the platform will provide the department with an excellent

source of future project topics including: aerial navigation and mapping, 3-dimensional localization, and

aerial drones. These topics will be filled with new and exciting projects for future teams and provide

further opportunity to expand the project possibilities at Bradley University.

References

12

[1] Brad Bergerhouse, Nelson Gaske, Austin Wenzel. Aerial Collision Avoidance System. Senior

Project, Electrical and Computer Engineering Department, Bradley University, May 2012,

http://cegt201.bradley.edu/projects/proj2012/quadcptr/

[2] Introduction to Autonomous Mobile Robots, 2/ed., by R. Siegwart, I. R. Nourbakhsh, D.

Scaramuzza, MIT Press, 2011, ISBN: 978-0262015356

[3] SHARP Electronics TDS for GP2Y0A02YK0F. Dec. 01,2006 SHARP Electronics.

<http://www.sharpsma.com/webfm_send/1487>

Appendix A: 11.1V to 5V Switching Voltage Regulator

http://cegt201.bradley.edu/projects/proj2012/quadcptr/
http://www.sharpsma.com/webfm_send/1487

13

Appendix B: BeagleBoard Code

14

Main.c

#define closesocket close

#define SOCKET int

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <unistd.h>

#include <stdio.h> /* necessary to get sprintf */

#include <string.h>

#define PROTOPORT 1200

#include <time.h>

#include "serial.h"

int main(){

//UDP socket init

 struct protoent *ptrp; /* pointer to a protocol table entry */

 struct sockaddr_in sad; /* structure to hold server's address */

 struct sockaddr_in cad; /* structure to hold client's address */

 SOCKET sd; /* socket descriptor - integer */

 int alen; /* length of address */

 int port; /* protocol port number */

 char buf[1000]; /* buffer for string the server sends */

 int visits = 0; /* counts client connections */

 int n; /* number of characters received */

 int m; /* number of characters sent back */

 int joycount = 0;

 port = PROTOPORT;

 if (port <= 0) /* test for illegal value */

 { /* print error message and exit */

 fprintf(stderr,"bad port number");

 exit(1);

 }

 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

 sad.sin_port = htons((u_short)port); /* set server port number */

 sad.sin_family = AF_INET; /* set family to Internet */

 sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */

 /* Map UDP transport protocol name to protocol number */

15

 ptrp = getprotobyname("udp");

 if (ptrp == 0) {

 fprintf(stderr, "cannot map \"udp\" to protocol number");

 exit(1);

 }

 /* Create a socket */

sd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

 //sd = socket(PF_INET, SOCK_DGRAM, ptrp->p_proto);

 if (sd < 0) {

 fprintf(stderr, "socket creation failed");

 exit(1);

 }

 /* Bind a local address to the socket */

 if (bind(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {

 fprintf(stderr, "bind failed");

 exit(1);

 }

struct timeval to;

to.tv_sec =0;

to.tv_usec =1000;

if(setsockopt(sd, SOL_SOCKET, SO_RCVTIMEO, &to, sizeof(to)) <0){

 printf("Error in socket\n");

 exit(0);

}

//Serial init

 int fd;

 int incc=0, incc2=0; /* input character count (from fread) */

 int outcc=0; /* output character count (from write) */

 const int BUFFER_SIZE = 256;

 unsigned char buffer[1];//BUFFER_SIZE];

fd= serial_init();

int y = 0;

//int x = clock();

char *serial_device = "/dev/ttyS2";

unsigned char output[5];

output[0] = 0xFF;//Message start

output[1] = 0;//PWM 1

output[2] = 0;//PWM 2

output[3] = 0;//PWM 3

output[4] = 0;//PWM 4

int distance[6];

16

int count = 7;

char joystick[5];

char land=0, takeoff = 0, off = 1;

char landcount;

 while (1) {

 //Read 1 infrared signal from serial port and put in it distance array

 incc2 = read(fd, buffer, 1);

 if (incc2 > 0) {

 if(buffer[0] == 0x01){

 count = 0;

 fprintf(stderr, "New Line\n");

 int i = 0;

 while(i<6){

 fprintf(stderr, "%d ", distance[i]);

 i++;

 }

 }

 else if(count <7){

 distance[count] = (1.647*buffer[0]); //Convert from character to Volts*100

 count++;

 }

 } else if(incc2<0){

 perror(serial_device);

 break;

 }

 //Receive joystick packet

 joycount = 0;

 alen = sizeof(cad);

 n = recvfrom(sd,buf,sizeof(buf),0,(struct sockaddr*)&cad,&alen);

 if (n<0)

 {

 if(landcount <25) //If haven't received packet in 25 loops, go to landing mode

 landcount++;

 else{

 land = 1;

 takeoff= 0;

 fprintf(stderr, "Land\n");

 }

 }

17

 else if(n>=0) /* We could receive a useful empty packet */

 {

 landcount = 0;

 joystick[0] = buf[0];

 joystick[1] = buf[1];

 joystick[2] = buf[2];

 joystick[3] = buf[3];

 joystick[4] = buf[4];

 }

 //control algorithms

 if(((joystick[4])&0x01) == 0x01){

 takeoff = 1;

 land = 0;

 off = 0;

 fprintf(stderr, "Takeoff\n");

 }

 if(((joystick[4])&0x02) == 0x02){

 land = 1;

 takeoff= 0;

 off = 0;

 fprintf(stderr, "Land\n");

 }

 if(((joystick[4])&0x04) == 0x04){

 takeoff = 0;

 land = 0;

 off = 0;

 fprintf(stderr, "Normal Flight\n");

 }

 if(((joystick[4])&0x08) == 0x08){

 off = 1;

 takeoff = 0;

 land = 0;

 fprintf(stderr, "Kill Switch\n");

 }

 if(off == 1){

 output[1] = 150;

 output[2] = 150;

 output[3] = 100;

 output[4] = 150;

 }

18

 else if(land == 1){

 output[1] = 150;

 output[2] = 150;

 output[3] = 140;

 output[4] = 150;

 }

 else if(takeoff == 1){

 output[1] = 150;

 output[2] = 150;

 output[3] = 160;

 output[4] = 150;

 if(distance[4]>100)

 output[3] = 150;

 }

 else{

 output[1] = joystick[0]*100/254+100;

 output[2] = joystick[1]*100/254+100;

 output[3] = joystick[2]*100/254+100;

 output[4] = joystick[3]*100/254+100;

 if(distance[0]>100 && joystick[0]<127)

 output[1] = 150;

 if(distance[1]>100 && joystick[0]>127)

 output[1] = 150;

 if(distance[2]>100 && joystick[1]<127)

 output[2] = 150;

 if(distance[3]>100 && joystick[1]>127)

 output[2] = 150;

 /*if(distance[4]>100 && joystick[2]<127)

 output[3] = 150;

 if(distance[5]>100 && joystick[2]>127)

 output[3] = 150;*/

 }

 //Send data to serial port

 outcc = write(fd, output,5);

 if (outcc < 0) {

 perror(serial_device);

 break;

 }

 }

return 1;

}

19

Serial.h

#include <termios.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int serial_init();

Serial.c

//* program to echo characters from stdin to the serial port *

#include <termios.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

volatile int echo_serial_go;

/* Echo characters to the serial port from stdin, until an error occurs,

 or until some other thread sets echo_serial_go to zero. */

int

serial_init() {

char *serial_device = "/dev/ttyS2";

speed_t baud_rate = B9600;

 int fd; /* file descriptor for serial I/O */

 struct termios prev_tio;

 struct termios tio; /* port i/o settings */

 fd = open(serial_device, /* open serial device (duh...) */

 O_RDWR | O_NOCTTY); /* read/write/serial not controlling terminal*/

 if (fd < 0) { perror(serial_device); return(-1); }

 tcgetattr(fd, &prev_tio); /* preserve the current port settings */

20

 /* set up port for reading or writing */

 memset(&tio, '\0', sizeof(struct termios));

 tio.c_iflag = IGNPAR; /* input mode: ignore framing/parity errors */

 tio.c_oflag = 0; /* output mode */

 tio.c_cflag = (/* control mode: */

 baud_rate /* must use predefined codes (see termios) */

 | CS8 /* 8 bits per character */

 /* no parity (PARENB enables parity) */

 | CSTOPB /* one stop bit (CSTOPB sets two) */

 | CREAD /* enable receiver */

 | CLOCAL /* ignore modem control lines */

 | CRTSCTS); /* use flow control lines */

 tio.c_lflag = 0; /* local mode */

 /* adjust behavior for read/write functions */

 tio.c_cc[VTIME] = 1; /* never timeout; if non-zero, timeout occurs*/

 /* if no character after c_cc[VTIME] * 0.1s */

 tio.c_cc[VMIN] = 0; /* a minimum of 8 char's retrieved each read */

 tcflush(fd, TCIFLUSH); /* flush input buffer */

 tcsetattr(fd, TCSANOW, &tio);/* install new port settings (immediately) */

return fd;

}

Appendix C: Joystick Code

21

//* Example illustrating Joystick access in Windows *

#include <limits.h>

// We need winmm.h but it needs some more of windows.h

// Add to the linked libraries list: winmm.lib/* * code for example client program that uses UDP * */

#ifndef unix

#include <winsock2.h>

/* also include Ws2_32.lib library in linking options */

#else

#define closesocket close

#define SOCKET int

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <unistd.h>

/* also include xnet library for linking; on command line add: -lxnet */

#endif

#include <stdio.h>

#include <string.h>

#define PORT 1200

 /* default protocol port number */

char localhost[] = "136.176.16.17"; /* default host name */

/*--

 * Program: client

 *

 * Purpose: allocate a socket, connect to a server, and print all output

 *

 *--

 */

int main()

{

 struct hostent *ptrh; /* pointer to a host table entry */

 struct protoent *ptrp; /* pointer to a protocol table entry */

 struct sockaddr_in sad; /* structure to hold an IP address */

 int alen; /* length of address */

 SOCKET sd; /* socket descriptor - integer */

22

 char host[256]; /* pointer to host name */

#ifdef WIN32

 WSADATA wsaData;

 if(WSAStartup(0x0101, &wsaData)!=0)

 {

 fprintf(stderr, "Windows Socket Init failed: %d\n", GetLastError());

 exit(1);

 }

#endif

 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */

 sad.sin_family = AF_INET; /* set family to Internet */

 strcpy(host,localhost); // host=localhost

 /* Convert host name to equivalent IP address and copy to sad. */

 ptrh = gethostbyname(host);

 if (((char *)ptrh) == NULL) {

 fprintf(stderr, "invalid host: %s\n", host);

 exit(1);

 }

 memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

 sad.sin_port = htons((u_short)PORT); /* use default port number */

 alen = sizeof(sad);

 /* Map TCP transport protocol name to protocol number. */

 ptrp = getprotobyname("udp");

 if (ptrp == 0) {

 fprintf(stderr, "cannot map \"udp\" to protocol number\n");

 exit(1);

 }

 /* Create a socket. */

 sd = socket(PF_INET, SOCK_DGRAM, ptrp->p_proto);

 if (sd < 0) {

 fprintf(stderr, "soclet creation failed\n");

 exit(1);

 }

 short keeprunning = 1;

23

 while (keeprunning)

 {

 int n; /* number of characters received */

 int m; /* number of characters sent back */

 char buf[1000]; /* buffer for data from the server */

 JOYCAPS jc; // to keep features of the joystick

 JOYINFOEX lastJoyState; // to keep joystick state

 if (joyGetNumDevs()==0)

 {

 fprintf(stderr, "Please connect a joystick\n");

 Sleep(5000);

 continue;

 }

 if (joyGetDevCaps(JOYSTICKID1, &jc, sizeof(jc))!=JOYERR_NOERROR)

 {

 fprintf(stderr, "Please connect a compatible joystick\n");

 Sleep(1000);

 continue;

 }

 lastJoyState.dwSize=sizeof(lastJoyState);

 lastJoyState.dwFlags=JOY_RETURNALL | JOY_RETURNPOVCTS | JOY_RETURNCENTERED |

JOY_USEDEADZONE;

 {

 const unsigned int naxes = jc.wNumAxes;

 const unsigned int nbuts = jc.wNumButtons;

 const int MID_VALUE =(int)(USHRT_MAX/2);

 int cur_b = 0;

 int cur_x = 0;

 int cur_y = 0;

 int cur_z = 0;

 int cur_r = 0;

 int cur_u = 0;

 int cur_v = 0;

 int cur_h = 0;

 int old_b = 0;

24

 int old_x = 0;

 int old_y = 0;

 int old_z = 0;

 int old_r = 0;

 int old_u = 0;

 int old_v = 0;

 int old_h = 0;

 int cnt = 0;

 while(keeprunning)

 {

 Sleep(200);

 if (joyGetPosEx(JOYSTICKID1, &lastJoyState) != JOYERR_NOERROR)

 {

 fprintf(stderr, "Please reconnect the joystick\n");

 Sleep(1000);

 break; // exit to the outer loop and check for a new joystick connection

 }

 old_b = cur_b;

 old_x = cur_x;

 old_y = cur_y;

 old_z = cur_z;

 old_r = cur_r;

 old_u = cur_u;

 old_v = cur_v;

 old_h = cur_h;

 cur_b = lastJoyState.dwButtons;

 cur_x = (int)(lastJoyState.dwXpos)-MID_VALUE;

 cur_y = (int)(lastJoyState.dwYpos)-MID_VALUE;

 cur_z = (int)(lastJoyState.dwZpos)-MID_VALUE;

 cur_r = (int)(lastJoyState.dwRpos)-MID_VALUE;

 cur_u = (int)(lastJoyState.dwUpos)-MID_VALUE;

 cur_v = (int)(lastJoyState.dwVpos)-MID_VALUE;

 cur_h = lastJoyState.dwPOV;

 cnt++; // to force display/send every so many samples even if no change

25

 //if

(cnt>45||cur_b!=old_b||cur_x!=old_x||cur_y!=old_y||cur_z!=old_z||cur_r!=old_r||cur_u!=old_u||cu

r_v!=old_v)

 {

 fprintf(stdout, "B: ");

 fprintf(stdout, "%1d", !!(cur_b&0x200)); // or check if ==0 or !=0 inside an IF statement...

 fprintf(stdout, "%1d", !!(cur_b&0x100));

 fprintf(stdout, "%1d", !!(cur_b&0x080));

 fprintf(stdout, "%1d", !!(cur_b&0x040));

 fprintf(stdout, "%1d", !!(cur_b&0x020));

 fprintf(stdout, "%1d", !!(cur_b&0x010));

 fprintf(stdout, "%1d", !!(cur_b&0x008));

 fprintf(stdout, "%1d", !!(cur_b&0x004));

 fprintf(stdout, "%1d", !!(cur_b&0x002));

 fprintf(stdout, "%1d", !!(cur_b&0x001));

 if (naxes>0) fprintf(stdout, " X: %7d", cur_x);

 if (naxes>1) fprintf(stdout, " Y: %7d", cur_y);

 if (naxes>2) fprintf(stdout, " Z: %7d", cur_z);

 if (naxes>3) fprintf(stdout, " R: %7d", cur_r);

 if (naxes>4) fprintf(stdout, " U: %7d", cur_u);

 if (naxes>5) fprintf(stdout, " V: %7d", cur_v);

 if (naxes>6) fprintf(stdout, " more skipped");

 if (cur_h<=36000) fprintf(stdout, " POW: %7d" , cur_h);

 fprintf(stdout, "\n");

 cnt=0;

 /* Send data to socket in order to request reply. */

 buf[0] = (cur_x+32767)>>8;

 buf[1] = (cur_y+32767)>>8;

 buf[2] = (cur_z+32767)>>8;;

 buf[3] = (cur_r+32767)>>8;;

 buf[4] = cur_b;

 m = 5; /* send 5 bytes */

 n = sendto(sd,buf,m,0,(struct sockaddr*)&sad,alen);

 if(n<0)

 {

 fprintf(stderr,"Error in sending");

 }

 else

 {

 /* Read data from socket and write to user's screen.

26

 //n = recvfrom(sd,buf,sizeof(buf),0,(struct

sockaddr*)&sad,&alen);

 if (n > 0) {

 buf[n]='\0'; /* just in case place the

termination at the end of the string*/

 // printf("%s", buf);

 //}

 }

 }

 if (cur_b==15)

 {

 fprintf(stdout, "End program button sequence initiated\n");

 keeprunning=0;

 }

 }

 }

 }

 /* Close the socket. */

 closesocket(sd);

#ifdef WIN32

 WSACleanup(); /* release use of winsock.dll */

#endif

 /* Terminate the client program gracefully. */

 return(0);

}

27

Appendix D: Atmega 168 Code

Main.c

/*

 * Quadrocopter.c

 *

 * Created: 10/11/2012 8:17:23 AM

 * Author: ebackman

 */

#include <avr/io.h>

#include <avr/interrupt.h>

#include "Serial.h"

char message_count;

uint16_t ReadADC(uint8_t channel)

{

 ADMUX |= channel; // Channel selection

 ADCSRA |= _BV(ADSC); // Start conversion

 while(!bit_is_set(ADCSRA,ADIF)); // Loop until conversion is complete

 ADCSRA |= _BV(ADIF); // Clear ADIF by writing a 1 (this sets the value to 0)

 return(ADC);

}

void adc_init()

{

 ADCSRA = 0b01000111; //Enable ADC and set 128 prescale

}

int count = 0;

int PWM[4];

int PWMTemp[4];

void MyCharReceivedFN (char c)

{

 // This function is called from within an interrupt

 // It must execute quickly - no loops or delays

 if(c == '/n'){

 message_count = 0;

 }

28

 if(message_count < 4)

 PWMTemp[message_count] = c;

 message_count++;

}

ISR(TIMER0_OVF_vect){

 count ++;

 if(count >= 1250){

 for(int i = 0; i<4; i++)

 PWM[i] = PWMtemp[i];

 count = 0;

 PORTB |= 0x0F;

 }

 if(count == PWM[0]){

 PORTB &= 0xF7;

 }

 if(count == PWM[1]){

 PORTB &= 0xFA;

 }

 if(count == PWM[2]){

 PORTB &= 0xFC;

 }

 if(count == PWM[3]){

 PORTB &= 0xFE;

 }

}

int main(void)

{

 for(int i = 0; i<4; i++)

 PWM[i] = 0;

 char data[6];

 char channel = 0;

 adc_init();

 uart1_initialize(uart_bps_9600, MyCharReceivedFN);

 DDRB = 0b11111111; //DDRA for 128

 DDRD = 0b00001100;

 TCCR0A |= 0; //Normal Mode

 TCCR0B = _BV(CS00); //No Prescaling

 //TCCR0 = 0x01; //for ATMEGA128

29

 TIMSK0 = 0x01; //Enable timer overflow interrupt

 // OCR0A = (unsigned char)(200);

 //sei(); //Global interrupt enable

 while(1)

 {

 //data[channel] = ReadADC(channel);

 //channel += channel;

 //if(channel > 5){

 // channel = 0;

 //uart1_putc(data[0]);

 //}

 uart1_putc(0x55);

 //TODO:: Please write your application code

 }

}

Serial.c

//* USART1 interrupt-based library - implementation file *

#include "Serial.h"

#include <avr/io.h>

#include <avr/interrupt.h>

#define xtal 20000000L

static void (*UART1_RX_ISR_function)(char) = 0;

void uart1_initialize(uint16_t baud, void (*handle_rx)(char))

{

 uint32_t temp = xtal/16/baud-1;

 UBRR0H = (temp >> 8) & 0x0F;

 UBRR0L = (temp & 0xFF);

 UART1_RX_ISR_function = handle_rx;

 // Set frame format: 8data, 2stop bit

 UCSR0C = /*(1<<USBS0)|*/(3<<UCSZ00);

 UCSR0B = (1<<RXEN0)|(1<<TXEN0) |(1<<RXCIE0);

 // ^^^^^^^^^^^ data received interrupt enabled (when global interrupts are enabled)

}

30

void uart1_shutdown ()

{

 UCSR0B = 0;

}

uint8_t uart1_ready_TX ()

{

 return (0 != (UCSR0A & 1<<UDRE0));

}

void uart1_putc (char c)

{

 while(0 == (UCSR0A & 1<<UDRE0)) ;

 UDR0 = c;

}

void uart1_puts (const char* const s)

{

 for (const char* p = s; *p!='\0'; ++p)

 uart1_putc(*p);

}

ISR(USART0_RX_vect)

{

 char value = UDR0; // read UART register into value

 UART1_RX_ISR_function(value); // call the _SHORT_ user defined function to handle i t

}

Serial.h

//* USART1 interrupt-based library - header file *

#ifndef BIOS_UART1_INT_H_

#define BIOS_UART1_INT_H_

#include <stdint.h>

void uart1_initialize (uint16_t baud, void (*handle_rx)(char));

void uart1_shutdown ();

31

// This example shows only data item received interrupt

// Your function must be as short as possible, preferably without any loops

// This example will send data the classic way for simplicity

uint8_t uart1_ready_TX ();

void uart1_putc (char c);

void uart1_puts (const char* const s);

#ifndef _SER_BOUD

#define _SER_BOUD

 #define uart_bps_50 50

 #define uart_bps_75 75

 #define uart_bps_110 110

 #define uart_bps_134 134

 #define uart_bps_150 150

 #define uart_bps_200 200

 #define uart_bps_300 300

 #define uart_bps_600 600

 #define uart_bps_1200 1200

 #define uart_bps_1800 1800

 #define uart_bps_2400 2400

 #define uart_bps_4800 4800

 #define uart_bps_9600 9600

 #define uart_bps_19200 19200

 #define uart_bps_38400 38400

 #define uart_bps_57600 57600

 #define uart_bps_115200 115200

#endif

#endif /* BIOS_UART_INT_H_ */

