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ABSTRACT 

Current ultrasound research platforms either do not allow for sophisticated, multi-element 

excitations or are substantially large due to the complexity of the hardware. This hinders 

the research of the use of coded excitation signals in ultrasound to potentially diagnose 

tumors. Therefore, the objective of this study is to develop a portable, cost-efficient, 

multi-element prototype research platform. To minimize hardware complexity, 

waveforms are encoded by using sigma-delta modulation and transmitted in parallel at a 

high frequency by using a field-programmable gate array.  Correlation between this 

system and a simulated method of a current multi-element system is 99.3%. Several 

amplifier designs were created and simulated. Data processing schemes such as delay 

sum beamforming and a Wiener filter were implemented to convert recorded echoes into 

an image. These schemes were tested in two simulations, which used a pre-enhanced 

linear chirp and a conventional pulse as the excitation signals. The pre-enhanced chirp 

increased the depth of the conventional image by 20 mm. 
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I. INTRODUCTION 

Conventional medical ultrasound uses a short duration electrical pulse excitation 

for imaging. The ultrasonic transducer converts the electrical energy to pressure waves 

which penetrate human tissue. These waves are reflected in all directions, but a small 

amount of energy is reflected back towards the transducer proportional to the density of 

the tissue [1]. The ultrasonic transducer converts these waves into a voltage waveform, 

which is recorded for signal processing and imaging. 

Coded excitations have a longer duration than the signals used in conventional 

ultrasound. Previous research conducted using coded excitation indicates that this 

technique improves the signal-to-noise ratio (SNR) [2]. Consequently, this increases the 

penetration depth of ultrasonic imaging. Coded excitation has also been shown to 

improve the spatial resolution of ultrasonic images [3]. These improvements have the 

potential to enhance the diagnostic capabilities of medical ultrasound. 

Current ultrasonic research platforms to test the application of coded excitations 

are limited. Single-channel platforms suffer from slower data acquisition and are more 

prone to motion artifacts. Multi-channel platforms, such as the Remotely Accessible 

Software configurable Multi-channel Ultrasound Sampling (RASMUS) system, are large, 

high-cost, and quickly become outdated [4]. Despite these flaws, the RASMUS is the 

most sophisticated research platform to date; consequently, researchers travel from all 

over the world to test their work with this system.  

The objective of this project was to develop a portable, cost-efficient, multi-

channel, prototype research platform for coded excitations. The motivation was to design 

a system that decreased the hardware size and cost as compared to the RASMUS system.  

By encoding excitation waveforms with sigma-delta modulation, this allowed for a 1-bit 
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resolution format while retaining most of the signals’ information. With only two voltage 

levels required to transmit this waveform, the need for digital-to-analog converters was 

eliminated [5]. Furthermore, power amplifiers, with their complex design and sensitivity 

to component variations, were replaced with less expensive switching power amplifiers. 

The engineering tradeoff for this size reduction was a faster sampling rate to retain 

accuracy. To transmit the sigma-delta modulated signal at the required rate, a field-

programmable gate array (FPGA) was used.   

The significance of this prototype research platform is that it will allow more 

ultrasound researchers access to affordable, multi-channel testing devices. With this 

access, researchers could be able to enhance ultrasonic imaging techniques that diagnose 

tumors, which could remove the need for invasive biopsy diagnostics. 

II. SYSTEM DESCRIPTION 

A high-level description of the prototype is represented in the system block 

diagram shown in Fig. 1.  

 

Fig. 1. High level system block diagram 
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The first phase of the system begins with the generation of coded excitation 

waveforms using MATLAB (Mathworks, Natick, MA). These waveforms are then 

digitally encoded using the sigma-delta modulation toolbox [6]. The user can assign 

converted waveforms to pins on the ultrasonic transducer as desired using a graphical 

user interface (GUI). To allow for beamforming to correct the returned image, delays can 

also be specified for the pins used. The waveforms and output delays are transferred from 

the personal computer (PC) to the FPGA using a universal asynchronous receiver 

transmitter (UART) protocol and stored in memory for later transmission. Each 

waveform can be at most 3 µs in duration to reduce negative ultrasound bioeffects [7]. 

Following the generation of the waveform, the process of transmission begins 

with a start command sent from the PC to the FPGA. The waveforms previously stored in 

memory are retrieved after the desired delay for each pin. The waveforms are then 

transmitted at 500 MSamples/s to the FPGA’s output pins.  This is performed in parallel 

for a maximum of four channels.  Although not completed, the high voltage amplifiers 

would then amplify the signals to high voltage levels to increase the penetration depth.  

Next, the ultrasonic transducer converts the signals into a pressure wave that then 

traverses the object to be imaged.  Due to the band-pass shape of the transducer’s 

frequency response, a close approximation to the original analog signal is recovered from 

the sigma-delta modulated form. 

After transmission, the reflected pressure waves are then received by the 

ultrasonic transducer.  The electrical signals then pass through the transmit/receive 

(Tx/Rx) switch to the analog front-end.  The transmit/receive (Tx/Rx) switch protects the 

analog front-end circuitry from the high voltages of transmission by clamping the voltage 
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to a safe level.  The analog front-end device captures the voltage data and transmits it to 

the PC. 

Finally, the PC processes the received voltage data in order to construct an image.  

The processing occurs in many steps described in detail in the data processing methods 

section of this paper.  After an image is constructed, it is displayed in a GUI.  Parameters 

such as maximum depth and dynamic range allow the user to adjust the image displayed. 

III. METHODS 

Sigma-delta modulated waveforms represent the quantitative properties of a 

signal as a stream of binary data, using only two quantization levels. This stream of data 

can then be transmitted from a FPGA. After capturing reflected wave data, processing is 

performed to construct an image. These methodologies are described in the following 

sections. 

A. Sigma-Delta Modulation 

Sigma delta modulation is an analog-to-digital conversion (ADC) technique that 

includes quantization error compensation [8]. This technique will be used to store, in 

digital form, arbitrary waveforms that will be transmitted to the ultrasonic transducer. A 

software-based 1-bit ADC is initially used to round the input to either 1 or -1. This value 

is then subtracted from the initial input creating an error value. The error is added to the 

next input value, providing conversion error compensation. This adjusted input is 

rounded to 1 or -1, producing the next output value. The overall output expresses an input 

of analog values as a series of 1s and -1s. This process is shown in Fig. 2. 
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Fig. 2. Software flowchart for sigma-delta modulation 

To increase accuracy, a second order sigma-delta modulator was used. This adds 

the error from the previous two conversions before rounding to 1 or -1. A third order 

sigma-delta modulator was not used as this can cause overloading and saturation if the 

input signal has a high frequency and amplitude. The fast change between large values 

can cause the error to accumulate faster than the sigma-delta modulator can compensate. 

This results in a consistently high error to add to each new input value, which causes the 

output to reflect the accumulated error rather than the input of the function. The resulting 

modulated signal consists of blocks of ones and negative ones instead of the desired 

oscillation between ones and negative ones.  Therefore, a second order sigma-delta 

modulator was used to give the highest accuracy without concern for overloading. 

B. FPGA Architecture 

A Virtex 5 FPGA (Xilinx, San Jose, CA) receives waveform data from the PC, 

writes and reads the data from the double data rate (DDR2) memory.  Once a transmit 

signal from the PC is sent, the FPGA transmits the waveform data in parallel to the 

output pins. 

1) PC to FPGA Communication 

A GUI in conjunction with a serial transmission program was designed to 

interface the PC to the FPGA. The GUI allows the user to select sigma-delta modulated 
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waveforms to be uploaded. These waveforms must have a length of 1536 bits, which is 

checked by the software of the GUI.  This allows the waveform to be transmitted for a 

duration of 3 µs at a rate of 500 MSamples/s with 36 buffer bits. The buffer bits allow the 

input to be divisible by 256, which is the desired format for DDR2 memory. Once 

waveforms have been selected, the waveforms can be assigned to any number of the four 

output pins.  Each of these output pins can also be assigned a delay.  After the user has 

assigned all desired waveforms and delays, the user can click a “load settings” button to 

upload the waveform and delay data for each of the four pins to the FPGA’s DDR2 

memory. The functional requirement for this subsystem was to upload this data in less 

than 1 second. To meet this requirement, communication was performed over the UART 

protocol at a rate of 115,200 baud, which is the maximum baud rate for the Virtex 5 

FPGA. The user can then click an output now button to start the transmission of 

waveforms from the DDR2 memory to the assigned output pins at 500 MHz. 

2) Arbitration System 

To integrate the DDR2 interface with the other FPGA functionalities, a system 

was constructed to arbitrate access to the memory. The importance of the arbitration 

system is to allow multiple components to connect to the memory.  The waveform data, 

which is first stored in memory, needs to be accessible from multiple software blocks, or 

sockets.  However, only one socket can retrieve data from the memory at a time. While 

constructing an arbitration system, special consideration was needed to ensure that more 

important sockets had priority to access the memory. For example, a socket requiring 

data for immediate transmission would have priority over a socket receiving waveform 

data from the PC. Furthermore, the arbitration system must prevent starvation caused by 

a large number of requests for memory access depriving a socket from its turn.  A scheme 
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was developed to reduce the possibility for starvation by cycling access in a round robin 

fashion.  The arbitration system follows a process outlined in Fig. 3.   

 

Fig. 3. Arbitration system flow chart 

Multiple sockets may request access to the memory at the same time.  To ensure 

data integrity, only after the current block completes its list of reads and writes are the 

remaining of the requesting sockets considered for access.  Next, the remaining 

requesting sockets are compared to determine which socket should receive access next.  

This is performed in two steps: all requesting sockets of a lower priority are eliminated, 

and then the histories of the remaining sockets are compared.  Access is then provided to 

the remaining socket that had its previous access furthest in the past. 

3) High Speed Transmission 

Due to the nature of the sigma-delta modulated coded excitations, a high data rate 

of 500 MSamples/s was needed to retain the accuracy of the signals. A clock rate of 250 

MHz was used for the FPGA, as it was near the maximum speed of the DDR2 memory.  
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Therefore, a method to double the speed of transmitting the data from DDR2 memory to 

the output was developed. By using both edges of a single clock, rather than just one 

edge, the speed of transmission is doubled. Because the flip-flops on an FPGA can only 

be clocked on one edge of the clock, two separate signal streams were made.  One signal 

path used flip-flops clocked on the rising edge, and another used flip-flops clocked on the 

falling edge.  These signals are then combined by an exclusive or (XOR) gate to create 

the output.  This process is shown in Fig. 4. 

 

Fig. 4. High-speed transmission method 

4) Controls for Excitation 

To offer more flexibility to the user of the platform, two controls were added to 

the system: assignment of waveforms to output pins, and assignment of delays to output 

pins. To implement the assignment of waveforms to output pins, functionality was added 

to store the location of the waveforms in the DDR2 memory. The location is then 

combined with an identification number that represents the assigned output pin for that 
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waveform. Delay assignments were implemented by using a counter that starts when the 

output now button is pressed by the user.  The delays are converted from seconds to 

counts from the beginning of transmission and stored in a table, one value for each pin.  

Because the counter increases every clock cycle, the smallest delay increment is 4 ns.  

Each pin is held at zero until the current count matches each pin’s stored delay value. The 

transmission for each pin then begins independently. 

C. High Voltage Amplifier 

The amplifier is a key component of the ultrasound system.  The output waveform 

of the amplifier will be sent to the transducer. Over the course of the project, the 

amplifier has evolved and changed.  The first design proposed was using a metal-oxide 

semiconductor field-effect transistor (MOSFET) H-bridge design.  This design was 

chosen for the low on-resistance, and because it can produce a bipolar signal.  The part 

that was chosen was Zetex’s ZXMHC10A07N8 complementary MOSFET H-bridge.  

This component was tested using the switching test circuit provided in the datasheet [9].  

The design was simulated using a tool called LTSpice IV.  This tool is a free program 

offered by Linear Technology.   

The H-bridge in LTSpice was simulated using four MOSFETs that had very 

similar characteristics to those provided by Zetex.  The H-bridge was excited using a       

-10V to 10V signal that was to represent an amplified output from the FPGA.  The 

simulation was run at lower frequencies to prove the concept of the design. The amplifier 

simulation was set up as show in Fig. 5. The resistor values used were standard 1 kΩ 

resistors. These provided a low enough current to safely run the MOSFETs. 
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Fig. 5. H-Bridge Amplifier 

 The next model that was suggested was a push-pull configuration using 2 N-

channel MOSFETs.  This design had the advantage of being able to run at radio 

frequency (RF) speeds.  Since the speeds were so high, the design was limited to N-

channels because P-channel MOSFETs could not run that fast. 

 This design was also modeled in LTSpice.  Since a component was not provided 

for this design, components that would be able to meet the specifications were picked 

from the library supplied by the tool.  This design could be started from scratch rather 

than limited to previous parts received. Again, the design was excited using a -10 V to 10 

V square wave.  This circuit was also simulated at lower frequencies to verify 

plausibility.   The basic design came from research performed into RF push-pull 

amplifiers.  The 1 kΩ resistors serve the same function as they did in the H-bridge design.  

They limit the current to safe levels for the MOSFETs.  The two other MOSFETs were 

simply replaced with 1 MΩ resistors to simulate an open circuit.  Fig. 6 shows the 

LTSpice model that was simulated. 



11 
 

 

Fig. 6. Push-Pull Amplifier Configuration 

 The final design on the amplifier was a single ended MOSFET.  This design used 

less material, therefore taking up less space, and could provide the signal at a lower cost.  

The availability of a RF MOSFET that would function properly at the previously required 

1 GHz and 100 V is very low.  Therefore, the specifications were dropped to -50 V to 50 

V output at a frequency of 500 MHz.  This would ensure that a single MOSFET would be 

able to handle the power and speed.   

 The single-ended MOSFET would provide an inverted amplified result of the 

input.  For this design, the input was also changed. A 0 V to 5 V square wave was 

implemented as the excited signal.  Shown in Fig. 7 is the final design. 
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Fig. 7. Single-ended Amplifier Design 

 The decoupling capacitors are there to simulate a real voltage source. The 1 kΩ 

resistors that had previously been used were replaced by four resistors in parallel so as 

not to load a single resistor with too much power.  Using four resistors at a Rtotal value at 

approximately 1 kΩ reduces the power by roughly one-fourth.  The capacitors C7 and C8 

eliminate the DC offset associated with the amplifier.  The diode essentially clips the 

voltage so there is no overshoot when switching.   

Fig. 7 shows the transducer model connected to the amplifier.  This model was 

determined by using the transducer specifications such as impedance as a function of 

frequency and the Mason model [10]. The transducer model was calculated to be a 360 

pF capacitor in parallel with a 50 Ω resistor.  Loading effects that distorted the output of 

the amplifier were observed when the amplifier was simulated with the transducer model. 
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D. Data Processing 

As previously stated, in ultrasound the backscattered pressure waves are 

converted into voltage waves by the ultrasonic transducer. An analog front-end samples 

and records these waves for data processing. Data processing consists of filtering and 

manipulating the data to produce an image. In the completed system, these functions 

were performed on a PC using MATLAB software. The procedure for data processing is 

illustrated in Fig. 8. 

Pulse 
Compression
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Beamforming

Log 
Compression

GUI

Receive Data

Time-Gain 
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Detection

 

Fig. 8. Data Processing Procedure 

1) Pulse Compression 

 The first step in data processing is to perform pulse compression. When ultrasonic 

imaging is performed using a longer excitation, the spatial resolution of the received data 

is degraded relative to conventional ultrasound, which uses a short pulse as an excitation. 

Pulse compression uses a filter to compare the received data with the original excitation, 

restoring much of the resolution which was lost by using a longer excitation.  

The most common method used for pulse compression is the matched filter. This 

filter has an impulse response equal to the excitation signal with reversed time axis. Thus, 

the filter is equal to the complex conjugate of the excitation signal in the frequency 
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domain. Applying the matched filter is equivalent to performing cross correlation 

between the excitation signal and the received data. The matched filter is commonly used 

because it attenuates all noise outside the frequency range of the excitation signal; 

however, filtering using a matched filter results in a sinc shape, with sidelobes on either 

side of the main lobe. If these sidelobes are too large, they can create false echoes in the 

image [2].  

In the absence of noise, an inverse filter is the optimal filter to reduce sidelobes 

while restoring the spatial resolution. This filter is equivalent to the inverse of the 

excitation signal in the frequency domain. Thus, the filter amplifies noise outside the 

frequency spectrum of the excitation. This makes the filter impractical in real systems 

[2]. 

 A Wiener filter was employed to perform pulse compression on the research 

platform [2]. This filter is an optimization of two components, the matched filter and 

inverse filter. The two filters are combined in the Wiener filter equation (1), where Vin is 

the excitation signal, λ is a smoothing parameter, and S is the estimated signal-to-noise 

ratio of the system [11].  

            (1) 

 

The value of λ/ S is used to adjust the operating point of the filter on the 

continuum between the matched and inverse filters. By inspection of (1), it can be seen 

that as this term increases, the denominator becomes dominated by the λ/ S, which is a 

constant. The equation then resembles the complex conjugate of the excitation signal 

multiplied by a constant, which is equal up to a constant to the matched filter. In the limit 

as λ/ S approaches zero, the denominator is equal to the square of the magnitude of the 
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excitation signal. The square of the magnitude of the excitation signal is equal to the 

excitation signal multiplied by its complex conjugate. The complex conjugate terms 

present in the numerator and denominator cancel, and the equation resembles the inverse 

of the excitation signal in the frequency domain, which is equivalent to the inverse filter. 

  The Wiener filter is therefore asymptotically equal to the matched filter and 

inverse filter, and equal to a blending of those two filters for intermediate values of λ/ S. 

The smoothing parameter, λ, can then be adjusted, based upon the type of excitation 

signal and the type of tissue being imaged, to optimize the Wiener filter for both noise 

attenuation and sidelobe reduction. 

2) Delay Sum Beamforming 

Delay sum beamforming compensates for the spherical propogation of the sound 

waves that are transmitted and received.  Without this conversion, echoes appear in the 

resulting image as scatterers are represented by arcs of points rather than single points. 

This is due to the unique path that sound waves travels from each scatterer to each 

transducer which makes each scatterer appear to be differing distances from the sensor.  

These differing distances are equal to the Pythagorean distances from the scatterer to 

each transducer element.  If unaccounted for, the changes in distance from a scatterer to 

each transducer element can create a misalignment in the overall image as seen in Fig. 9.  

In this figure, the single scatter point at 10mm is represented by an arc that stretches from 

20mm to 10mm rather than a single point. 
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Fig. 9. Effects of Ultrasound Imaging on Single Points 

Delay sum beamforming analyzes each pixel of the image individually by 

calculating the Pythagorean distance from the pixel to each transducer element and from 

the pixel to the focal point of the transducer.  The focal point is located at a distance of 20 

mm from the center of the transducer.  (2) shows how delays are calculated, where Dp is 

the calculated delay for a pixel, c is equal to 1540 m/s (the average speed of sound in 

tissue), Dsp is equal to the distance from the transducer element to the pixel, and Dfp is 

equal to the distance from the transducer element to the focal point.  Note that there is no 

delay at the focal point, as Dsp equals Dfp. 

c
DD

D
fpsp

p
−

=     (2) 
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Once the delays have been calculated they are applied to adjust the positioning of 

backscattered echoes.  The new values at the distance from the pixel to the edge of the 

transducer, which have been recorded and delayed for each transducer element, are added 

together.  The sum is iteratively calculated and stored for each pixel. 

3) Data Manipulation 

 After pulse compression and delay sum beamforming have been performed, the 

data must be manipulated into a form which can be displayed as an image. This process is 

achieved in three steps: log compression, time gain compensation, and envelope 

detection. 

The logarithm of each data point is taken prior to imaging. A logarithmic 

calculation is necessary to increase the magnitude of weak scatterers relative to the 

magnitude of stronger scatterers, so that more detail is present in the final image. 

 As pressure waves pass through tissue, they are attenuated. The further a wave 

travels through tissue, the more it is attenuated. Therefore, voltages corresponding to 

pressure waves which are received later in time are more attenuated. To display all 

features of the image equally regardless of depth, compensation must be performed for 

the attenuation based on the time-of-flight of the wave in tissue. The equation for 

compensation for a data point is given in (3), where C is the compensation, D is the depth 

of the point being imaged, F is the probe frequency, and A is the attenuation, which is 

equal to 1 dB/cm/MHz (twice the average attenuation of tissue as the signal must travel 

the distance to the scatterers and back). For our system, the transducer’s center frequency 

was estimated at 8.3 MHz. 

ADFC =  (3) 
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 Envelope detection is equivalent to rectification followed by low pass filtering. To 

calculate the envelope of each signal, the absolute value of the Hilbert transform on the 

data is determined. The Hilbert transform equation is described in (4), where sgn(x) is the 

sign of x, and N is the number of points in the discrete Fourier transform of the input 

signal [12]. The vector H(k) is multiplied by the discrete Fourier transform of the input 

signal to perform envelope detection. 

)sgn()
2

sgn()( kk
N

ikH −−=    (4) 

D. Resolution Enhancement Compression (REC) 

 REC is an example of a coded excitation which could be tested using the 

completed platform.  This coded excitation was used in simulations discussed in Section 

IV. REC is technique which uses a pre-enhanced chirp to increase the bandwidth of the 

transducer. By doing so, the axial resolution of the image can be enhanced. 

 The pre-enhanced chirp is calculated using convolution equivalence. The process 

is displayed in Fig. 10. First, a model for the pulse-echo impulse response of an ultrasonic 

transducer is created. Then, a transducer with the same center frequency but an increased 

bandwidth is modeled. In this project, the improved transducer had 150% of the original 

transducer’s bandwidth of 8.3 MHz. Next, a linear chirp is generated, containing 

frequencies in the range of the bandwidth of the improved transducer. Then the linear 

chirp convolved with the improved impulse response is equated to the pre-enhanced chirp 

convolved with the original impulse response. In this manner, the pre-enhanced chirp can 

be determined. 
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Fig. 10. Transducer pulse-echo impulse response (top left), REC chirp (top right), 

improved pulse-echoimpulse response (bottom left), and linear chirp (bottom right) 

 

 

IV. SIMULATION RESULTS 

A. Amplifier Simulations 

 Simulations were conducted to test the amplifier designs discussed in section III-

C. The H-bridge design took the difference of two nodes to produce the amplified signal. 

The simulation was run as slower speeds to prove the concept.  After the H-bridge 

amplifier was designed, it was discovered that the component supplied would not be able 
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to run at the specified 1GHz that was mentioned in the Fall. This specification is no 

longer a requirement and was replaced with 500MHz.  

 The push pull amplifier provided two signals that could be used to obtain a final 

signal that would be sent to the ultrasonic transducer. The first signal was at node A in 

Fig. 6. This signal was -100 V to 0 V. The second signal was received from node B in 

Fig. 6.  This was a 0 V to 100 V. These two signals provided the full range of voltage 

needed, according to the original requirements, in the final output.  Again, as with the H-

bridge, these signals came from two different nodes.  One possibility to get the needed 

signal was to design a passive summer.  Unfortunately, this summer was not designed in 

time before the final design change for the amplifier was suggested. 

 

Fig. 11. Simulation of Push-Pull Amplifier Design 

 The single-ended amplifier output is shown in Fig. 12.  The figure shows the 

output before the transducer model was simulated.  The output is the required -50V to 

50V. 
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Fig. 12. Simulation of Single-Ended Amplifier w/o Transducer Model 

 The loading effects of the transducer model hindered the design of the amplifier.  

One way to counteract the loading effects of the transducer would be to do load 

matching.  This matches the impedance of the amplifier with the impedance of the 

transducer.  This would also ensure maximum power transfer. 

 

 

B. Data Processing Simulations 

 Simulations were conducted to test the data processing code. These simulations 

were performed using Field II software in MATLAB [13]. This software models an 

ultrasonic transducer and point targets. The transducer was set to have a center frequency 

of 8.3 MHz and a fractional bandwidth of 100%, to approximate the ultrasonic transducer 

which will be used with the completed system. The probe consists of eight linearly-

arranged channels, to simulate a prototype multi-channel system. The phantom was 
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simulated as having reflective points arranged in a row along a line which is 

perpendicular to the transducer. The points were placed every 10 mm in axial distance 

from the transducer. An illustration of this configuration is shown in Fig. 13. A signal-to-

noise ratio of 46 decibels was used in the simulations. 
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Fig. 13. Field II Configuration 

 Simulations were performed using two different excitations. The first was a short 

pulse as is conventionally used in medical ultrasound. The second was the REC pre-

enhanced chirp described in Section III-D. Field II software generated the simulated 

captured data. This data was then processed as described in Section III-C. The resulting 

image created using the conventional excitation is shown on the left in Fig. 14, and the 

image created using the REC excitation is shown on the right in Fig. 14. 

 The benefits of coded excitations can be observed from Fig. 14. The REC 

excitation, along with pulse compression using a Wiener filter, resulted in far less noise 

in the final image. For depths less than 10 mm, all noise in the REC image is less than -

60 dB in magnitude. In the conventional image noise is present with -50 dB magnitude 

for the same depth. The REC image also has less noise for greater depth, allowing points 
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to be visible at up to 70 mm in depth. The impulse generated image only shows points for 

depths up to 50 mm. At depths of 60 and 70 mm, the noise present in the image conceals 

the point sources.  

 

 

Fig. 14. Data Processing Simulation Images Created using conventional pulse excitation 

(left), and REC chirp coded excitation (right) 

V. EXPERIMENTAL RESULTS 

An experiment was conducted to validate the accuracy of the system in 

transmitting arbitrary waveform. Fig. 15 shows the procedure for this experiment.  
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Fig. 15. Transmitting Experiment Procedure 

A linear chirp that spans the frequencies of 4 MHz to 12 MHz, as shown in Fig. 

16, was selected for testing as it is a complex frequency modulated coded excitation used 

in ultrasonic research.  

 

Fig. 16. Linear chirp spanning 4 MHz to 12 MHz 

This waveform was encoded using sigma-delta modulated, as shown in Fig. 17, 

and transmitted by the FPGA. 

 

Fig. 17. Sigma-delta modulated, linear chirp 
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The pin output of the sigma-delta modulated, linear chirp was captured using a 

high-speed digital oscilloscope (Lecroy, Chestnut Ridge, NY), and is shown in Fig. 18. 

The FPGA characteristics cause output noise, and the bandwidth of the oscilloscope 

converts the delta pulses from the sigma-delta modulated form to a continuous signal. 

 

Fig. 18. Captured, sigma-delta modulated, linear chirp from an FPGA output pin 

A model for the frequency response of the transducer, shown in Fig. 19, was 

constructed in MATLAB using information from transducer’s datasheet.  This model has 

a center frequency of approximately 8 MHz and a fractional bandwidth at -6 dB of 

approximately 100 %.  

 

Fig. 19. Transducer frequency response model 
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The transducer frequency response model was used to filter the linear chirp, the 

sigma-delta modulated chirp, and the captured, sigma-delta modulated, linear chirp from 

an FPGA output pin. The resulting signals were calculated to have correlations listed in 

Table I. These correlations suggest that there is less error between the linear chirp and the 

sigma-delta modulated, linear chirp compared to the error between the stored, sigma-

delta modulated chirp in the FPGA DDR2 memory and the captured, sigma-delta 

modulated, linear chirp from an FPGA output pin.  

Table I. Cross correlation between filtered, linear chirp; filtered, sigma-delta modulated, 

linear chirp; and filtered, captured, sigma-delta modulated, linear chirp 

Cross Correlation Filtered, Sigma-delta 
Modulated, Linear Chirp 

Filtered, Captured, Sigma-delta 
Modulated, Linear Chirp 

Filtered, Linear Chirp 99.84% 99.33% 
Filtered, Sigma-delta 
Modulated, Linear Chirp 

- 99.53% 

 

Despite the 0.67% error, the signal retains enough accuracy to prove the concept 

of using sigma-delta modulation to transmit the properties of the linear chirp.  This can be 

seen in Fig. 20, which shows the comparison between the filtered, linear chirp and the 

filtered, captured, sigma-delta modulated, linear chirp in both the time and frequency 

domains.  
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Fig. 20. Filtered, linear chirp (blue) and captured, sigma-delta modulated, linear chirp 

(red) in the time domain (left) and the frequency domain (right). 

VI. CONCLUSION 

Based upon the results of the transmitting experiment, waveforms which are 

transmitted by the FPGA are valid for ultrasonic imaging, and can be almost identically 

reconstructed to the same coded excitation as the original waveform after being passed 

through the ultrasonic transducer. Therefore, this system could be used to perform 

ultrasonic research into the use of coded excitations to improve the diagnostic capabilities 

of medical ultrasound. 
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APPENDIX A: How to Operate the ULTRA Transmitter 

A: Introduction 

The following guide describes the steps necessary to use the developed platform 

from waveform creation, to transmission, to processing received data.  The platform will 

send any correctly formatted waveform to the pins of the FPGA, and from there the 

captured experimental data can be passed through a simulation of the ultrasonic 

transducer.  This guide also describes how these results can be verified for accuracy by 

comparison to the theoretical waveform transmission.  To follow this guide, access to the 

Ultra site on Sakai is necessary. 

B: First Time Setup 

1. Obtain the Delta Sigma Toolbox from the Ultra site on Sakai under Resources > 

Sigma Delta Modulation > Delta Sigma Toolbox > delsig.zip 

2. Extract the delsig.zip to a convenient location on the hard drive.  Remember this 

location. 

3. Download and save the SigmaDeltaGenerator.m code from the Ultra site under 

Resources > Repository > MATLAB_files > Sigma Delta Modulation > 

SigmaDeltaGenerator.m 

4. Open the SigmaDeltaGenerator.m file and edit the 5th line to reflect the location 

of the delsig toolbox (shown in Fig. A1).  This must point to the directory that 

directly contains the MATLAB files.  Save the file. 

5. Download and extract the FPGA_GUI to a convenient location from the Ultra site 

under Resources > Repository > FPGA_GUI.zip 

6. Download and save the ultrasound.bit file from the Ultra site at Resources > 

Repository > FPGA > ultrasound.bit 
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C: Waveform Generation 

1. Open the SigmaDeltaGenerator.m file and replace the code in the EXAMPLE 

block to the desired input analog waveform to use in the sigma delta modulation, 

as shown in Fig. A1.  Make sure the waveform is exactly 1500 samples in length.  

This guide will use the example code given (note that Fig. A1 does not reflect 

this). 

2. Change any parameters in the OTHER PARAMETERS section as necessary. 

 

Fig. A1: Updates to the SigmaDeltaGenerator.m file 

3. Change the name of the output waveform file by setting the 

WAVEFORM_NAME variable to the desired name.  Using a .wve extension will 

make sending the waveform to the FPGA easier later on. 
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4. Click the Run icon to generate the waveform.  The waveform is saved in a file 

located in the same directory as the SigmaDeltaGenerator.m code. 

 

D: FPGA Preparation 

1. Obtain the Virtex-5 XUPV5-LX110T Evaluation Platform and connect two SMA 

cables as shown in Fig. A2. 

 

Fig. A2: FPGA Hardware Setup 

2. Connect the power to the FPGA. 

3. Connect the JTAG cable to the FPGA and to an available USB port on the PC as 

shown in Fig. A2. 
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4. Connect the PC’s serial cable to the FPGA using a null-modem adapter.  This is 

also shown in Fig. A2. 

5. Power on the board with the switch at the top right. 

6. Open up Xilinx iMPACT by following Start > EE Applications > Xilinx ISE 

Design Suite 11 > ISE > Accessories > iMPACT 

7. Press OK if the iMPACT Access Permission box appears. 

8. Select No for the “Automatic Project File Load” box as shown in Fig. A3. 

 

Fig. A3: Automatic Project File Load. 

9. Select No to the “Automatically create and save a project” as shown in Fig. A4. 

 

Fig. A4: Automatically create and save a project. 

10. Select Cancel for the “New iMPACT Project” box. 

11. Double click the Boundary Scan button under iMPACT Flows, shown in Fig. A5. 
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Fig. A5: Initialize Chain 

12. Right click in the Boundary Scan area, then select Initialize Chain, as shown in 

Fig. A5. 

13. Press Esc four times to close the first four “Assign New Configuration File” 

boxes. 

14. On the fourth “Assign New Configuration File” box, navigate to the location of 

the ultrasound.bit file. Select it, and click Open.  This is shown in Fig. A6. 
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Fig. A6: Assign New Configuration File. 

15. Select No to the “Attach SPI or BPI PROM” box. 

16. Select OK to the “Device Programming Properties – Device 1 Programming 

Properties” box. 

17. Right click the fifth Xilinx chip icon and select Program, as shown in Fig. A7.   

18. Click OK to the “Device Programming Properties – Device 5 Programming 

Properties” box. 

19. After the status bar reaches 100%, a blue box should appear with the words 

“Program Succeeded.”  If there is a problem, this box will be red and say 

“Program Failed.” 
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Fig. A7: Program the FPGA board 

 

E: Transmission 

1. Open the waveform.exe program located in the 

FPGA_GUI\waveform\bin\Debug directory. 

2. Select the Add button shown in figure A8 and navigate to the waveform file 

(.wve).  Open it. 
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Fig. A8: FPGA GUI 

3. Select the desired pins to send the waveform to (multiple pins can be 

selected).  For this guide, select pin 2. 

4. Select the Waveform button and assign the waveform index 1 to pin 2.  This is 

shown in Fig. A9.  Press OK. 

 

Fig. A9:  Assign Waveform. 

5. Optionally assign a delay by pressing the Delay button. 
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6. Press the Load Settings button shown in Fig. A8.  The “Device Armed” 

checkbox should now be checked.  If an error occurs, press ok to the error 

message and retry.  Note:  sometimes resetting the FPGA will help with 

repeated errors.  Press the west button as shown on Fig. A10 to reset the 

FPGA. 

 

Fig. A10: Reset FPGA Button 

7. Plug in the power to the LeCroy Oscilloscope; set the on/off switch on the 

back to on; Remove the cover and press the power button. 

 

Fig. A11: Probe Connections to Pins 
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8. Connect the probe to channel 1 and then to the FPGA pins as shown in Figs. 

A11 and A12.  The ground connector can connect to any of the middle 

column of pins, but the bottom is most convenient. 

 

Fig. A12: Probe Connection to Pin Close Up 

9. Right click the C2 Waveform box shown in Fig. A13 and select Off to remove 

it from the screen. 

 

Fig. A13: Turning Ch. 2 Off 

10. Change the horizontal scale to 500 ns/div and the vertical scale to 1.00 V/div 

as shown in Fig. A14. 
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Fig. A14: Oscilloscope Buttons and Wheels 

11. Move the C1 waveform lower on the screen by scrolling the Vertical Offset 

scroll-wheel counter-clockwise.  This is shown in Fig. A14.  The waveform 

should be on the bottom quarter of the screen. 

12. If needed, adjust the trigger to between one and two volts. 

13. Press the Single button shown in Fig. A14. 

14. Press the Output Now button on the PC to transmit to the oscilloscope (shown 

in Fig. A8).  The waveform should now be visible on the screen, as shown in 

Fig. A15. 
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Fig. A15: Waveform Displayed On Oscilloscope 

15. Insert a thumb drive to a USB port on the oscilloscope. 

16. Select File > Save Waveform 

17. Select Browse and locate a place to store the waveform.  Press OK. 

18. Press Save Now! Remove the thumb drive.  Note: to safely remove, select File 

> Minimize, then click the device icon on the bottom right. 

 

F: Data Processing 

 The data processing section of this tutorial works for the linear chirp example 

inside the EXAMPLE block of the SigmaDeltaGenerator.m file.  It would need to be 

adjusted if any other waveform was used. 
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1. Download and save the chirp_filt_pc.m file from the Ultra site at Resources > 

Repository > MATLAB_files > Chirp_Reconstruction > chirp_filt_pc.m 

2. Double click the chirp_filt_pc.m file to open it up with MATLAB. 

3. Move the captured waveform data file to the same location chirp_filt_pc.m is 

stored. 

4. Edit the DATA_FILE variable on line 14 of chirp_filt_pc.m to match the name 

of the waveform data file.  The name will be similar to ‘C1t00000.dat’ or 

‘C1Trace00000.dat’. 

5. Click the Run icon to process the data.  The created figures will show the 

transducer frequency response and a comparison of the experimental and 

simulated chirps in the time domain, frequency domain, and after pulse 

compression. 
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APPENDIX B: How to Create a New PCB Footprint 
 

A. Introduction 

This tutorial will walk the user on how to create a footprint for the TX810 from 

Texas Instruments (TI).  This footprint will be made using OrCAD PCB Designer.  The 

footprint can then be used in many different PCB layout tools. This part is a special 

package that has no leads outside the package. Therefore, some accommodations will 

need to be made when designing the part. The datasheet for this part can be found at: 

http://focus.ti.com/lit/ds/symlink/tx810.pdf 

B. Create Padstack 

1. Go to Allegro Pad Designer: Start > EE Applications > OrCAD 16.3 > PCB 

Editor Utilities > Pad Designer. Click OK for the pop up windows. 

2. The following window will appear: 

 

http://focus.ti.com/lit/ds/symlink/tx810.pdf
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Fig. B1 Pad Designer Window, Parameters Tab 

3. Change the units to Millimeter because the datasheet gives dimensions in 

millimeters. Change the decimal places to 4. Also change the Hole Type to 

Oval Slot. Do not change the slot size or any other value. Since this is not a 

thru-hole component, we do not need to drill. 

4. Next go to the Layers tab. 

 

Fig. B2. Pad Designer Window, Layers Tab  

5. In the Layers tab, the layers and dimensions need to be adjusted. First, select 

the box next to Single Layer Mode. Again, as this in a Surface Mount Device 

(SMD), we only need the top layer. 
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6. Change the Geometry to Oblong. Next, adjust the Width to 0.55, and Height 

to 0.24.  These measurements were obtained from the datasheet.  The height is 

half the tolerance that they give (0.18-0.30). Same for the width. (0.45-0.65) 

7. Right click on Bgn to the left of BEGIN LAYER. Select Copy. Then right 

click on the “W>” and click Paste. 

8. Finally, save your padstack. File > Save As... Click the x box to exit the 

warnings box and select Yes to the pop up box that asks if you want to save 

with warnings. Create a new folder for your padstack. (C:\Documents and 

Settings\eeguest\Desktop\Footprint) Name the padstack TX810.pad in this 

folder. 

9. Exit out of that window. 

10. Repeat this process, only for this second padstack, change Width to 0.75 and 

Offset X to -0.1. Save this padstack as TX810-1.pad. This padstack will some 

into play much later. 

 

C. New Design 

1. Go to OrCAD PCB Editor: Start > EE Applications > OrCAD 16.3 > OrCAD 

PCB Editor. 

2. Select OrCAD PCB Designer with PSpice from the pop up box. Click OK. 

3. After the window loads. Go to File > New… This box should pop up: 
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Fig. B3 New Drawing Window 

4. Click Browse and place the drawing in the same folder the padstack is located. 

( C:\Documents and Settings\eeguest\Desktop\Footprint) 

5. Give the drawing a name. TX810.dra will be fine. Click OK. 

6. The next box to pop up should look like this: 

 

Fig. B4 Select Package Window 



46 
 

7. The TX810 is a special package called QFN (Quad Flat Pack- No Pins). Since 

this wizard does not offer this package, we will select PLCC/QFP this 

package type is very similar to the QFN.  Hit Next. 

8. On the next screen, simply click Load Template. Click Next. 

9. The datasheet gives dimensions of the component in millimeters, so in the 

next window, select Millimeters from the two drop down boxes. The accuracy 

will automatically set to 3. This is fine. Click Next.  

10. The next window will let the user select how many pins are on each side, and 

the distance between each pin (pitch). Enter the information in the next image, 

Click Next after the changes have been made. 

 

Fig. B5 Pin Count and Lead Pitch Window 

11. The next window allows the user to adjust the dimensions of the package.  

These can be found in the datasheet, with a little simple math. Since the leads 
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for this package are under the package, we need to subtract the length of the 

pin from the width of the package (6mm-0.55mm=5.45mm). The reason for 

using 0.55mm is because that is width of the padstack. Keep in mind, the 

footprint is not the same as the part itself; this is the solder pads that are 

placed on the board. Therefore, e1=e2=E=D=5.45mm. Hit Next. 

12. The next window will ask for the padstack for symbol pins and the padstack 

for pin 1. This is the padstack created in part B. Select the Tx810 for both 

boxes. Click Next.   

 

Fig. B6  Select Padstack Window 

13. Next, select Pin 1 of symbol. Also, make sure that Create a compiled symbol 

is selected. Click Next. Click Finish. 

C. Modify Pins 

1. Next, we will need to adjust the padstack to accommodate for QFN 

specifications set by TI. They suggest overlapping the padstack .2mm 
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OUTSIDE the end of the package. Your part should look something like Fig. 

B7. 

2. To do this, click Tools from the top menus. Select Padstack. Then click on 

Modify Design Padstack. 

3. Next, on the right side of the screen, there should be a tab that says Options. 

Hover the mouse over this and a column will pop out. Double click on TX810. 

4. The padstack design window will pop up. Change the Width to 0.75 and 

OffsetX to 0.1. Then repeat step 7 in the padstack design by right clicking on 

Bgn to the left of BEGIN LAYER. Select Copy. Then right click on the “W>” 

and click Paste. 

 

Fig. B7 TX810 Footprint 
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5. After you have pasted the layer, go to File > Update to Design. Exit the first 

pop up and then click Yes in the next pop up as you did before. Also, go to 

File > Save As…and save the padstack. Then exit out of the padstack screen. 

6. It’s obvious that the package is not symmetric. Right click in the black 

somewhere and select Done. Next, click on pin 1. Then click Tools from the 

top menus. Select Padstack. Then click on Replace. Hover the mouse over the 

Options tab again. This time, it should pop out with a column like Fig. B8. 

Change Pin # to 1, and select Old as TX810, and New as TX810-1 (the 

alternate made before). Click Replace. Pin 1 should shift.  

 

Fig. B8 Replace Options Tab 

7. Repeat step 6 for pins 2-18. Make sure each time you change Pin # to the 

desired pin. Otherwise, it will replace ALL the pins. 

8. Right click in the black somewhere and click Done. Save the footprint. The 

final footprint should look like this: 
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Fig. B9 Final Footprint for TX810 

 

 

 


