TMS320F2812
DIGITAL SIGNAL PROCESSOR

IMPLEMENTATION
TUTORIAL

Introduction

Welcome to the C28x - Tutorial

Welcome to the Texas Instruments TMS320F2812 Tutorial. This material is intended to be used
as a student guide for a series of lessons and lab exercises dedicated to the TMS320F2812 Digital
Signal Controller. The series of modules will guide you through the various elements of this
device, as well as train you in using Texas Instruments development tools and additional
resources from the Internet.

The material should be used for undergraduate classes at university. A basic knowledge of
microprocessor architecture and programming microprocessors in language C is necessary. The
material in Part I (Modules 0 to 9) am to be used in one semester, accompanied by lab exercises
in parallel. Each module includes a detailed lab procedure to be used by students during their lab
sessions.

The experimental lab sessions are based on the eZdsp TMS320F2812, the Code Composer Studio
IDE that is supplied with the eZdsp and some additional hardware (The “Zwickau Adapter
Board”). Copies of this add-on board are available from the author. The schematic of the board is
also part of this CD-ROM, so that you can build one yourself as well.

Part IT (Modules 10 to 15) of the series goes deeper into details of the TMS320F2812. It covers
more advanced subjects and can be seen as an optional series of lessons.

gl Module 0 : Introduction @

Digital Signal Controller
TMS320F2812

Texas Instruments Incorporated
European Customer Training Center
University of Applied Sciences Zwickau (FH)

i

DSP28 - Introduction 0-1

Module Topics

Module Topics

Introduction 0-1
Welcome 10 the C28X - TUIOTTIALccoevueeeeiieieii ettt ettt et aeesa s e essenseenee e 0-1
MOAUIE TOPICS........ccoeeeeeeeeeieeiee ettt ettt et ettt b et e sae e it e e tt et e e ta e beesa e b e ensenssenseaseenns 0-2
CD — ROM SIFUCHUFE ...ttt et et ettt st e et et e eab e e tte et e nnaeenseeenneeneee 0-3

MOAUIES PATt T ..ottt ettt eb et ene e 0-3
IMOAUIES Part T1 ...ttt et b et b e bbb bt sne b enes 0-3
Template Files for LabOratory EXEICISES...........couvueceiiereiieeeeeesieeiseestesseasesssessesesesssessesssessesssensesssenss 0-4
What is a Digital Signal CONIFOIIET?ccocccoiieiiiiiesiieiesiee ettt ettt seeenee s 0-6
The Intel 80X86: A typiCal MICTOPIOCESSOT ... evvetiriieririiertieieritenteetesieeetesteeteeteesbeensesseensesaeeseeneenes 0-7
The Desktop — PC: @ MICTO COMPULETecuveriieeieriieieeiieiestieiestesteessesseessesseesesseessesssessesssessesssesseenes 0-8
The Microcontroller : a single Chip COMPULET.........c.couiiiiiieiiiieiieteeeeee ettt 0-9
A Digital SINAl PIOCESSOTeitiiiiiiiiiiiriieieeite sttt sttt sttt sttt nae e naes 0-10
The “Sum of Product” — EQUAtIONcccveeiiiiiieiiieiecieieee sttt ettt sttt enaesneenbe et e 0-11
A SOP exXecuted DY @ DISP ..ottt st st 0-13
A Digital SigNal CONtIOIIET.......ccuveieeeieiieieiti ettt etete ettt ete st e e et e sbeeeaesbeesbesseesseeseesseessensessseses 0-14
DISP COMPOIIION ...ttt ettt et ettt 0-15
Texas InStruments DSP — POFIOIIO...........c.c.ccoooiiieiieieei ettt ettt ene s 0-16
TMS320F 28X ROAAMAP ...ttt ettt ettt ettt ettt e nseenae s eseenseenean 0-18

DSP28 - Introduction

CD — ROM Structure

CD — ROM Structure

Modules Part |

Chapter 0: Introduction to DSP

Chapter 1: TMS320F2812 Architecture

Chapter 2: Software Development Tools

Chapter 3: Digital Input/Output

Chapter 4: Understanding the F2812 Interrupt System
Chapter 5: Event Manager

Chapter 6: Analogue to Digital Converter

Chapter 7: Communication I: Serial Peripheral Interface
Chapter 8: Communication Il: Serial Communication Interface

Chapter 9: Communication lll: Controller Area Network (CAN)

Modules Part Il
Chapter 10: Flash Programming

Chapter 11: IQ — Math Library
Chapter 12: DSP/BIOS

Chapter 13: Boot— ROM

Chapter 14: FIR — Filter

Chapter 15: Digital Motor Control

DSP28 - Introduction 0-3

Template Files for Laboratory Exercises

Template Files for Laboratory Exercises

All modules are accompanied by laboratory exercises. For some of the modules template files are
provided with the CD (“lab template files”), for other modules the students are expected to
develop their own project files out of previous laboratory sessions. In these cases the lab
description in the textbook chapter explains the procedure. A 2™ group of project files (“solution
files”) provides a full solution directory for all laboratory exercises. This group is intended to be
used by teachers only. Instead of a single zip-file for the whole CD-ROM we decided to use
separate archive files for the individual modules. This gives the teacher the opportunity to select
parts of the CD to be used in his classes.

The zip-files should be extracted to a working directory of your choice. However, the textbook
assumes that the files are located in: “E:\C281x\labs” for group #1 and “E:\C281x\solutions” for
group #2. When extracted, a subfolder named with the exercise number will be added.

The CD-ROM lab template files are archived as follows:

Laboratory template files @

Location: E:\C281x\Labs

Laboratory Exercise Template archive file
Labl “lab_chapter_2.zip”
Lab2 “lab_chapter_3.zip”
Lab5A “lab_chapter_S.zip”
Lab7A “lab_chapter_7.zip”
Lab14 “lab_chapter_14.zip”

0-3
The laboratory exercises are:
Labl: ,Beginner’s project® - essentials of Code Composer Studio
Lab2: “Digital Output” - 8 LED’s, perform a “running light” — sequence
Lab3: “Digital Input” - read 8 input switches and copy status to LED’s
Lab3A: “Digital I/O” - control speed of Lab2 by 8 input switches
Lab3B: “Digital I/O” - add a start and a stop button to Lab3A

Lab4: “Core Timer 0 and Interrupts” — add a hardware timer unit to Lab2 and use an interrupt
service routine

Lab5: “Pulse Width Modulation” - Let’s play a tune

Lab5A: “Sine Wave PWM” - generate a sine wave signal by using the Boot-ROM
lookup table

0-4 DSP28 - Introduction

Template Files for Laboratory Exercises

Lab6: “Analogue Digital Converter”

Lab6A: “Analogue Control”
Lab7: “SPI-DAC TLV5617A”

Lab7A: “CCS Graph Tool”
Lab7B: “SPI EEPROM M95080”
Lab8&: “SCI-Transmission”

Lab8A: “SCI-Transmit Interrupt”

Lab&B: “SCI-FIFO Transmission”
Lab&8C: “SCI Transmit & Receive”

Lab9: “CAN — Transmission”

Lab10: “CAN — Receive”
Labll: “FLASH Boot Mode”
Labl2: “DSP-BIOS”

Lab14: “FIR — Filter”
Lab15: “Digital Motor Control”

- read two analogue voltages and visualizes the digital
values as a “light-beam”

- use one analogue input channel to control the speed
of Lab4

- generate a rising and falling saw tooth voltage at the
two output channels of the dual DAC

- feedback the two DAC signals into two ADC
channels and visualize the signal shape with Code
Composer Studio’s graphical tool

- store the status of 8 input switches in address 0x40 of
the external EEPROM. Read the EEPROM and display
the value on 8§ LED’s

- send a string from DSP to a PC’s COM-port

- adds SCI-Transmit Interrupt and Core Timer O to
Lab8

- use SCI-FIFO mode to transmit the string

- when string “Texas” is received from a PC the DSP
answers by transmitting “Instruments”

- Transmit the status of 8 input switches with
100KBPS and Identifier 0x1000 0000 (extended mode)
periodically.

- Receive identifier 0x1000 0000 with 100KBPS and
display the one-byte-message at the 8 LED’S

- modify Lab4 to start out of internal Flash. Program
Flash memory using CCS

- modify Lab2 to use BIOS functions and configuration
data base

- Filter a square wave signal with a digital filter.

- use TI’s library to control a 3phase PMSM — motor.

Laboratory solution files @

Location: E:\C281x\Solutions

Exercise

Archive file

Labl

“solution_chapter_2.zip”

Lab2, Lab3,Lab3A,Lab3B

“solution_chapter_3.zip”

Lab4

“solution_chapter_4.zip”

Lab5, LabSA

“solution_chapter_S.zip”

Lab6, Lab6A

“solution_chapter_6.zip”

Lab7, Lab7A, Lab7B

“solution_chapter_7.zip”

Lab8, Lab8A, Lab8Aopt, Lab8B,

“solution_chapter_8.zip”

Lab8C

Lab9, Lab10 “solution_chapter_9.zip”
Lab11 “solution_chapter_10.zip”
Lab12 “solution_chapter_12.zip”

Lab14 1, Labl4 2

“solution_chapter_14.zip”

DSP28 - Introduction

What is a Digital Signal Controller?

What is a Digital Signal Controller?

First we have to discus some keywords that are quite often used when we speak about digital
control or computing in general. The TMS320F2812 belongs to a group of devices that are called
“Digital Signal Controller (DSC)”. In computing, we use words like “Microprocessor”,
“Microcomputer” or “Microcontroller” to specify a given sort of electronic device. When it
comes to digital signal processing, the preferred name is “Digital Signal Processors (DSP)”.

To begin with, let’s introduce some definitions:

e Microprocessor (uP)

e Micro Computer

e Microcontroller (nC)

¢ Digital Signal Processor (DSP)

¢ Digital Signal Controller (DSC)

What is a Digital Signal Controller ?

Microprocessor (uP):

Central Device of a multi chip Micro Computer System
Two basic architectures:

» o, ¥Yon Neumann“- Architecture

» ,Harvard* — Architecture
»vYon Neumann* - Architecture:

» Shared memory space between code and data

» Shared memory busses between code and data

» Example: Intel‘s x86 Pentium Processor family
wHarvard“ — Architecture:

» Two independent memory spaces for code and data

» Two memory bus systems for code and data

A pP to operate needs additional devices

Microprocessors are based on a simple sequential procedural approach: Read next machine code
instruction from code memory, decode instruction, read optional operands from data memory,
execute instruction and write back result. This series of events runs in an endless manner. To use
a P one has to add memory and additional external devices to the Microprocessor.

DSP28 - Introduction

What is a Digital Signal Controller?

The Intel 80x86: A typical Microprocessor

k. History (1984): Microprocessor Intel 80x86 @

Address — Unit Bus - Unit address
> control/

- Memory Manager - Bus Control Sy,

- logical / physical > Address & Data Bus — data

address Interface —>
Instruction Queue

\ 4 \ 4
Execution - Unit Instruction — Unit
-CPU < - Decode Instruction
- ALU - Operation Queue
- Register

The Intel 8086 can be considered to be the veteran of all microprocessors. Inside this processor
four units take care of the sequence of states. The bus-unit is responsible for addressing the
external memory resources using a group of unidirectional digital address signals, bi-directional
data lines and control and status signals. Its purpose is to fill a first pipeline, called the
“instruction queue” with the next machine instructions to be processed. It is controlled by the
Execution unit and the Address-Unit.

The Instruction unit reads the next instruction out of the Instruction queue decodes it and fills a
second queue, the “Operation queue” with the next internal operations that must be performed by
the Execution Unit.

The Execution Unit does the ‘real” work; it executes operations or calls the Bus Unit to read an
optional operand from memory.

Once an instruction is completed, the Execution Unit forces the Address Unit to generate the
address of the next instruction. If this instruction was already loaded into the Instruction queue,
the operational speed is increased. This principle is called “cache”.

We could go much deeper into the secrets of a Microprocessor; eventually you can book another
class at your university that deals with this subject much more in detail, especially into the pros
and cons of Harvard versus Von-Neumann Machines, into RISC versus CISC, versions of
memory accesses etc.

For now, let’s just keep in mind the basic operation of this type of device.

DSP28 - Introduction 0-7

What is a Digital Signal Controller?

The Desktop — PC: a Micro Computer

When we add external devices to a Microprocessor, we end up with the set up for a computer
system. We need to add external memory both for instructions (“‘code”) and data to be computed.
We also have to use some sort of connections to the outside world to our system. In general, they
are grouped into digital input/outputs and analogue input/outputs.

6 Your Desktop — PC is a... @

2. Micro Computer
— Micro Computer = Microprocessor(uP) + Memory + Peripherals
— Example: your Desktop -PC

Code - Memory Data - Memory
I Memory Bus I
|
Clock Microprocessor Timer/Counter
eoococece | | Peripheral Bus s

| | |
Digital In Digital In Analogue In Analogue Out

Computer Peripherals @

* Peripherals include:
— Digital Input / Output Lines
— Analogue to Digital Converter (ADC)
— Digital to Analogue Converter (DAC)
— Timer / Counter units
— Pulse Width Modulation (PWM) Output Lines
— Digital Capture Input Lines
— Network Interface Units:
» Serial Communication Interface (SCI) - UART
» Serial Peripheral Interface (SPI)
» Inter Integrated Circuit (1)C) — Bus
» Controller Area Network (CAN)
» Local Interconnect Network (LIN)
» Universal Serial Bus (USB)
» Local / Wide Area Networks (LAN, WAN)
— Graphical Output Devices
— and more ...

DSP28 - Introduction

What is a Digital Signal Controller?

The Microcontroller : a single chip computer

As technology advances, we want the silicon industry to build everything that is necessary for a
microcomputer into a single piece of silicon, and we end up with a microcontroller (“pC”). Of
course nobody will try to include every single peripheral that is available or thinkable into a
single chip — because nobody can afford to buy this “monster”’-chip. On the contrary, engineers
demand a microcontroller that suits their applications best and — for (almost) nothing. This leads
to a huge number of dedicated microcontroller families with totally different internal units,
different instruction sets, different number of peripherals and internal memory spaces. No
customer will ask for a microcontroller with an internal code memory size of 16Mbytes, if the
application fits easily into 64Kbytes.

Today, microcontrollers are built into almost every industrial product that is available on the
market. Try to guess, how many microcontrollers you possess at home! The problem is you can’t
see them from outside the product. That is the reason why they are also called “embedded”
computer or “embedded” controller. A sophisticated product such as the modern car is equipped
with up to 80 microcontrollers to execute all the new electronic functions like antilock braking
system (ABS), electronic stability program (ESP), adaptive cruise control (ACC), central locking,
electrical mirror and seat adjustments, etc. On the other hand a simple device such as a vacuum
cleaner is equipped with a microcontroller to control the speed of the motor and the filling state of
the cleaner. Not to speak of the latest developments in vacuum cleaner electronics: the cleaning
robot with lots of control and sensor units to do the housework — with a much more powerful uC
of course.

Microcontrollers are available as 4, 8, 16, 32 or even 64-bit devices, the number giving the
amount of bits of an operand that are processed in parallel. If a microcontroller is a 32-bit type,
the internal data memory is connected to the core unit with 32 internal signal lines.

System on Chip @

3. Microcontroller (nC)

— Nothing more than a Micro Computer as a single silicon
chip!

— All computing power AND input/output channels that are
required to design a real time control system are ,,on chip“

— Guarantee cost efficient and powerful solutions for
embedded control applications

— Backbone for almost every type of modern product

— Over 200 independent families of pC
— Both pP — Architectures (,,Von Neumann* and ,,Harvard*)
are used inside Microcontrollers

DSP28 - Introduction 0-9

What is a Digital Signal Controller?

A Digital Signal Processor

A Digital Signal Processor is a specific device that is designed around the typical mathematical
operations to manipulate digital data that are measured by signal sensors. The objective is to
process the data as quickly as possible to be able to generate an output stream of ‘new’ data in
“real time”.

Digital Signal Processor @

4. Digital Signal Processor (DSP)

— Similar to a Microprocessor(uP), e.g. core of a computing
system

— Additional Hardware Units to speed up computing of
sophisticated mathematical operations:
» Additional Hardware Multiply Unit(s)
» Additional Pointer Arithmetic Unit(s)
» Additional Bus Systems for parallel access
» Additional Hardware Shifter for scaling and/or
multiply/divide by 2"

What are the typical DSP algorithms? @

The Sum of Products (SOP) is the key element in
most DSP algorithms:

Algorithm Equation
M

Finite Impulse Response Filter y(n)zZak x(n —k)
k=0

M N
Infinite Impulse Response Filter y(n):Zakx(n —k)+z byy(n—k)
k=0 k=1

N
Convolution y(n):Zx(k)h(n —k)
k=0

N-1
Discrete Fourier Transform X(k)= 2 x(n)exp[—j(2z/ N)nk]

=0

N-1 -
Discrete Cosine T 1 Flu)=">» c(u).f(x).cosl—ul2x+1

iscrete Cosine T ransform () ; (u).f (x) [ZN ()}

DSP28 - Introduction

What is a Digital Signal Controller?

The “Sum of Product” — Equation

We won’t go into the details of the theory of Digital Signal Processing now. Again, look out for
additional classes at your university to learn more about the math’s behind this amazing part of
modern technology. I highly recommend it. It is not the easiest topic, but it is worth it. Consider a
future world without anybody that understands how a mobile phone or an autopilot of an airplane
does work internally — a terrible thought.

To begin with, let’s scale down the entire math’s into one basic equation that is behind almost all
approaches of Digital Signal Processing. It is the “Sum of Products”- formula. A new value ‘y’ is
calculated as a sum of partial products. Two arrays “data” and “coeff” are multiplied as pairs and
the products are added together. Depending on the data type of the input arrays we could solve
this equation in floating point or integer mathematics. Integer is most often also called “fixed-
point” math’s (see Chapter 11).

Because of the TMS320F2812 is a fixed-point device, let’s stay with this type of math’s. If you
look into chapter 1 of Texas Instruments C6000 Teaching CD-ROM, you will find a detailed
discussion of pros and cons of fixed point versus floating point DSPs.

In a standard ANSI-C we can easily define two arrays of integer input data and the code lines that
are needed to calculate the output value ‘y’:

Doing a SOP with a yP @

y= idata[i] * coeffi]

* Task : use a Desktop - PC and code the equation into
a common C-compiler system, e.g. Microsoft Visual
Studio.Net

*+ A C-Code Solution could look like this:

#include <stdio.h>
int data[4]={1,2,3,4};
int coeff[4]={8,6,4,2};
int main(void)
{
int i;
int result =0;
for (i=0;i<4;i++)
result += datal[i]*coeff[i];
printf("%i",result);
return 0O;

DSP28 - Introduction 0-11

What is a Digital Signal Controller?

If we look a little bit more in detail into the tasks that needs to be solved by a standard processor
we can distinguish 10 steps. Due to the sequential nature of this type of processor, it can do only
one of the 10 steps at one time. This will consume a considerable amount of computing power of
this processor. For our tiny example, the processor must loop between step 3 and step 10 a total of
four times. For real Digital Signal Processing the SOP — procedure is going to much higher loop

repetitions — forcing the standard processor to spend even more computing power.

6 Basic Operations of a SOP

y= idata[i] *coeff [i]

What will a Pentium be forced to do?

. Set a Pointer1 to point to data[0]

Set a second Pointer2 to point to coeff[0]

. Read datali] into core
. Read coeff]i] into core

. Add the latest product to the previous ones

. Modify Pointer1
. Modify Pointer2

9. Increment I;
1

1
2.
3
4
5. Multiply datali]*coeff[i]
6
7
8

0. If i<3, then go back to step 3 and continue

Steps 3 to 8 are called “6 Basic Operations of a DSP”
A DSP is able to execute all 6 steps in one single machine

cycle!

&

SOP machine code of a uP

Address

M-Code Assembly - Instruction

10: for (i=0;i<4;i++)

00411960 C745FC 00000000 mov
00411967 EB 09 jmp
00411969 8B 45 FC mov
0041196C 83 C0 01 add
0041196F 8945 FC mov
00411972 83 7D FC 04 cmp
00411976 7D 1F jge
11: result += data[i]*coeffi];

00411978 8B 45FC mov
0041197B 8B 4D FC mov
0041197E 8B 1485405B 4200 mov
00411985

0041198D 8B 45 F8 mov
00411990 03 C2 add
00411992 89 45 F8 mov
00411995 EB D2 jmp

dword ptr [i],0
main+22h (411972h)
eax,dword ptr [i]
eax, 1

dword ptr [i],eax
dword ptr [i],4
main+47h (411997h)

eax,dword ptr [i]
ecx,dword ptr [i]

edx,dword ptrleax*4+425B40h]
OF AF 14 8D 50 5B 42 00 imul edx,dword ptrlecx*4+425B50h]

eax,dword ptr [result]
eax,edx

dword ptr [result],eax
main+19h (411969h)

DSP28 - Introduction

What is a Digital Signal Controller?

A SOP executed by a DSP

If we apply the SOP-task to a Digital Signal Processor of fixed-point type the ANSI-C code looks
identical to the standard processor one. The difference is the output of the compilation! When you
compare slide 13 with slide 11 you will notice the dramatic reduction in the consumption of the
memory space and number of execution cycles. A DSP is much more appropriate to calculate a
SOP in real time! Ask your professor about the details of the two slides!

Doing a SOP with a DSP @

y= idata[i] *coeff[i]

* Now: use a DSP-Development System and code the
equation into a DSP C-compiler system, e.g. Texas
Instruments Code Composer Studio

* C-Code Solution is identical:

int data[4]={1,2,3,4};
int coeff[4]=({8,6,4,2};
int main(void)
t
int i;
int result =0;
for (i=0;i<4;i++)
result += data[i]*coeff[i];
printf("%i",result);
return O;

é DSP-Translation into machine code @

Address MCode Assembly Instruction

0x8000 FF69 SPM 0

0x8001 8D04 0000R MOVL XAR1 #data

0x8003 76C0 0000R MOVL XART7 #coeff

0x8005 5633 ZAPA

0x8006 F601 RPT #1

0x8007 564B 8781 ||DMAC ACC:P,*XAR1++,*XAR7++
0x8009 10AC ADDL ACC,P<<PM

0x800A 8D04 0000R MOVL XAR1,#y

0x800B 1E81 MOVL *XAR1,ACC

Example: Texas Instruments TMS320F2812
Space : 12 Code Memory ; 9 Data Memory
Execution Cycles : 10 @ 150MHz = 66 ns

DSP28 - Introduction 0-13

What is a Digital Signal Controller?

A Digital Signal Controller

Finally, a Digital Signal Controller (DSC) is a new type of microcontroller, where the processing
power is delivered by a DSP — a single chip device combining both the computing power of a
Digital Signal Processor and the embedded peripherals of a single chip computing system.

For advanced real time control systems with a high amount of mathematical calculations, a DSC
is the first choice.

Today there are only a few manufacturers offering DSC’s. Due to the advantages of DSC’s for
many projects, a number of silicon manufacturers are developing this type of controller.

This tutorial is based on the Texas Instruments TMS320F2812, a 32-bit fixed point Digital Signal
Controller (DSC).

Digital Signal Controller (DSC) @

5. Digital Signal Controller (DSC)

— recall: a Microcontroller(nC) is a single chip
Microcomputer with a Microprocessor(nP) as core unit.

— Now: a Digital Signal Controller(DSC) is a single chip
Microcomputer with a Digital Signal Processor(DSP) as
core unit.

— By combining the computing power of a DSP with memory
and peripherals in one single device we derive the most
effective solution for embedded real time control solutions
that require lots of math operations.

— DSC -Example: Texas Instruments C2000 family.

DSP28 - Introduction

DSP Competition

DSP Competition

There are only a few global players in the area of DSP and DSC. As you can see from the next
slide (for more details, go to: www.fwdconcepts.com), Texas Instruments is the absolute leader
in this area. A working knowledge of TI-DSP will help you to master your professional career.

DSP Market Share in 2003

DSP Market Share 2003

source : Forward Concepts, 2004

19%

10% 48,00%

&

10% @ Texas Instruments
H Agere Systems
O Motorola

13% . O Analog Devices
Total Revenue: 6,130 Million US-$ B Other

DSP28 - Introduction

Texas Instruments DSP — Portfolio

Texas Instruments DSP - Portfolio

Texas Instruments DSP/DSC - Portfolio

TMS320 - Family
Branches

High Performance
‘C’ Efficiency
DSP

Power Efficient
Performance
DSP

Efficient Integration
for Control
DSC

The DSP / DSC — portfolio of Texas instruments is split into three major device families, called
C2000, C5000 and C6000.

The C6000 branch is the most powerful series of DSP in computing power. There are floating —
point as well as fixed — point devices in this family. The application fields are image processing,
audio, multimedia server, base stations for wireless communication etc.

The C5000 family is focused on mobile systems with very efficient power consumption per
MIPS. Its main application area is cell phone technology.

The C2000 — group is dedicated to Digital Signal Control (DSC), as you have learned from the
first slides and is a very powerful solution for real time control applications.

The next slide summarizes the main application areas for the 3 Texas Instruments families of
DSP.

DSP28 - Introduction

Texas Instruments DSP — Portfolio

Lowest Cost

Control Systems
+ Motor Control

« Storage

+ Digital Ctrl Systems

@ Texas Instruments’ TMS320 family @

Different families and sub-families exist to support
different markets.

Efficiency

Best MIPS per
Watt / Dollar / Size
« Wireless phones
« Internet audio players

Digital still cameras

Modems

« Telephony

VolP

C6000

Performance &
Best Ease-of-Use

+ Multi Channel and
Multi Function App's

+ Comm Infrastructure

+ Wireless Base-stations

+ DSL

« Imaging

+ Multi-media Servers

+ Video

0-17

For the C2000 — branch we can distinguish between 2 groups of fixed-point DSC’s: a 16-bit

group, called TMS320C24x and a 32-bit group, called TMS320C28x.

& Roadmap of TMS320C2000™ DSC’s @

Control Performance

@ |n Silicon

High-Precision Uni-processor
Control for Applications from
Industrial Drives to Automotive

Software Com

patible

O Announced

Higher performance
Greater integration

F2808

00 MIP.
F2801 2806
00 MIP. 00 MIP.

DSP28 - Introduction

TMS320F28x Roadmap

TMS320F28x Roadmap

Broad C28x™ Application Base

Digital Power Supply

Provides control, sensing,
PFC, and other functions

Evaluating
Other Segments

eg. Musical
Instruments

&
N |

Optical Networking
Control of laser diode

Printer
Print head control
Paper path motor control

Non-traditional
Motor Control
™= Many new cool
| applications to
come

L

0-19

CPU

32bit 32bit 16bit | 16bit | 16bit | 16bit | 16bit | 16bit 16bit | 16bit | 16bit | 16bit | 16bit | 16bit | 16bit
MIPS 150 150 40 40 40 40 40 40 40 40 40 20 20 20 20
RAM (words) 18K 18K 25K 25K 1.0K 1.0K 1.0K 25K 1.5K 544 1.0K 544 544 544 544
ROM (words) 32K 16K 6K 8K 4K
Flash (words) 128K 64K 32K 32K 16K 8K 8K 8K 8K 16K
BootROM (words) 4K 4K 256 256 256 256 256
Event Manager
CAPIQEP ©® 616 6/4 6/4 32 32 10 6/4 6/4 32 10 32 32 42 312
PWM(CMP) 16 16 16 16 8 8 7 16 16 8 7 8 8 12 8
TIMER 7 7 4 4 2 2 2 4 4 2 2 2 2 3 2
ADC 12-bit 12:bit 10-bit | 10-bit | 10-bit | 10-bit | 10-bit 10bit | 10-bit | 10-bit | 10-bit | 10-bit | 10-bit | 10-bit | 10-bit
ofChan 16 16 16 16 8 8 5 16 16 8 5 8 8 16 8
Conv_time 200ns 200ns 500ns 500ns 500ns 500ns 500ns 375ns 375ns 425ns 500ns 900ns 900ns 6.1us 900ns
McBSP
EXMIF V4 v v

Watch Dog v

NMrARY%

v
v iviv

v
v
v
v

SPI v v | ViV
SCI (UART) 2 2 1 1 1 1 1 1 1 1 1 1 1
CAN v | v v
18core 1.8core 33 33 33 33 33 33 33 33 5.0 5.0 5.0 5.0
Volts (V) 3310 3310
#1/0 56 56 4 41 21 21 13 4 4 21 13 32 26 28 26
176LQFP 128LQFP 144LQPF| 100LQPF | 64LQFP |64PQFP 32LQFP | 100LQFP| 100LQFP | 64PQFP | 32LQFP |144LQFP| 64PQFP 132PQFP|64PQFP
Package 179u"BGA 68PLCC 68PLCC
0-20

DSP28 - Introduction

Architecture

Introduction

Since a Digital Signal Processor is capable of executing six basic operations in a single
instruction cycle, the architecture of the TMS320F2812 must reflect this feature in some way.
Recall this key point when we look into the details of this Digital Signal Controller (DSC). It will
help you to understand the ‘philosophy’ behind the device with its different hardware units.
Doing six basic math’s operations is no magic; we will find all the hardware modules that are
required to do so in this chapter.

Among other things, we will discuss the following parts of the architecture:

Internal bus structure

CPU

Hardware Multiplier, Arithmetic-Logic-Unit, Hardware-Shifter
Register Structure

Memory Map

Module 1 : Architecture @

Digital Signal Controller
TMS320F2812

Texas Instruments Incorporated
European Customer Training Center
University of Applied Sciences Zwickau (FH)

INSTRUMENTS

DSP28 - Architecture 1-1

Module Topics

Module Topics

Architecture 1-1
THIPOAUCTION ...ttt ettt e a ettt b e st e b e e et e e teenbeete e beesaesbeensenssensenseenes 1-1
MOAUIE TOPICS........ccoeeeeeeeeeieeiee ettt ettt et ettt b et e sae e it e e tt et e e ta e beesa e b e ensenssenseaseenns 1-2

TMS320F2812 BIOCK DIAZIAIMN ..ottt sttt sttt ettt et 1-3
TRE F2812 CPU ...ttt ettt et b e bt s e be bt eaesneeeeenes 1-4
F2812 Math UNIES.....cteiiiiiiiiiiieieieete ettt ettt ettt ettt ettt ebe e sae e sbe e 1-5
Data MEIMOTY ACCESS...ccuvirtieniiritertieteetenteettestteetesttebeetesteenteshtenteeatesbeenbesseenbesatesbeentesseensesntensesseenbesnes 1-6
INternal BuS SEIUCLUIEcc.eiriiiieiiciiee ettt ettt sttt sttt ete st ebesebesbeensesseensesseenbeenns 1-7
Atomic Arithmetic Logic Unit (ALU) ...cccoiiiiiiiiiiiiesieceieeie ettt st s 1-8
INSTIUCHION PIPELINE ...c.viiuiiiieiieiieie sttt sttt ste et st te b e e saebe et e seesbessbessaensensaensesseenseenes 1-9
IMEIMOTY IMAD ..ttt ettt ettt st e s et e bt e st e sttt e bt e sabeeseb e e bt e sabeenbeeeabeenaee 1-10
Code SeCUTTEY IMOAUICc.eeeieiieiieiiee ettt ettt e et aesae st e seeseeteeennens 1-11
INEETTUPE RESPOMISE ...ttt et ettt e b e st e sbt e et e st e e bt e enbeesbeesaneenbeeeane 1-12
OPETALING IMOAES ...ttt ettt ettt et s b et st e bt ea b e st e esbesheenbesebesbeestebeenbesbeentens 1-13
RESEE BEAVIOUT.......eiitiiiieiiiiieie sttt ettt ettt ettt et e e b e teesbesse e beesbesbeessesssesasseessenseensens 1-14
Summary of TMS320F2812 ATCRIECTUIE ...c..eeviiiiitieieiieie ettt 1-15

DSP28 - Architecture

Module Topics

TMS320F2812 Block Diagram

The TMS320F2812 Block Diagram can be divided into 4 functional blocks:
¢ Internal & External Bus System
e Central Processing Unit (CPU)
e Memory

e Peripherals

é C281x Block Diagram
Sectored

Program Bus : | |
i
E
Flash

A(18-0) Eriz
32 I I
-
D(15-0) A —
& 1

32:bit B 39%32 bit
Multiplier

e Register Bus :I'lmers .
1

) Data Bus GPIO
1

To be able to fetch two operands from memory into the central processing unit in a single clock
cycle, the F2812 is equipped with two independent bus systems — Program Bus and Data Bus.
This type of machine is called a “Harvard-Architecture”. Due to the ability of the F2812 to read
operands not only from data memory but also from program memory, Texas Instruments calls
this device a “modified Harvard-Architecture”. The “bypass”-arrow in the bottom left corner of
slide 1-2 indicates this additional feature.

On the left side of the slide you will notice two multiplexer blocks for data (D15-D0) and address
(A18-A0). It is an interface to connect external devices to the F2812. Please note that (1) the
width of the external data bus is only 16 bits and that (2), you can’t access the external program
bus data and the data bus data at the same time. Compared to a single cycle for internal access to
two 32-bit operands, it takes at least 4 cycles to do the same with external memory!

DSP28 - Architecture 1-3

Module Topics

The F2812 CPU

The F2812 —CPU is able to execute most of the instructions to perform register-to-register opera-
tions and a range of instructions that are commonly used by micro controllers, e.g. byte packing
and unpacking and bit manipulation in a single cycle. The architecture is also supported by pow-
erful addressing modes, which allow the compiler as well as the assembly programmer to gener-
ate compact code that almost corresponds one-to-one with the C code.

The F2812 is as efficient in DSP math tasks as it is in the system control tasks that are typically
handled by microcontroller devices. This efficiency removes the need for a second processor in

many systems.
C28x CPU @
& MCU/DSP balancing code

density & execution time.

& Supports 32-bit instructions
Program Bus for improved execution time;

& Supports 16-bit instructions
for improved code efficiency

& 32-bit fixed-point DSP
32 x 32 bit fixed-point MAC

Dual 16 x 16 single-cycle fixed-
point MAC (DMAC)

32-/64-bit saturation
64/32 and 32/32 modulus division

Fast interrupt service time

A 4 A

v
32x32 bit

*

*

Realtime Register Bus Timers
JTAG CPU

I Data Bus Single cycle read-modify-write
instructions

* & o o

*

Unique real-time debugging
capabilities

¢ Upward code compatibility

Three 32-bit timers can be used for general timing purposes or to generate hardware driven time
periods for real time operating systems. The Peripheral Interrupt Expansion Manager (PIE)
allows fast interrupt response to the various sources of external and internal signals and events.
The PIE-Manager covers individual interrupt vectors for all sources.

A 32 by 32 bit hardware multiplier and a 32-bit arithmetic logic unit (ALU) can be used in
parallel to execute a multiply and an add operation simultaneously. The auxiliary register bank is
equipped with its own arithmetic logic unit (ARAU) — also used in parallel to perform pointer
arithmetic.

The JTAG-interface is a very powerful tool to support real-time data exchange between the DSC
and a host during the debug phase of project development. It is possible to watch variables while
the code is running in real time, without any delay to the control code.

DSP28 - Architecture

Module Topics

F2812 Math Units

The 32 x 32-bit Multiply and Accumulate (MAC) capabilities of the F2812 and its internal 64-bit
processing capabilities, enable this DSC to efficiently handle higher numerical resolution prob-
lems that would otherwise demand a more expensive floating-point processor solution. Along
with this is the capability to perform two 16 x 16-bit multiply and accumulate instructions simul-
taneously or Dual MAC's (DMAC).

C28x Multiplier and ALU / Shifters @
¥ Program Bus _z
Data Bus 32 J o
16 XT (32) or T/TL 16/32 8116/32
d MULTIPLIER
h 32 32x32o0r
[shift RiL (0-16) | e [—
32 P (32)/{0::2PHIPL 8/16
32
32 | shift RIL (0-16) | >
%2 D
32
ACC (32)
AH (16) | AL (16)
AH.MSB |AH.LSB AL.MSB | AL.LSB
3 32
Shift RIL (0-16) |«
32
Data Bus
1-4

Multiplication uses the XT register to hold the first operand and multiply it by a second operand
that is loaded from memory. If XT is loaded from a data memory location and the second operand
is fetched from a program memory location, a single-cycle multiply operation can be performed.
The result of a multiplication is loaded into register P (product) or directly into the accumulator
(ACC). Recall, if you multiply 32 x 32 bit numbers, what is the size of the result? Answer: 64-bit.
The F2812 instruction set includes two groups of multiply operations to load both halves of the
result into P and ACC.

Three hardware shifters can be used in parallel to other hardware units of the CPU. Shifters are
usually used to scale intermediate numbers in a real time control loop or to multiply/divide by 2".

The arithmetic logic unit (ALU) is doing the ‘rest’ of the math’s. The first operand is always the
content of the Accumulator (ACC) or a part of it. The second operand for an operation is loaded
from data memory, from program memory, from the P register or directly from the multiply unit.

DSP28 - Architecture 1-5

Module Topics

Data Memory Access

Two basic methods are available to access data memory locations:
e Direct Addressing Mode

e Indirect Addressing Mode

C28x Pointer, DP and Memory @
Data Bus
! :: Program Bus
Y v 6LSB
XARO [DP (1) from IR
XAR1 P
XAR2
XAR3 | 32 122
XAR4 X
XAR5
XAR6
XAR7
Data Memory
XARnN — 32-bits
ARn — 16-bits -
v
1-5

Direct addressing mode generates the 22-bit address for a memory access from two sources — a
16-bit register “Data Page (DP)” for the highest 16 bits plus another 6 bits taken from the
instruction. Advantage: Once DP is set, we can access any location of the selected page, in any
order. Disadvantage: If the code needs to access another page, DP must be adjusted first.

Indirect addressing mode uses one of eight 32-bit XARn registers to hold the 32-bit address of the
operand. Advantage: With the help of the ARAU, pointer arithmetic is available in the same cycle
in which an access to a data memory location is made. Disadvantage: A random access to data
memory needs a new setup of the pointer register.

The auxiliary register arithmetic unit (ARAU) is able to perform pointer manipulations in the
same clock cycle as access is made to a data memory location. The options for the ARAU are:
post-increment, pre-decrement, index addition and subtraction, stack relative operation, circular
addressing and bit-reverse addressing with additional options.

DSP28 - Architecture

Module Topics

Internal Bus Structure

As with many DSP type devices, multiple busses are used to move data between memory loca-
tions, peripheral units and the CPU. The F2812 memory bus architecture contains:

e A program read bus (22 bit address line and 32 bit data line)
e A dataread bus (32 bit address line and 32 bit data line)
e A data write bus (32 bit address line and 32 bit data line)

é C28x Internal Bus Structure <\2>

Program Program Address Bus (22)
[_PC_ | L
Program-read Data Bus (32)
Decoder | A
|

Data-read Address Bus (32)

.
N

|
| Data-read Data Bus (32)

v vy

Registers

Execution Debug
[_ARAU__ Real-Time
E ALU R-M-W Emulation
| DP_|@X XT Atomic & JTAG
XARO P ALU Test ()
XKI)R? ACC Engine

lt | &]

Register Bus / Result Bus |

v v
[Data/Program-write Data Bus (32)

[Data-write Address Bus (32)

The 32-bit-wide data busses enable single cycle 32-bit operations. This multiple bus architecture,
known as a Harvard Bus Architecture enables the C28x to fetch an instruction, read a data value

and write a data value in a single cycle. All peripherals and memories are attached to the memory
bus and will prioritise memory accesses.

DSP28 - Architecture

Module Topics

Atomic Arithmetic Logic Unit (ALU)

C28x Atomic Read/Modify/Write @

¢ Atomic Instructions Benefits:

J FORD > Simpler programming
READ
_— > Smaller, faster code
[Registers ALU / MPY | | Mem
T\ > Uninterruptible (Atomic)
WRITE
STORE > More efficient compiler

Standard Load/Store Atomic Read/Modify/Write

DINT

MOV AL, *XAR2
AND AL, #1234h
MOV *XAR2,AL
EINT

AND *XAR2,#1234h

2 words / 1 cycles

6 words / 6 cycles

Atomics are small common instructions that are non-interruptible. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually exe-
cute several cycles faster than traditional coding.

1-8 DSP28 - Architecture

Module Topics

Instruction Pipeline

The F2812 uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of sequence.
This pipelining also enables the C28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the delay when jumping to
another address. Special conditional store operations further improve the system performance.

C28x Pipeline
X|[w 8-stage pipeline
R, | X|W
RiIR, | X | W
‘D[RR, | X
il B w _|E & G Access
Dy |D,| R iR, | X| W]l same address
EFZ Dl DZ RIERZ X W
F, |F,|D,:D,|R;|] “R,| X|W
F,|F, |D,|D,! R iR, | X |W
F1: Instruction Address
F2: Instruction Content Protected Pipeline
D1: Decode Instruction . . .
D2: Resolve Operand Addr > Order of results are as written in
R1: Operand Address source code
R2: Get Operand > P, d not bout
X: CPU doing “real” work > rogr_’amr_ner need not worry abou
W: store content to memory the pipeline
1-8

Each instruction goes through 8 stages until final completion. Once the pipeline is filled with
instructions, one instruction is executed per clock cycle. For a 150MHz device, this equates to
6.67ns per instruction. The stages are:

F1:

F2:

D1:

D2:

R1:

R2:

Generate Instruction Address at program bus address lines.

Read the instruction from program bus data lines.

Decode Instruction

Calculate Address information for operand(s) of the instruction
Load operand(s) address to data and/or program bus address lines
Read Operand

Execute the instruction

Write back result to data memory

DSP28 - Architecture

Module Topics

Memory Map

The memory space on the F2812 is divided into program and data space. There are several differ-
ent types of memory available that can be used as both program or data space. They include flash
memory, single access RAM (SARAM), expanded SARAM, and Boot ROM which is factory
programmed with boot software routines or standard tables used in math related algorithms.
Memory space width is always 16 bit.

TMS320F2812 Memory Map
Data | Program Data | Program
0x00 0000} MO SARAM (1K)
0x00 0400| 41 SARAM (1K)
0x00 0800 [PF 0 (2K) | reserved reserved
0x00 0D00| pjE vector
'8252) reserved
0x00 1000 reserved S IRECIEL T E 0x00 2000
0x00 6000 | PF 2 (4K) [reserved XINT Zone 1 (8K) | 0x00 4000
0x00 7000 PF 1 (4K) | reserved
0x00 8000 LO SARAM (4K) reserved
0x00 9000
L1 SARAM (4K) 0x08 0000
0x00 A00O reserved XINT Zone 2 (0.5M)
0x3D 7800 OTP (1K) XINT Zone 6 (0.5M) | 0x10 0000
0x3D 7C00 reserved 0x18 0000
0x3D 8000 FLASH (128K) ecerved
| 128-Bit Password _
0x3F 8000| Ho SARAM (8K)
0x3F A000 reserved
0x3F F000| Boot ROM (4K) XINT Zone 7 (16K) 0x3F €000
0x3F FFCO[BROM vector (32) | |XINT Vector-RAM (32) | °SM:LO, L1
MP/MC=0 ENPIE=0 MP/MC=1 ENPIE=0 OTP, FLASH
1-9

The F2812 can access memory both on and off the chip. The F2812 uses 32-bit data addresses
and 22-bit program addresses. This allows for a total address reach of 4G words (1 word = 16
bits) in data space and 4M words in program space. Memory blocks on all F2812 designs are uni-
formly mapped to both program and data space.

The memory map above shows the different blocks of memory available to the program and data
space.

The non-volatile internal memory consists of a group of FLASH-memory sections, a boot-ROM
for up to six reset-startup options and a one-time-programmable (OTP) area. FLASH and OTP
are usually used to store control code for the application and/or data that must be present at reset.
To load information into FLASH and OTP one need to use a dedicated download program, that is
also part of the Texas Instruments Code Composer Studio integrated design environment.

Volatile Memory is split into 5 areas (MO, M1, LO, L1 and HO) that can be used both as code
memory and data memory.

PFO, PF1 and PF2 are Peripheral Frames that cover control and status registers of all peripheral
units (“Memory Mapped Registers”).

DSP28 - Architecture

Module Topics

Code Security Module

There is an internal security module available in all F28x family members. It is based on a 128-bit
password that is written by the software developer into the last 8 memory spaces of the internal
FLASH (0x3F 7FF8 to 0x3F 7FFF). Once a pattern is written into this area, all further accesses to
any of the memory areas covered by this Code Security Module (CSM) are denied, as long as the
user does not write an identical pattern into password registers of frame PFO.

NOTE: If you write any pattern into the password area by accident, there is no way to get access
to this device any more! So please be careful and do not upset your laboratory technician!

Code Security Module @

¢ Prevents reverse engineering and
protects valuable intellectual property

0x00 8000) o SARAM (4K)

0x009000| | 1 SARAM (4K)
0x00 A000 reserved
0x3D 7800 OTP (1K)
0x3D 7C00 reserved
0x3D 8000| FLASH (128K)

L 128-Bit Password |

128-bit user defined password is stored in Flash
128-bits = 2128 = 3.4 x 1038 possible passwords

¢ Totry 1 password every 2 cgcles at 150 MHz, it
would take at least 1.4 x 102° years to try all
possible combinations!

* o

DSP28 - Architecture

Module Topics

Interrupt Response

The fast interrupt response, with automatic “context” save of critical registers, resulting in a de-
vice that is capable of servicing many asynchronous events with minimal latency. Here “context”
means all the registers you need to save so that you can go away and carry out some other proc-
ess, then come back to exactly where you left. F2812 devices implement a zero cycle penalty to
save and restore the 14 registers during an interrupt. This feature helps to reduce the interrupt ser-
vice routine overheads.

é C28x Fast Interrupt Response Manager @

> 96 dedicated PIE

vectors
> No software decision [
making required PIE module 28x CPU Interrupt logic
> Direct access to RAM intF:rrrL?Sts
vectors INT1 to
INT12 28x

» Auto flags update
> Concurrent auto
context save

I IFR || IER [[INTM [CPU
96 .
12 interrupts

PIE
Register

Peripheral Interrupts 12x8 = 96

Map
Auto Context Save
T STO
AH AL ||
PH PL
AR1 (L) | ARO (L)
DP ST1
DBSTAT| IER
PC(msw)| PC(Isw)

We will look in detail into the F2812’s interrupt system in Module 4 of this tutorial. The
Peripheral Interrupt Expansion (PIE) — Unit allows the user to specify individual interrupt service
routines for up to 96 internal and external interrupt events. All possible 96 interrupt sources share
14 maskable interrupt lines (INT1 to INT14), 12 of them are controlled by the PIE — module.

The auto context save loads 14 important CPU registers, shown at the slide above, into a stack
memory, which is pointed to by a stack pointer (SP) register. The stack is part of the data
memory and must reside in the lower 64K words of data memory.

DSP28 - Architecture

Module Topics

Operating Modes

The F2812 is one of several members of the fixed-point generations of digital signal processors
(DSP’s) in the TMS320 family. The F2812 is source-code and object-code compatible with the
C27x. In addition, the F2812 is source code compatible with the 24x/240x DSP and previously
written code can be reassembled to run on a F2812 device. This allows for migration of existing
code onto the F2812.

C28x / C24x Modes @
Mode Type Mode Bits Compiler
OBJMODE AMODE Option
C24x Mode 1 1 -v28 -m20
C28x Mode 1 0 -v28
Test Mode (default) 0 0 -v27
Reserved 0 1

» C24x source-compatible mode:
> Allows you to run C24x source code which has been reassembled
using the C28x code generation tools (need new vectors)
> C28x mode:
» Can take advantage of all the C28x native features

Actually the F28x silicon is able to operate in three different modes:

e (C28x—Mode - takes advantage of all 32-bit features of the device
e (C24x—Mode - source code compatibility to the 16-bit family members
e (C27x—Mode - intermediate operating mode, test purposes only.

After RESET, the device behaves like a C27x device. To take advantage of the full computing
power of a C28x device, the control flag “OBJMODE” must be set to 1. If you are using a C-
compiler generated program, the start function of the C environment takes care of setting
OBJMODE to 1. But, if you decide to develop an assembler language based solution, your first
task after reset is to bring the device into C28x — mode manually.

DSP28 - Architecture 1-13

Module Topics

Reset Behaviour

After a valid RESET-signal is applied to the F2812, the following sequence depends on some
external pins on this DSC.

If the pin “XMPNMC” is connected to ‘1°, the F2812 tries to load the next instruction from
address 0x3F FFCO from an external memory at this position. This is the “Microprocessor”-
Mode, loading instructions from external code memory.

If the pin “XMPNMC” is connected to ‘0°, the F2812 jumps directly into the internal boot code
memory at address Ox3F FFC0. We call this mode “Microcontroller”-Mode. The code in this
memory location has been developed by TI to be able to distinguish between 6 different start
options for the F2812. The actual option is selected by the status of 4 more pins during this phase.
For our tutorial we use the volatile memory HO as code memory and its first address as the
execution entry point.

Reset — Bootloader @

Reset
OBJMODE=0 AMODE=0
ENPIE=0 VMAP=1

XMPNMC=0 Bootloader sets
(microcomputer mode) OBJMODE =1
AMODE =0
Reset vector fetched -
» from boot ROM Boot determined by
state of GPIO pins
0x3F FFCO
Execution
Entry Point
Note: HO SARAM

Details of the various boot options will be
discussed in the Reset and Interrupts module

DSP28 - Architecture

Module Topics

Summary of TMS320F2812 Architecture

Summary

L K K IR 2B JBE R JER N 2B SN B 4

High performance 32-bit DSP

32 x 32 bit or dual 16 x 16 bit MAC
Atomic read-modify-write instructions
8-stage fully protected pipeline
Fast interrupt response manager
128Kw on-chip flash memory
Code security module (CSM)

Two event managers

12-bit ADC module

56 shared GPIO pins

Watchdog timer

Communications peripherals

&

DSP28 - Architecture

Module Topics

This page was intentionally left blank.

1-16 DSP28 - Architecture

Program Development Tools

Introduction

The objective of this module is to understand the basic functions of the Code Composer Studio®
Integrated Design Environment for the C2000 - Family of Texas Instruments Digital Signal
Processors. This involves understanding the basic structure of a project in C and Assembler -
coded source files, along with the basic operation of the C-Compiler, Assembler and Linker

Code Composer Studio IDE

Code Composer Studio is the environment for project development and for all tools
needed to build an application for the C2000-Family.

CPU
Window

é Code Composer Studio® IDE @

Project Manager: N
>Source & object files
>File dependencies

»>Compiler, Assembler
& Linker build options

Full C/C++ & Assembly
Debugging:

>»C & ASM Source i
>Mixed mode
>Disassembly (patch)

»Set Break Points =] =
»>Set probe Points ot e |
SETEER, s el) 3 =i
Productive Editor: . e eyt
»>Structure Expansion | Status ! ‘ Watch window ‘ Graph -
window window Memory window

DSP28 - Program Development Tools

Module Topics

Module Topics

Program Development Tools 2-1
THIPOAUCTION ...ttt ettt e a ettt b e st e b e e et e e teenbeete e beesaesbeensenssensenseenes 2-1
Code Composer SUAIO IDEcoccooiiiiiiiiiieeieee ettt ettt ettt be et sse et sae s sne e 2-1
MOAUIE TOPICS........ccoeeeeeeeeiieiee ettt ettt et ettt e b et e be et e e te e b bt e seete e b e enseeseenseareenes 2-2
THE SOFIWATE FLOWc.eceiiiee ettt ettt ettt st e st e b e e st et e e nt e bt entesaeenseeneenseensenes 2-3
Code CompPOSEr SHUAIO = BASICSccuveeeeeeiiiiieiieieeeie ettt ettt ettt sttt ettt e b e esaenbeenaesseenseeree e 2-4
LAD HAVAWATE SEUUP ...ttt ettt ettt be ettt e b e este s e enteeseenteeneenes 2-7
Code Composer Studio — Step By SEpcccccociviiiiiiiiiiiiiiiie i 2-9

CTEALE 8 PIOJECT . eveeureerrerrieiertteteetesteetesseetesteesseassesseessesseessesssessesssansaassesseessesseessesssessesssensesssesseensens 2-10
SEtUP BUILA OPHONS. c..eentieiieiieiiiiiieie ettt ettt ettt et st e st et et eate bt enbesbeenbesssesbesnsesseennenee 2-12
Linker Command File..........coioiiiiiiiiiiiie ettt sttt 2-13
Download code Int0 DSPc.oouiiiiiiiieee ettt 2-15
LD 1: DEGINNET 'S PFOJECL.........oooieeeeiieeeeeeeee ettt ettt ettt ettt ettt sbesatensesaeeneenseensennean 2-23
ODJECLIVE ..ttt ettt ettt b et e h e b et e s bt et s bt e bt e at e bt et e sb e e bt sateshe et esbe et e beeabenbeente s 2-23
PLOCEAUIE ...ttt et st et b bt e bttt a e s be et e e e e e beneennene 2-23
Open Files, Create Project FIle.......cocoiiiiiiiiiiiieieeeeeeeeeeetee ettt s 2-23

DSP28 - Program Development Tools

The Software Flow

The Software Flow

The following slide illustrates the software design flow within Code Composer Studio. The basic
steps are: edit, compile and link, which are combined into “build”, then debug. If you are familiar
with other Integrated Design Environments for the PC such as Microsoft’s Visual Studio, you
will easily recognize the typical steps used in a project design. If not, you will have to spend a
little more time to practice with the basic tools shown on this slide. The major difference to a PC
design toolbox is shown on the right-hand side — the connections to real-time hardware!

Code Composer Studio® IDE

SIM

&

eZdsp™

Build
Compile Ink.cmd |1 | probe In
| [
Asm [~ Link [~ Debug
DSP/BIOS l l
Edit [confi DSP/BIOS| |Probe Out
ool | [Libraries | | Graphs
Profiling

EVM

Third
Party

- DSP/BIOS

¢ Code Composer Studio includes:
+ Integrated Edit/Debug GUI
+ Code Generation Tools

XDS

DSP
Board

You can use Code Composer Studio with a Simulator (running on the Host — PC) or you can
connect a real DSP system and test the software on a real “target”. For this tutorial, we will rely
on the eZdsp (TMS320F2812eZdsp — Spectrum Digital Inc.) as our “target” and some additional
hardware. Here the word “target” means the physical processor we are using, in this case a DSP.

The next slides will show you some basic features of Code Composer Studio and the hardware

setup for lab exercises that follow.

DSP28 - Program Development Tools

Code Composer Studio -

Basics

Code Composer Studio - Basics

Code Composer Studio® IDE @

{3 /sdgo28x_wrtdw/CPU_1 - 28ux - Code Composer Studio

File Edit Wew Project Debug Profiler GEL Option Tools DSP/EIOS Window Help

B L2

pi=itE it [B2

BEH| % RB[2
[sempe.oi ~|[Debug =l & i [0 #| ™ R
Pl | o EHEEHEL |
0| [T Fies
o -0 GEL files <
w | 2 23 Projects
i = 2 example.pit (Debug)
I (] Dependent Projects and debug
o 1423 DSPBIOS Corfig
= example.cdb
= £ Generated Files
=y examplecfg.s28 *
“ - |#] examplecfy_c.c
= (] Include
V3 =423 Libraries ¢
= ! res2a00_pol. b
= =4 Source
[# ade.c
— CodeStartBranch. asm <*
Defaultlsr.c
Ew.c
GlobalvariableDefs ¢
= o *
in.
PieCtrl.c
PigVect.c
SysChrl.c ‘

Integrates: edit, code generation,

Single-click access using buttons

Powerful graphing/profiling tools

Automated tasks using GEL scripts
Built-in access to BIOS functions

Support Tl or 3 party plug-ins

i /sdgo26x_wrtds/CPU_1 - 28xx - Code Con|

The CCS Project @

File Edit Wiew Project Debug Profiler GEL
N = R R R
| example.pit ~l[Detug
B BEHEL
| [Fris
o +-[C1 GEL Files
m Ea Prajects
O - example.pjt {Debug)
™ (1) Dependent Projects
o B3 DSPIBIOS Config
-8 example.cdb
= F1-423 Generated Files
-y examplecfg.s25
“ examplecfg_c.c
a - Include
V3 =43 Libraries
z rts2600_ml.lio
2 =123 Source
- |4 adec
e CodestartBranch.asm
DefaultIsr .o
Ew.c
~[2] GlobalvarisbleDefs.c
&1

Project (.pjt) files contain:
¢ Source files (by reference)
+ Source (C, assembly)
+ Libraries
+ DSP/BIOS configuration
» Linker command files
¢ Project settings:

+ Build Options (compiler and
assembler)

+ Build configurations
+ DSP/BIOS
+ Linker

DSP28 - Program Development Tools

Code Composer Studio - Basics

Build Options GUI - Compiler

tdx /CPU_1 - 28k - Code Comy

Project Debug Profiler GEL

Mew, .,

Open...

Add Files ta Project...
Save

Close

Use External Makefile, ..
Export to Makefile. ..

Source Control »

Compile File
Eiild
Rebuild al
Stop Build
Build Clean

Configurations. ..
Build Options. ..
File Specific Options. ..

Project Dependencies...

Show Project Dependencies
Show File Dependencies

Scan All File Dependencies
Recent Project Files >

Build Dptions for example.pjt E 2 x|

General Campiler | Linker | Link. Drdell

-0 -k -q -25 -al -as frChexampledDebug” - Ninclude” -d"_DEBUG" d
-d"LARGE_MODEL" -ml -«28
Categary: ~Basic
Target Wersion: C28mx [-+v28) 'I

Advanced

Feedback Generate Debug Info: | Full Symbalic Debua (-] =

Files -

assembly Opt Level Maone %

Parser Program Level Opt: |Mone =
Preprocessor I J
Diagnostics

¢ GUI has 8 pages of categories for code
generation tools

¢ Controls many aspects of the build process,
such as:

+ Optimization level
« Target device
+ Compiler/assembly/link options

Build Options for example.pjt

Gemerall Compiler Linker |L\nk Drderl

- -c -m" ADebughexample map'' -0 \Debughexample.out' -« d
Irts2800_ml lib"
. : | & GUI has 2 categories
ategory: [Basic A .
% . ¥ Suppress Banner [-q) fo r I I n kl ng
veance [Eshaustively Read Libraries () H = H
e o ¢ Specifies various link

Output Filename [-o]. I D ebughexample. out

options

Map Filename [-m]:
Autoinit Model
Heap Size [-heap):
Stack Size [-stack):
Fill ‘alue [-f):

\Debughexample.map
' .

Run-time Autainitislization [-¢]

“\Debug\” indicates
on subfolder level
below project (.pjt)
location

Code Entry Point [-e]: I

Litraty Search Path ()

Include Libraries [-]

[rt=2800_rl b

DSP28 - Program Development Tools

Code Composer Studio - Basics

Default Build Configurations 2

¥ /sdgo28x_wrtdx/CPU_1 - 28xx - Code Composer Studiof

File Edit Yiew Project Debug Profiler GEL Option Tools * For new projeCts, CCS aUtomatica"y

BEW| BBy > [creates two build configurations:
Iekamnla.p\t leabug j|@ * Debug (Unoptimized)
AT T o — + Release (optimized)

e . ¢ Use the drop-down menu to quickly
U |6 projenss select the build configuration

{'il B ﬁ example.pjt {(Debu

. Add/Remove your own custom

Froiec Configus oS 2 build configurations using Project
Configurations of example: pit Brae Conflg urations
EJ- example pi . Edit a configuration:
[| igur
‘- Release T 1. Set it active
v 2. Modify build options
Help 3. Save project

2-6 DSP28 - Program Development Tools

Lab Hardware Setup

Lab Hardware Setup

The following slides show you the hardware target that is used during our lab exercises in the
following chapters. The core is the TMS320F2812 32-bit DSP on board of Spectrum Digital’s
eZdspF2812. All the internal peripherals are available through connectors. The on board JTAG —
emulator connected to the PC using a parallel printer cable.

5 eZdsp™ F2812 Hardware
6 JTAG Interface (P1) EXPANSION SRAM @

Data & Address (P2) 64K x 16

Parallel Port/
JTAG
Controller
Interface (P3)

N

Power / TMS320F2812 - DSP
ANALOG

Connector (P6)
+5V Interface (P5/P9)

1/0 Interface (P4/P8/P7)
2-9

s Connecting the eZdsp™ to your PC @

25 pin male

D-sub connector
(Plugs into parallel
port on PC)

—
25 Conductor Cable
—

eZdsp™ F2812

E- & Power
/ Supply

25 pin female To wall outlet
D-sub connector

25 pin male
D-sub connector

Code Composer Studio — eZdsp™ F2812 Configuration

DSP28 - Program Development Tools 2-7

Lab Hardware Setup

To be able to practice with all the peripheral units of the DSP and some ‘real’ process hardware,
we’ve added an adapter board, which fits underneath the eZdspF2812. The Zwickau Adapter
Board provides:

8 LED’s for digital output (GPIO B7...B0)

8 switches (GPIO B15...B8) and 2 push buttons (GPIO D1, D6) for digital input
2 potentiometers (ADCINAO, ADCINBO) for analog input

1 loudspeaker for analogue output via PWM - Digisound F/PWC04A

1 dual SPI Digital to Analogue Converter (DAC) - Texas Instruments TLV5617A
1 SPI EEPROM 1024 x 8 Bit - ST Microelectronics M95080

1 CAN Transceiver - Texas Instruments SN 65HVD230 (high speed)

1 CAN Transceiver - Philips TJA 1054 (low speed)

1 I’C — Temperature Sensor Dallas Semiconductor DS1621

1 SCI-A RS 232 Transceiver — Texas Instruments MAX232D

2 dual OpAmp’s Texas Instruments TLV 2462 — analogue inputs

é Lab Experiments - the Peripheral Adapter @

1 SPI EEPROM (M95080) [

1 CAN - Transceiver (SN 65HVD230)
1 CAN - Transceiver (TJA 1054)

| 1 Loudspeaker

1 SPI DAC (TLV 5617)

112C Sensor (DS 1621)

2 x push- button

2 potentiometers 1 SCI - Transceiver (MAX 232)

eZdsp™ F2812 and the University Zwickau adapter board

2-1

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Code Composer Studio — Step by Step

Now let’s start to look a little closer at the most essential parts of Code Composer Studio that we
need to develop our first project. Once you or your instructor has installed the tools and the
correct driver (Setup CCS2000), you can start Code Composer Studio by simply clicking on its
desktop icon. If you get an error message, check the power supply of the target board. If
everything goes as expected, you should see a screen, similar to this:

g ‘ 1. The Startup - Window

3 03 PP Dmlabor
B L&

peclator \CPI_1 - Mixx - Code Composm Shudia
Yo Bomct Debug Pofler GIL Opfion Jook DSPANDS lgindow biel :
EEEE I - [LA == e T
I] T C KRR
BFew ofEHEDHEL

W [T

||t

ﬂ a

[

F.

v

&

i Project-

= tree

o Working
&
i Area
.- L

[CPUHALTED I | YT [l

&

The step-by-step approach for Lab1l will show how to do the following:

Open Code Composer Studio

Create a F28x — Project, based on C

Compile, Link, Download and Debug this test program
Watch Variables

Real time run versus single-step test

Use Breakpoints and Probe Points

Look into essential parts of the DSP during Debug

Before we start to go into the procedure for Labl, let’s discuss the steps using some additional

slides:

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Create a project

2. Create a F28x - project @

« Project = New

give your project a name : “Labl”, select a target and a suitable
location of your hard disk:

Fioject Hame: [Lab1
Locston: [chzsiziabts L
Froigct Type: [Exacutable [out) =l
Taget [Tz z0c2Ee =1
< Zuiick [Fetigstelen | abbrechen | Hife

Note : the project file (“Labl.pjt) is a simple text file (ASCII) and stores
all set-ups and options of the project. This is very useful for a version
management.

2-14

The first task is to create a project. This is quite similar to most of today’s design environments
with one exception: we have to define the correct target, in our case “TMS320C28xx”. The
project itself generates a subdirectory with the same name as the project. Ask your instructor for
the correct location to store your project.

2. Create a F28x - project (cont.) @

Write your C-Source Code :
= File »New = Source File

unsigned int k;
void main (void)
{
unsigned int i;
while(1)
{
for (i=0;i<100;i++)
k=i*i;
}
}

=>File »Save as : “labl.c”
(‘use the same path as for the project, e.g. C:\C28x\Lab1)
2-15

2-10 DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Next, write the source code for your first application. The program from the slide above is one of
the simplest tasks for a processor. It consists of an endless loop, which counts variable i from 0 to
99, calculates the current product of i * i and stores it temporarily in k. It seems to be an affront to
bother a sophisticated Digital Signal Processor with such a simple task! Anyway, we want to gain
hands-on experience of this DSP and our simple program is an easy way for us to evaluate the
basic commands of Code Composer Studio.

Your screen should now look like this:

g' 2. Create a F28x - project (cont.) @

2 y Camparer Sludio
iewr Gpton Looks DEPAIDS Wrdm Hew

L == | N |0 0 - S MR e = 2 e
[toic Z[oeten = | €5 B | R
EE:EEECEY
W [
| e Qe
W T‘Qwﬂ,.pm.h.ﬂ
-
w 3 et
2 Inchude
k1 l itranss
E
B3
=
=]
[|
2]
£
[y RaLTED. I I

Your source code file is now stored on the PC’s hard disk but it is not yet part of the project. Why
does Code Composer Studio not add this file to our project automatically? Answer: If this were
an automatic procedure, then all the files that we touch during the design phase of the project
would be added to the project, whether we wanted or not. Imagine you open another code file,
just to look for a portion of code that you used in the past; this file would become part of your
project.

To add a file to your project, you will have to use an explicit procedure. This is not only valid for
source code files, but also for all other files that we will need to generate the DSP’s machine
code. The following slide explains the next steps for the lab exercise:

DSP28 - Program Development Tools 2-11

Code Composer Studio — Step by Step

Setup Build Options

: 4 Add your code file to the project :

2. Create a F28x - project (cont.) @

=> Project = Add files to project : “lab1.c”
¢ Compile your source code :

=> Project = Compile File
« active window will be compiled
« in the event of syntax errors : modify your source code as needed

¢ Add the C-runtime-library to your project :

2 Project = Build Options = Linker = Library Search Path :
c:\ti\c2000\cgtools\lib

> = Project = Build Options = Linker = Include Libraries :
rts2800_ml.lib

¢ Add the stack - size of 0x400
= Project = Build Options = Linker = Stack Size : 0x400

When you’ve done everything correctly, the build options window should look like this:

2. Create a F28x - project (cont.) @

Build Options for Lab1.pjt e

General | Compier Linker | Link Order |

Categor: -~ Basi

Basic ¥ Suppress Banner [-q)

Advanced [¥ Erhaustively Read Libraries [+]

Output Module: lﬁ
OulptFilename (o], [\Debugilablot |
Map Filsname [m}: | '\Debugtlsblmsp |
Autoinit Model [Furvtine Autointisization (] =]
HeapSie (hespl |

Stack Size (stack) [0sb)

Fill s (4}

Code Entry Paint [-2) l—
Library Search Path (k[ie200leglockti. |
Include Libraries (4 [ts2800_mii6

0K | dbbrechen | Hile |

Close the build-window by ‘OK’

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Linker Command File

Now we have to control the “Linker”. The “Linker” puts together the various building blocks we
need for a system. This is done with the help of a so-called “Linker Command File”. Essentially,
this file is used to connect physical parts of the DSP’s memory with logical sections created by
our software. We will discuss this linker procedure later in detail. For now, we will use a
predefined Linker Command File “F2812 EzDSP RAM Ink.cmd”. This file has been designed
by Texas Instruments and is part of the Code Composer Studio Software package.

2. Create a F28x - project (cont.) @

& Add the Linker - Command File to your project:
= Project = Add Files to Project & .\cmd\F2812_EzDSP_RAM_Ink.cmd

¢ Finally : Build the code (compile / assemble / link) :
= Project = Build

o (8 e oot oh Pl AL Gim Lok DGPARDS i B
ol | o v

Ch I M s Y A

oo oG- TRk Y
B opmOdsEd
BU[E 5.

AB00 wEwId B¥B

DSP28 - Program Development Tools 2-13

Code Composer Studio — Step by Step

Placing Sections in Memory

0x00 0000

0x00 0400

0x3D 8000

Memor -
Y Sections
MOSARAM _
o0 T .ebss
M1SARAM -
(0x400) ~—-e
=1 .stack
FLASH = f-----="7"7"7"] .cinit
(0x20000) -
ST text

&

-20

Linking

o Memory description

o How to place s/w into h/w

name.cmd

.obj —| Linker .out

.map

2-

21

The procedure of linking connects one or more object files (*.obj) into an output file (*.out). This
output file contains not only the absolute machine code for the DSP, but also information used to
debug, to flash the DSP and for more JTAG based tasks. Do NEVER take the length of this
output file as the length of your code! To extract the usage of resources we always use the MAP

file (*.map).

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Linker Command File 2
MEMORY
{
PAGE O0: /* Program Space */
FLASH: org = 0x3D8000, 1len = 0x20000
PAGE 1: /* Data Space */
MOSARAM: org = 0x000000, 1len = 0x400
M1SARAM: org = 0x000400, 1len = 0x400
}
SECTIONS
{
.text: > FLASH PAGE 0
.ebss: > MOSARAM PAGE 1
.cinit: > FLASH PAGE 0
.stack: > M1SARAM PAGE 1

Download code into DSP

Now it is time to download the code into the F2812. We have two options: manual or automatic

download after a successful build.

Download Code into DSP

¢ Load the binary code into the DSP :
=> File = Load Program = Debug\Lab1.out

Note: a new binary code can be downloaded automatically
into the target. This is done by = Option = Customize
=» Program Load Options =»Load Program after Build.
This setup will be stored for permanently.

¢ Run the program until label “main”
= Debug = Go main

DSP28 - Program Development Tools 2-15

Code Composer Studio — Step by Step

After =2 Debug = Go main, a yellow arrow shows the current position of the Program Counter
(PC). This register points always the next instruction to be executed.

B 7 PP Emulates ACPL_T - Pixx - Code Composes Studio @
Die [& Yiew [Dioject Debug Profler Took DEMBIDS ‘window Help
=2 I | — R AR T < S 5N
[o =] 8 [
Fle spEDEEd
0| [F=
s j:n"e::: unsigned int ki
@ i Lo pit [Dcbug] void main (veid)
D B berraoscave. & ' 1
5 by e 1T =~ :
o 2 Gt Lnsigean yellow arrow :
:: jt‘:: rm—|y\-n; i€100; i) current PC
& A ﬁn:i;m_u cnd) ¥ =lol=]
- b . ARe
: i -
z e
IFS09D 5264 CMPE AL.W100
| [(FANSE ATFD SR ”"”"LDI
") Fie View [ABuokmarks]
Labl.pjt - Debug =
Euild Complota,
0 Errors. U Warnings. O Remarks,
AT IED, oua =
[CPUHALTED. I ot Wik, poes F1 Medcan [WOH[[
2-24

When we start to test our first program, there is no hardware activity to be seen. Why not? Well,
our first program does not use any peripheral units of the DSP. Go through the steps, shown on
the next slide.

3. Debug your code ! @

‘& Perform a real time run :
= Debug = Run (F5)

Note 1: the bottom left corner will be marked as : “DSP Running”.
You’ll see no activity on the peripherals of the Adapter
Board because our first example program does not use
any of them!

Note 2: the yellow arrow is no longer visible — that’s another sign
of a real time run.

¢ Stop the real time run :
= Debug = Halt
¢ Reset the DSP :
= Debug = Reset CPU
= Debug 2 Restart
¢ Run again to main :
= Debug = Go Main

2-16 DSP28 - Program Development Tools

Code Composer Studio — Step by Step

To watch the program’s variables, we can use a dedicated window called the “Watch Window”.
This is probably the most used window during the test phase of a software project.

4. Watch your variables

+0Open the Watch Window :
= View = Watch Window

« The variable ‘i’ is already visible inside the “Watch
Locals”-window .

« To see also the global ‘k’ we need to add this variable
manually. This can be done inside window ‘Watch 1’. In the
column ‘name’ we just enter ‘k’ and in the second line ‘i’.

« Note : another convenient way is to mark the variables
inside the source code with the right mouse button and
then select “Add to watch window”

+ note : with the column ‘radix’ one can
adjust the data format between decimal,
hexadecimal, binary etc.

&

-26

4. Watch your variables

S Fe| R

B /F2012 PP Emulates FCPU_) - 2 - Code Composar §ludio

Ele Edt Vew Proiect [ebug Profier GEL Option Toch DEP/BIDS Window Hel

S D i e e S

[Lat.pe =|[oetug

¥) GEL Hes

=3 Poojects
= g Labil e [Debug)
1 Dependert Prossc!
{0 DSP/DIDS Config
1 et Fis
1 Inchuse
0 Libearies

Ch- e

¥) Seamen
(4] EDEr P k.

ason wew

e

& OBHEREd

unsigned int k:
void main (vaid)

unsigned int fl:
whila(1)

for(1=0:; 14100: i++)
koedow i

L EE + X AN o

uild Complete.

AIETETE R woa

"C ¢ ~TI~C2000~CETO0LSBIN~c1 2000

"CTIC2000MCOTOOLSBINc1 2000

r=, O Warnings, 0 Remarks.

Labl.pit - Debug
-4 -4 -fr"C: 28127

Lab 1/ Dab

#"Debug.lktf”

[ERUHALTED

Howerm [aim [Typm [Re]
L 193% unigned it | unsgred
' I | oo el | e
G I I

I

et Lo o maen 1 |
AnGCats[NOM[[

-27

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Another useful part of a debug session is the abil

ity to debug the code in portions and to run the

program for a few instructions. This can be done using a group of singe-step commands:

5. Perform a Single Step Debug

= Debug = Step Into (orF8)

through the code !

¢ There are more debug - com
slide

¢ Perform a single step trough the program :

¢ Watch the current PC (yellow arrow) and the numerical
values of i and k in Watch Window while you single step

&

mands available, see next

-28

5. Perform a Single Step Debug

F 72002 PP Cowilatbor/TPU_T - 2 - Code Compores Shudio

-4~ N
JLatt =][Oets
Ble | 058

EE ARRAE 0

1

S Source Step Over
= Fropcts = 4 int k;:

o it [Debusl ¢ : =
2 " Step Out
m . j:msp_ - % 1-IJ: \'iElU.' *+)
55‘ i) })
& ssembly Single Step
E]
O
2 2T <

L o Assembly Step Over
e <&y Run to e e e
=7 Halt Run cursor. s : ——
Butllgzx 0 Roms
I 3 0 O el B drwan |
[EFUHALTED I Fou Help, press F1 L T

2-29

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

When you’d like to run the code through a portion of your program that you have tested before, a
Breakpoint is very useful. After the ‘run’ command, the JTAG debugger stops automatically
when it hits a line that is marked with a breakpoint.

6. Add a breakpoint

= Debug = Rest

= Debug & Run

e Set a breakpoint:

art

(or F5)

& Perform a real time run:

« DSP stops when reaching an active breakpoint
« repeat ‘Run’ and watch your variables
« remove the breakpoint (Toggle again) when you’re done.

&

. Place the Cursorin Lab1.conline: k=i*i;
. Click right mouse and select ‘Toggle Breakpoint’
. the line is marked with a red dot (= active breakpoint)

Note : most Code Composer Studio Commands are also available through
buttons or trough Command -Keys (see manual, or help)

¢ Reset the Program:
= Debug =» Reset CPU

6. Add a breakpoint (cont.)

= &5 Labl.pit [abug]
) Dependent Pazjec!
0 DSRRIOS Conlig
) Generabed Files.
- Inchude

active
Breakpoint

IFAOAS 604
SFANAS 9741

whila(1)

unsigned int i;

Yellow arrow :
Current PC

" S TINC2000CGTOOLS B!

-
. 0 Wernings.

Labl
Hwc12000" -g

0 Remarks.

.pit = Deb
- =fr"

"¢ TI~C 2000~ CGTOOLSBIN<12000" -@"Debug.1KE"

ST tua
[CPUHALTED I

[Va= [Twe [Radn |
) nsgredrt_| unsgned
[E] i vl_| umreed
&mm A ek 1
Ln9.Ca¥ | WOW [

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

A slightly different tool to stop the execution is a ‘Probe Point’. While the Break Point forces the
DSP to halt permanently, the Probe Point is only a temporary stop point. During the stop status,
the DSP and the JTAG-emulator exchange information. At the end, the DSP resumes the
execution of the code.

7. Set a Probe Point @

¢ Causes an update of a particular window at a specific
point in your program.
When a window is created it is updated at every hit of a breakpoint.
However, you can change this so the window is updated only when the
program reaches the connected Probe Point. When the window is
updated, execution of the program is continued.
¢ To set a Probe - Point :
+ Click right mouse on the line ‘k = i*i;’ in the program first.c
+ select : ‘Toggle Probe Point ¢ (indicated by a blue dot)
+ select & Debug = Probe Points...

+ In the Probe Point Window click on the line ‘first.c line 13 -> no
Connection’

« in the ‘Connect to’ - selector select ‘Watch Window’
« exit this dialog with the ‘Replace’ and ‘OK’ - Button

¢ Run the program and verify that the watch window is
updated continuously.

2-32

NOTE: There is a more advanced method to interact with the DSP in real time, called ‘Real Time
Debug’. We will skip this option for the time being and use this feature during later chapters.

2-20 DSP28 - Program Development Tools

Code Composer Studio — Step by Step

7. Set a Probe Point (cont.)

&

Broak /Frobe Points]
Breakpaints Prabe Points |
Probe ype: Probe at Location =] [e
Lacation: labl.c line 9 Feplace
Eyiesion:
Comnect To, \wiatch Window =l

Frobe Point:

Delete

Enatil=al

Disabls 4l

Delete &l

oK Abbrechen | [bemetmen Hilfe

2-33

When you are more familiar with the F2812 and with the tools, you might want to verify the
efficiency of the C compiler or to optimize your code at the Assembler Language level.

8. Other View Commands (cont.) @
¢ To view both the Assembler code and the C
Source Code :

« click right mouse inside “Lab1.c” and select “Mixed
Mode”

« The Assembler Instruction Code generated by the
Compiler is added and printed in grey colour

¢ Single Step (‘Assembly Step Into’) is now
possible on instruction level:

= Debug = Reset DSP
= Debug = Restart

= Debug = Go Main

= Debug = Step Into (F8)

+ You’ll see two arrows , a yellow one on C-lines and a
green one for assembler instruction-lines

DSP28 - Program Development Tools

Code Composer Studio — Step by Step

Elo Edl Yew Pomct Oebug Frofis GEL (pien Jook DSPEI0S Wede Hel g

Q@M Lm@e s e D ARhR(SW| e ET A%%E
[erer s GRS
Ha O0MENHEE
§ Fiee
] () GEL et 3FB09A
=3 Projects 3FB09A FEOL gy =
= gzb Labl.pit [Debug) IFB09B
() Deprrdend Progecd| 3FB0%B 2B4l j
) DSPBIOS Condg
() Geressted Fies
(] inchade
) Liwaees
0 Souce CIFBO9F D4l
2] EDSP_RAM k.

AFANAN TARIF
4

fAH00 BERE 4 I3

Labl.pit Dabug
"C :~TI~C2000~C2GTOOLSBINc12000" -g -q -fr"C:/28

12/Labl-Dabu

3 CZ000NCOTOOLSNBIN 12000 -@"Debug.lkf"

Fou e, e FI

The General Extension Language (GEL) is a high-level script language. Based on a *.gel — file
one can expand the features of Code Composer Studio or perform recurrent steps automatically.

9. GEL - General Extension Language @

+ language similar to C

¢ lets you create functions to extend Code
Composer's features

to create GEL functions use the GEL grammar
¢ load GEL-files into Code Composer
¢ With GEL, you can:

+ access actual/simulated target memory
locations

+ add options to Code Composer’s GEL menu

¢ GEL is useful for automated testing and user
workspace adjustment .

¢ GEL - files are ASCII with extension *.gel

2-22 DSP28 - Program Development Tools

Lab 1: beginner’s project

Lab 1: beginner’s project

Objective

The objective of this lab is to practice and verify the basics of the Code Composer
Studio Integrated Design Environment.

Procedure

Open Files, Create Project File

1. Using Code Composer Studio, create a new project, called Labl.pjt in
E:\C281x\Labs (or another working directory used during your class, ask
your instructor for specific location!)

2. Write a new source code file by clicking: File & New = Source File. A new
window in the workspace area will open. Type in this window the following
few lines:

unsigned int k;
void main (void)

unsigned int i;

while(1)

for (i=0; i<100; i++)
=i*i

}

}

Save this file by clicking File = Save as and type in: Labl.c

3. Add the Source Code Files: Lab1l.c and the provided linker command

file:\emd\F2812 EzDSP_ RAM Ink.cmd (it is in E:\2812\cmd))
to your project by clicking: Project = Add Files to project

4. Add the C-runtime library to your project by clicking: Project = Build Op-
tions = Linker - Library Search Path: ‘c:\ti\c2000\cgtools\lib’. Then Add
the library by clicking: Project = Build Options = Linker = Include Librar-

ies: ‘rts2800 ml.lib’

DSP28 - Program Development Tools 2-23

Lab 1: beginner’s project

5. Verify that in Project = Build Options = Linker the Autoinit-Field contains:
‘Run-time-Autoinitialisation [-c]

6. Set the stack size to 0x400: Project = Build Options = Linker - Stack Size

7. Close the Build Options Menu by clicking OK

Build and Load

8. Click the “Rebuild All” button or perform: Project = Build and watch the
tools run in the build window. Debug as necessary. To open up more space,
close any open files or windows that you do not need at this time.

9. Load the output file onto the eZdsp. Click: File > Load Program and choose
the output file you generated. Note: The binary output file has the same name
as the project with the extension .out. The file is stored under the “Debug”
subfolder.

Note: Code Composer can automatically load the output file after a successful
build. To do this by default, click on the menu bar: Option = Customize =
Program Load Options and select: “Load Program After Build”, then click
OK.

Test

10. Reset the DSP by clicking on = Debug = Reset CPU, followed by = Debug
- Restart

11. Run the program until the first line of your C-code by clicking: Debug = Go
main. Verify that in the working area the source code “Labl.c” is highlighted
and that the yellow arrow for the current Program Counter is placed on the
line ‘void main (void)’.

12. Perform a real time run by clicking: Debug = Run

13. Verify the note at the bottom left corner of the screen: “DSP Running” to

14.

15.

mark a real time run. Because we are doing nothing with peripherals so far,
there is no other visible activity.

Halt the program by clicking: Debug - Halt, reset the DSP (Debug - Reset
CPU, followed by = Debug = Restart) and go again until main (Debug =
Go main)

Open the Watch Window to watch your variables. Click: View = Watch
Window. Look into the window “Watch locals”. Once you are in main, you

DSP28 - Program Development Tools

Lab 1: beginner’s project

should see variable i. Variable k is a global one. To see this variable we have
to add it to the window ‘Watch 1°. Just enter the name of variable ‘k’ into the
first column ‘Name’. Use line 2 to enter variable 1 as well. Exercise also with
the ‘Radix’ column.

16. Perform a single-step through your program by clicking: Debug = Step Into
(or use function Key F8). Repeat F8 and watch your variables.

17. Place a Breakpoint in the Labl.c — window at line “k =1 * 1;”. Do this by plac-
ing the cursor on this line, click right mouse and select: “Toggle Breakpoint”.
The line is marked with a red dot to show an active breakpoint. Perform a real-
time run by Debug = Run (or F5). The program will stop execution when it
reaches the active breakpoint. Remove the breakpoint after this step (click
right mouse and “Toggle Breakpoint™).

18. Set a Probe Point. Click right mouse on the line “k=i*i;”. Select “Toggle
Probe Point”. A blue dot in front of the line indicates an active Probe-Point.
From the menu-bar select “Debug = Probe Points...”. In the dialog window,
click on the line “Labl.c line 13 = No Connection”. Change the “connect to”-
selector to “Watch Window”, click on ‘Replace’ and ‘OK’. Run the program
again (F5). You will see that the probe point updates the watch window each

time the program passes the probe point.

19. Have a look into the DSP-Registers: View = Registers = CPU Register and
View = Registers = Status Register. Right mouse click inside these windows
and select “Float in Main Window”. Double click on the line ACC in the
CPU-Register and select ‘Edit Register’. Modify the value inside the Accumu-
lator.

20. You might want to use the workspace environment in further sessions. For this
purpose, it is useful to store the current workspace. To do so, click: File >
Workspace = Save Workspace and save it as “Labl.wks”

21. Delete the active probe by clicking on the button “Remove all Probe Points”,
close the project by Clicking Project = Close Project and close all open win-

dows that you do not need any further.

End of Exercise Labl

DSP28 - Program Development Tools 2-25

Lab 1: beginner’s project

This page was intentionally left blank.

2-26 DSP28 - Program Development Tools

Digital 1/0

Introduction

This module introduces the integrated peripherals of the C28x DSP. We have not only a 32-bit
DSP core, but also all of the peripheral units needed to build a single chip control system (SOC -
“System on Chip”). These integrated peripherals give the C28x an important advantage over other

processors.

We will start with the simplest peripheral unit — Digital I/O. At the end of this chapter we will
exercise input lines (switches, buttons) and output lines (LED’s).

Data Memory Mapped Peripherals

All the peripheral units of the C28x are memory mapped into the data memory space of
its Harvard Architecture Machine. This means that we control peripheral units by
accessing dedicated data memory addresses. The following slide shows these units:

22

A(18-0) Elg

C281x Block Diagram

Program Bus

Sectored
Flash

i E !

] Man‘z’a%rt‘etr B [
1

]]

1

1

3
1

D(15-0) Eﬁ%

Realtime
JTAG

l

32-bit

32x32 bit
Multiplier

Register Bus
CPU

Timers

——————————

Data Bus

DSP28 - Digital I/0

Module Topics

Module Topics

Digital I/O 3-1
TRIPOAUCHION ...ttt a ettt ettt ettt ettt e e ne et e ne e neaneas 3-1
Data Memory Mapped PeriDRETALSccocieciiiieiiieieeieeiesieie ettt se et sse s ste b ane e 3-1
MOAUIE TOPICS........ccoeeeeeeeeiieiee ettt ettt et ettt e b et e be et e e te e b bt e seete e b e enseeseenseareenes 3-2
The PeriDREIAL FFAMEScccoeeuiaeeieieieeieee ettt ettt ettt ettt aeeatesbeenbe bt e s e esaeseensenaeenseenee e 3-3
DIiGILAL I/O UNIE ..ot ettt ettt ettt ettt e e e st et et e st este s st esteeseenseentenseense e 3-4
DIiGILAL I/ REGISTOTS ...ttt ettt ettt e et e e st e beente et e e s e esee s e ensenseenbeereenes 3-6
C28X CLOCk MOGUIE.c..oooeeieeeiee ettt ettt ettt ettt et nes 3-7
WALCRAOZ TIMET ...ttt 3-9
System Control and StATUS REGISIETc.cceeciiiiiiiiiiiet ettt ettt 3-12
LOW POWEE MOGE ...ttt bttt ettt 3-12
Lab 2: Digital Quiput — 8 LED’Scc.ooouiiiiiiiiiiiee ettt sttt 3-15
Lab 2A4: Digital Output — 8 LED’S (MOAIfIEA)c.coeeeeeieieciieiieii ettt 3-22
LD 3: DIGUIAL INPUL ...ttt ae et e bt e ae et esteebeetsesseessebeesaesseensenee s 3-23
Lab 3A: Digital INDUE + OQUEDULcveeueeiiieieiieiieeie ettt ettt ettt ebe st sbeesaesaeessesssessesseenseseees 3-26
LD 3B: STt / STOP OPTION........cc.ooeeeieeeiee ettt ettt ettt ettt esaesseeneesteeneennen 3-29

DSP28 - Digital I/O

The Peripheral Frames

The Peripheral Frames

All peripheral registers are grouped together into what are known as “Peripheral Frames” — PFO0,
PF1 and PF2.These frames are data memory mapped only. Peripheral Frame PFO includes
register sets to control the internal speed of the FLASH memory, as well as the access timing to
the internal SARAM. SARAM stands for “Single Access RAM”, that means we can make one
access to this type of memory per clock cycle. Flash is the internal non-volatile memory, usually
used for code storage and for data that must be present at boot time. Peripheral Frame PFI
contains most of the peripheral unit control registers, whereas Peripheral Frame PF2 is reserved
for the CAN register block. CAN — “Controller Area Network™ is a well-established network
widely used inside cars to build a network between electronic control units (ECU).

TMS320F2812 Memory Map
Data | Program Data | Program
000000/ pO SARAM (1K)
000400 \1 SARAM (1K)
00 0800 [PF 0 (2K) | reserved reserved
00 0D00| pjE vector
'8252)_ reserved
00 1000 e XINT Zone 0 (8K) | 002000
00 6000 | PF 2 (4K) | reserved XINT Zone 1 (8K) |00 4000
00 7000 PF 1 (4K) | reserved
00 8000 LO SARAM (4K) reserved
00 9000
L1 SARAM (4K
00 A000 reservecf : N RO EEAI IR M) 08 0000
3D 7800 XINT Zone 6 (1M) | 10 0000
OTP (2K) 20 0000
3D 8000
I=LA§H(’!_28K)_ reserved
| 128-Bit Password |
3F 8000| HO SARAM (8K)
3F A000 reserved
3F Fo00| Boot ROM (4K) XINT Zone 7 (16K) | 3F €000
MP/MC= = -
3F FFCO| BROM vector (32) | [XINT Vector-RAM (32) ool
MP/MC=0 ENPIE=0 MP/MC=1 ENPIE=0 OTP, FLASH
3-3

Some of the memory areas are password protected by the “Code Security Module” (check
patterned areas at the slide above). This is a feature to prevent reverse engineering. Once the
password area is programmed, any access to the secured areas is only granted when the correct
password is entered into a special area of PFO.

Now let’s start with the discussion of the Digital I/O unit.

DSP28 - Digital I/0 3-3

Digital I/0 Unit

Digital I/O Unit

All digital 1/0’s are grouped together into “Ports”, called GPIO-A, B, D, E, F and G. Here GPIO
means “general purpose input output”. The C28x is equipped with so many internal units, that not
all features could be connected to dedicated pins of the device package at any one time. The
solution is: multiplex. This means, one single physical pin of the device can be used for 2
(sometimes 3) different functions and it is up to the programmer to decide which function is
selected. The next slide shows the options available:

L3 L3
C28x GPIO Pin Assignment
GPIO A GPIO B GPIOD
GPIOAO / PWM1 GPIOBO / PWM7 GPIODO / T1CTRIP_PDPINTA
GPIOA1 / PWM2 GPIOB1 / PWM8 GPIOD1 / T2CTRIP7 EVASOC
GPIOA2 / PWM3 GPIOB2 / PWM9 GPIOD5 / T3CTRIP_PDPINTB
GPIOA3 / PWM4 GPIOB3 / PWM10 GPIOD6 / T4CTRIP/EVBSOC
GPIOA4 /| PWM5 GPIOB4 / PWM11
GPIOA5 /| PWM6 GPIOB5 / PWM12 GPIOE
GPIOA6 / T1PWM_T1CMP GPIOB6 / T3PWM_T3CMP
GPIOA7 / T2PWM_T2CMP GPIOB7 / T4PWM_T4CMP 85:85? f §IN¥;—§B€SOC
GPIOA8 / CAP1_QEP1 GPIOB8 / CAP4_QEP3 X
GPIOA9 / CAP2_QEP2 GPIOB9 / CAP5_QEP4 GPIOE2 / XNMI_XINT13
GPIOA10/ CAP3 QEPI GPIOB10/ CAP6_QEPI2
GPIOA11/ TDIRA GPIOB11/ TDIRB
GPIOA12/ TCLKINA GPIOB12/ TCLKINB
GPIOA13/ C1TRIP GPIOB13/ CA4TRIP
GPIOA14/ C2TRIP GPIOB14 / C5TRIP
GPIOA15/ C3TRIP GPIOB15/ C6TRIP
GPIO F GPIO G
GPIOFO / SPISIMOA GPIOG4 / SCITXDB
GPIOF1 / SPISOMIA GPIOG5 / SCIRXDB
GPIOF2 / SPICLKA
GPIOF3 / SPISTEA
GPIOF4 / SCITXDA
GPIOF5 / SCIRXDA
GPIOF6 / CANTXA
85:8% 5 ,\CA/(\;TE;(Q Note: GPIO are pin
GPIOF9 / MCLKRA functions at reset
GPIOF11/ MESRA
GPIOF12/ MDXA GPIO A, B, D, E include
GPIOF13/ MDRA Input Qualification feature
GPIOF14/ XF
3-5

The term “Input Qualification feature” refers to an additional option for digital input signals at
Ports A, B, D and E. When this feature is used, an input pulse must be longer than the specified
number of clock cycles to be recognized as a valid input signal.

The next slide explains the initialization procedure. All six GPIO-Ports are controlled by their
own multiplex register, called GPxMUX (where x stands for A to F). Clearing a bit position to
zero means selecting its digital I/O function, setting a bit to 1 means selecting the special function
(TI calls this the “primary” function).

When digital I/O function is selected, then register group GPxDIR defines the direction of 1/0.
Clearing a bit position to zero configures the line as an input, setting the bit position to 1
configures the line as an output. Some of the input ports are equipped with an “Input
Qualification Feature”. With this option we can define a time length, which is used to exclude
spikes or pulses of a shorter duration from being acknowledged as valid input signals.

DSP28 - Digital I/O

Digital I/0 Unit

C28x GPIO Register Structure

2]
_ .| GPIO A Mux Control | , . | GPIO A Direction Control | , | =
7| Register (GPAMUX) v Register (GPADIR) amglcihme
>
2]
o | GPIO B Mux Control » | GPIO B Direction Control | , | =
— 7| Register (GPBMUX) v Register (GPBDIR) anglchm
=]
(@]
5 | ¢ GPIO D Mux Control | . | GPIO D Direction Control | =
§ 7| Register (GPDMUX) v Register (GPDDIR) > e
s
g’ __ | GPIO E Mux Control |, | GPIO E Direction Control | , [® S
@ [T 71 Register (GPEMUX) v Register (GPEDIR) hildi=]
=1
2
_ | GPIO F Mux Control |, | GPIO F Direction Control |, | = —
7| Register (GPFMUX) v Register (GPFDIR) hildi=)
55
(@]
___|GPIO G Mux Control |, . | GPIO G Direction Control | , | =
— 7| Register (GPGMUX) v Register (GPGDIR) o
Q
o GPIO A, B, D, E include Input Qualification feature o
3-4
C28x GPIO Functional Block
GPxSET Dlagram
GPxCLEAR
GPxTOGGLE
Primary
GPxDAT | Peripheral
Out Function
I/0 DAT |
Bit R/'W)| 1 P
~ Ny MUX Control Bit
............... 0 =1/0 Function
1="Pri F i
T (? DIIR Bit rimary Function
= Input
1= Ou{)put é Pin GPxMUX
GPxDIR|
15-8 7-0
Some digital /0 and | | GPXQUAL{ FSered |QUALPRD)
peripheral I/O input 00h no qualification (SYNC to SYSCLKOUT)
signals include an 01h QUALPRD = SYSCLKOUT/2
Input Qualification 02h QUALPRD = SYSCLKOUT/4
feature
FFh QUALPRD = SYSCLKOUT/510

DSP28 - Digital I/0

Digital I/O Registers

Digital I/O Registers

The next two slides summarize the digital I/O control registers:

C28x GPIO MUX/DIR Registers

Address Register Name

70C0h GPAMUX GPIO A Mux Control Register

70C1h GPADIR GPIO A Direction Control Register

70C2h GPAQUAL GPIO A Input Qualification Control Register
70C4h GPBMUX GPIO B Mux Control Register

70C5h GPBDIR GPIO B Direction Control Register

70C6h GPBQUAL GPIO B Input Qualification Control Register
70CCh GPDMUX GPIO D Mux Control Register

70CDh GPDDIR GPIO D Direction Control Register

70CEh GPDQUAL GPIO D Input Qualification Control Register
70D0h GPEMUX GPIO E Mux Control Register

70D1h GPEDIR GPIO E Direction Control Register

70D2h GPEQUAL GPIO E Input Qualification Control Register
70D4h GPFMUX GPIO F Mux Control Register

70D5h GPFDIR GPIO F Direction Control Register

70D8h GPGMUX GPIO G Mux Control Register

70D%h GPGDIR GPIO G Direction Control Register

3-7
o

C28x GPIO Data Registers
Address Register Name
70EOh GPADAT GPIO A Data Register
70E1h GPASET GPIO A Set Register
70E2h GPACLEAR GPIO A Clear Register
70E3h GPATOGGLE GPIO A Toggle Register
70E4h GPBDAT GPIO B Data Register
70E5h GPBSET GPIO B Set Register
70E6h GPBCLEAR GPIO B Clear Register
70E7h GPBTOGGLE GPIO B Toggle Register
70ECh GPDDAT GPIO D Data Register
70EDh GPDSET GPIO D Set Register
70EEh GPDCLEAR GPIO D Clear Register
70EFh GPDTOGGLE GPIO D Toggle Register
70F0h GPEDAT GPIO E Data Register
70F1h GPESET GPIO E Set Register
70F2h GPECLEAR GPIO E Clear Register
70F3h GPETOGGLE GPIO E Toggle Register
70F4h GPFDAT GPIO F Data Register
70F5h GPFSET GPIO F Set Register
70F6h GPFCLEAR GPIO F Clear Register
70F7h GPFTOGGLE GPIO F Toggle Register
70F8h GPGDAT GPIO G Data Register
70F9h GPGSET GPIO G Set Register
70FAh GPGCLEAR GPIO G Clear Register
70FBh GPGTOGGLE GPIO G Toggle Register 3-8

DSP28 - Digital I/O

C28x Clock Module

C28x Clock Module

Before we can start using the digital 1/Os, we need to setup the C28x Clock Module. Like all
modern processors, the C28x is driven outside by a slower external oscillator to reduce
electromagnetic disturbances. An internal PLL circuit generates the internal speed. The eZdsp in
our Labs is running at 30MHz externally. To achieve the internal frequency of 150 MHz we have
to use the multiply by 10 factor with divide by 2. This can be done by programming the PLL
control register (PLLCR).

X2

C28x Oscillator / PLL Clock Module

PLLCR @ 7021h

X1 /CLKIN

XF_XPLLDIS

Q
172]
=
-
<
=
<

Watchdog
Module

A

OSCCLK

CLKIN | gy
Core

A4

PLL

Clock Module

4-bit PLL Select

| syscLkour

| HISPCP| [LOSPCP|

HSPCLK LSPCLK

PLLCR
bits 15:4
reserved

DIV3 | DIV2 | DIV1 | DIVO | Clock Frequency (CLKIN)
0 0 0 0 OSCCLK x 1/2 (no PLL)
0 0 0 1 OSCCLK x1/2
0 0 1 0 OSCCLK x2/2
0 0 1 1 OSCCLK x3/2
0 1 0 0 OSCCLK x4/2
0 1 0 1 OSCCLK x5/2
0 1 1 0 OSCCLK x 6/2
0 1 1 1 OSCCLK x7/2
1 0 0 0 OSCCLK x 8/2
1 0 0 1 OSCCLK x9/2
1 0 1 0 OSCCLK x 10/2

High-speed Clock Pre-scaler (HISPCP) and Low speed Clock Pre-scaler (LOSPCP) are used as
additional clock dividers. The outputs of the two pre-scalers are used as the clock source for the
peripheral units. We can set up the two pre-scalers individually to our needs.

Note that (1) the signal “CLKIN” is of the same frequency as the core output signal
“SYSCLKOUT?”, which is used for the external memory interface and for clocking the CAN —

unit.

Also, that (2) the Watchdog Unit is clocked directly by the external oscillator.

Finally, that (3) the maximum frequency for the external oscillator is 35MHz.

DSP28 - Digital I/0

C28x Clock Module

To use a peripheral unit, we have to enable its clock distribution by individual bit fields of
register PCLKCR. Digital I/O does not have a clock enable feature.

Peripheral Clock Control Register

PCLKCR @ 701Ch
LSPCLK
A
15 14 B3 1 11 10 9 g
reserved LELAEIEA reserved kiU BIEIE ElEIA reserved S
ENCLK ENCLK | ENCLK [ENCLK ENCLK
HSPCLK
A
7 6 5 4 7 3 2 1 0)
reserved | r d | r d | r d Ae r d LDVE LIV
eserve eserve eserve: eserved | Lo | reserved | oo | ENCLK

N /
e

Module Enable Clock Bit
0 = disable
1 = enable

High / Low — Speed Peripheral Clock

Prescaler Registers
HISPCP @ 701Ah / LOSPCP @ 701Bh

15-3 2 1 0
reserved HSPCLK2 | HSPCLK1 | HSPCLKO

15-3 2 1 0
reserved LSPCLK2 | LSPCLK1 | LSPCLKO

H/LSPCLK2 | H/LSPCLK1 | H/LSPCLKO | Peripheral Clock Frequency
0 0 0 SYSCLKOUT /1

0 1 SYSCLKOUT / 2 (default HISPCP)
1 0 SYSCLKOUT / 4 (default LOSPCP)
1 1 SYSCLKOUT / 6

1} 1} SYSCLKOUT /8
1} 1

1 1}

1 1

SYSCLKOUT /10
SYSCLKOUT /12
SYSCLKOUT / 14

—— e D

3-8 DSP28 - Digital I/O

Watchdog Timer

Watchdog Timer

A “Watchdog Timer” is a free running counter unit that triggers a reset if it is not cleared
periodically by a specific instruction sequence. It is used to recognize events where the program
leaves its designated sequence of execution, for example, if the program crashes.

clock)

Watchdog Timer

Resets the C28x if the CPU crashes
+ Watchdog counter runs independent of CPU
+ If counter overflows, reset or interrupt is triggered

+ CPU must write correct data key sequence to reset
the counter before overflow

Watchdog must be serviced (or disabled)
within ~4,3ms after reset (30 MHz external

This translates into 6.3 million instructions!

Watchdog Timer Module
0SCCLK 6 - Bit 32 110 O O———WDOVERRIDE
Free- | /16 101 O _WDPS
/512 Running /8 100 WDCR .2 -0
Counter i o i
/2 010
—e——0 .
01 % e
)| 000~
System 3 WDFLAG
Reset 8 - Bit Watchdog One-Cvel WDCR . 7
Counter Ig;la))lfc c :
CLR
WDRST
Output >
l WDCHK 2-0 Tubse WDINT
55+ AA Good Key
Detector Bad Key WDENINT
4 Bad WDCR Key
Watchdog
Register

DSP28 - Digital I/0

Watchdog Timer

The Watchdog is always alive when the DSP is powered up! When we do not take care of the
Watchdog periodically, it will trigger a RESET. One of the simplest methods to deal with the
Watchdog is to disable it. This is done by setting bit 6 (WDFLAG) to 1. Of course this is not a
wise decision, because a Watchdog is a security feature and a real project should always include
as much security as possible or available.

The Watchdog Pre-scaler can be used to increase the Watchdog’s overflow period. The Logic
Check Bits (WDCHK) is another security bit field. All write accesses to the register WDCR must
include the bit combination “101” for this 3 bit field, otherwise the access is denied and a RESET
is triggered immediately.

The Watchdog Flag Bit (WDFLAG) can be used to distinguish between a normal power on
RESET (WDFLAG = 0) and a Watchdog RESET (WDFLAG = 1). NOTE: To clear this flag by
software we have to write a ‘1’ into this bit!

Watchdog Timer Control Register

WDCR @ 7029h

WD Flag Bit
Gets set when the WD causes a reset
* Writing a 1 clears this bit
* Writing a 0 has no effect

15-8 7 6 5 4 3 2 1 0

reserved WDFLAG| WDDIS | WDCHK2| WDCHK1| WDCHKO0| WDPS2 | WDPS1 WDPS0

Logic Check Bits ‘WD Prescale

Write as 101 or reset Selection Bits

immediately triggered
Watchdog Disable Bit
(Functions only if WD OVERRIDE
bit in SCSR is equal to 1)

Note: If, for some reason, the external oscillator clock fails, the Watchdog stops incrementing. In
an application we can catch this situation by reading the Watchdog counter register periodically.
In case of a lost external clock this register will not increment any longer. The C28x itself will
still execute if in PLL mode, since the PLL will output a clock between 1 and 4 MHz in a so-
called “limp”-mode.

DSP28 - Digital I/O

Watchdog Timer

How do we clear the Watchdog? By writing a “valid key” sequence into register WDKEY:

Resetting the Watchdog

WDKEY @ 7025h

15-8 7 6 5 4 3 2 1 0
reserved D7 D6 D5 D4 D3 D2 D1 DO

¢ Allowable write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

¢ Writing any other value immediately triggers a
CPU reset

¢ Watchdog should not be serviced solely in an ISR

+ If main code crashes, but interrupt continues to execute,
the watchdog will not catch the crash

+ Could put the 55h WDKEY in the main code, and the
AAh WDKEY in an ISR; this catches main code
crashes and also ISR crashes

3-15
WDKEY Write Results
Sequential Value Written
Step to WDKEY Result
1 AAh No action
2 AAh No action
3 55h WD counter enabled for reset on next AAh write
4 55h WD counter enabled for reset on next AAh write
5 55h WD counter enabled for reset on next AAh write
6 AAh WD counter is reset
7 AAh No action
8 55h WD counter enabled for reset on next AAh write
9 AAh WD counter is reset
10 55h WD counter enabled for reset on next AAh write
11 23h CPU reset triggered due to improper write value
3-16

DSP28 - Digital I/0 3-11

System Control and Status Register

System Control and Status Register

Register SCSR controls whether the Watchdog causes a RESET (WDENINT = 0) or an Interrupt
Service Request (WDENINT = 1).

The WDOVERRIDE bit is a “clear only” bit, that means, once we have closed this switch by
writing a 1 into the bit, we can’t reopen this switch again (see block diagram of the Watchdog).

At this point the WD-disable bit is ineffectual, no way to disable the Watchdog!

Bit 2 (WDINTS) is a read only bit that flags the status of the Watchdog Interrupt.

System Control and Status Register

SCSR @ 7022h

WD Override (protect bit)
After RESET - bit gives user ability to disable WD by
setting WDDIS bit=1 in WDCR
* clear only bit and defaults to 1 after reset
0 = protects WD from being disabled by s/w
* bit cannot be set to 1 by s/w (clear-only by writing 1)
1 = (default value) allows WD to be disabled using

WDDIS bit in WDCR
* once cleared, bit cannot set to 1 by s/w \
15-3 2 1 0
reserved WDINTS | WDENINT OVE‘IX‘I;IDE
WD Interrupt Status WD Enable Interrupt
(read only) 0 = WD generates a DSP reset
0 = active 1= WD generates a WDINT interrupt

1 = not active

Low Power Mode

To reduce power consumption the C28x is able to switch into 3 different low-power operating
modes. We will not use this feature for this chapter; therefore we can treat the Low Power Mode
control bits as “don’t care”. The Low Power Mode is entered by execution of the dedicated
Assembler Instruction “IDLE”. As long as we do not execute this instruction the initialization of
Register LPMCRO has no effect.

DSP28 - Digital I/O

Low Power Mode

The next four slides explain the Low Power Modes in detail.

Low Power Modes

Low Power | CPU Logic Peripheral = Watchdog PLL/
Mode Clock Logic Clock Clock OSC
Normal Run on on on on
IDLE off on on on
STANDBY off off on on
HALT off off off off

Low Power Mode Control Register 0

LPMCRO @ 701Eh

000000 =2 OSCCLKs
Qualify before waking 000001 =3 OSCCLKs

from STANDBY mode : : :
\ 111111 = 65 OSCCLKS
15-8 7-2 1 0
reserved QUALSTDBY LPM1 LPMO

Low Power Mode Selection

Low Power Mode Entering 00 = Idle
1. Set LPM bits 01 = Standby
1x = Halt

2. Enable desired exit interrupt(s)

3. Execute IDLE instruction

4. The Power down sequence of the hardware
depends on LP mode

DSP28 - Digital I/0

Low Power Mode

Low Power Mode Control Register 1

LPMCRI1 @ 701Fh

15 14 13 12 11 10 9 8

CANRXA | SCIRXB | SCIRXA | C6TRIP | CSTRIP | C4TRIP | C3TRIP | C2TRIP

7 6 5 4 3 2 1 0

CITRIP |T4ACTRIP|T3CTRIP|T2CTRIP|T1CTRIP| WDINT | XNMI XINT1

~

Wake device from

STANDBY mode
0 = disable
1 =enable
3-20
Low Power Mode Exit
Exit External
Interrupt | RESET or Enabled
Low Power Wake up | Peripheral
Mode Interrupts| Interrupts
IDLE yes yes yes
STANDBY yes yes no
HALT yes no no

Note: External or Wake up include XINT1, PDPINT, TxCTRIP,
CxTRIP NMI, CAN, SPI, SCI, WD

3-14 DSP28 - Digital I/O

Lab 2: Digital Output — 8 LED’s

Lab 2: Digital Output — 8 LED’s

Aim :

Lab 2: Digital Output on Port B0...B7

* Use the 8 LED*s connected to GPIO- outputs B0-B7 to show a
,sunning light* moving from left to right and reverse

I] t Project - Files :

‘] 1. C - source file: “Lab2.c”

L L] 2. Register Definition File:

] “DSP281x_GlobalVariableDefs.c

T T 3. Linker Command File :
[__ F2812 EzDSP_RAM Ink.cmd
[_ 4. Runtime Library “rts2800 ml.lib

v

* Use a software delay loop to generate the pause interval

-22

« Initialise DSP:
» Watchdog - Timer - Control
* PLL Clock Register
* High Speed Clock Prescaler
* Low Speed Clock Prescaler
* Peripheral Clock Control Reg.

« Access to LED*s (B0...B7):
* GPB Multiplex Register
* GPB Direction Register
* GPB Qualification Register
* GPB Data Register

» System Control and Status Reg. :

Lab 2: Digital Output on Port B0...B7
Registers to be used in LAB 2 :

WDCR
PLLCR
HISPCP
LOSPCP
PCLKCR
SCSR

GPBMUX
GPBDIR
GPBQUAL
GPBDAT

-23

DSP28 - Digital I/0

Lab 2: Digital Output — 8 LED’s

Register Definition File
‘DSP281x_GlobalVariableDefs.c’

* This File defines global variables for all memory mapped
peripherals.
* The file uses predefined structures (see ..\include) and defines
instances , e.g. “GpioDataRegs” :
#pragma DATA_SECTION(GpioDataRegs," GpioDataRegsFile");
volatile struct GPIO_DATA_REGS GpioDataRegs;
or “GpioMuxRegsFile” :
#pragma DATA_SECTION(GpioMuxRegs," GpioMuxRegsFile");
volatile struct GPIO_MUX_REGS GpioMuxRegs;
* The structures consist of all the registers, that are part of that
group , e.g. : GpioDataRegs.GPBDAT
* For each register exists a union to make a 16bit-access (“all”’) or
a bit-access (“bit”) , e.g. :
GpioDataRegs.GPBDAT.bit. GPOIB4 =
GpioDataRegs.GPBDAT.all =

Register Definition File
‘DSP281x_GlobalVariableDefs.c’

* The name of the DATA SECTION (”GpioDataRegsFile”) is
used by the linker command file to connect the section’s
variable (”GpioDataRegs”) to a physical memory address.

* The master header -file ‘DSP281x_Device.h’ includes all the
predefined structures for all peripherals of this DSP.

* All that needs to be done is :
(1) make ‘DSP281x_GlobalVariableDefs.c’ part of your
project
(2) include ‘DSP281x_Device.h’ in your main C file.

3-16 DSP28 - Digital I/O

Lab 2: Digital Output — 8 LED’s

Objective

The objective of this lab is to practice using basic digital I/O — operations. GP1O-
Port B7 to BO are connected to 8 LEDs, a digital ‘1’ will switch on a light, a
digital ‘0> will switch it off. GPIO-Port B15 to B8 are connected to 8 input
switches; an open switch will be red as digital ‘1°, a closed one as digital ‘0.
Lab2 uses register GPBMUX, GPBDIR and GPBDAT.

Fist in Lab2 we will generate a running light (“Knight Rider”). This lab will be
expanded into Labs 2A, 3 and 3A. For the time being we will not use any
Interrupts. The Watchdog-Timer as well as the core registers to set up the DSP-
speed are involved in this exercise.

Procedure

Open Files, Create Project File

1. Using Code Composer Studio, create a new project, called LabZ.pjt in
E:\C281x\Labs (or another working directory used during your class, ask your
teacher for specific location!).

2. Add the provided source code file to your new project:

e Lab2.c
3. From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

o DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\vI00\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers_nonBlIOS.cmd

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

DSP28 - Digital I/0 3-17

Lab 2: Digital Output — 8 LED’s

Project Build Options

4. We need to setup the search path to include the peripheral register header files. Click:

Project = Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;..\include

5. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify the Source Code

6.

Open Lab2.c and search for the local function “InitSystem()”. You will find several
question marks in this code. Your task is to replace all the question marks to complete
the code.

Set up the Watchdog - Timer (WDCR) - disable the Watchdog (for now) and clear
the WD Flag bit.

Set up the SCSR to generate a RESET out of a Watchdog event (WDENINT)

Setup the Clock — PLL (PLLCR) - multiply by 5, assuming we use an external 30
MHz oscillator this will set the DSP to 150 MHz internal frequency.

Initialize the High speed Clock Pre-scaler (HISPCP) to “divide by 2%, the Low
speed Clock Pre-scaler (LOSPCP) to “divide by 4”.

Disable all peripheral units (PCLKCR) for now.

Search for the local function “Gpio_select()” and modify the code in it to:

Set up all multiplex register to digital 1/O.
Set up Ports A, D, E, F and G as inputs.
Set up Port B15 to B8 as input and B7 to B0 as output.

Set all input qualifiers to zero.

DSP28 - Digital I/O

Lab 2: Digital Output — 8 LED’s

Verify the control loop

8. Inside “Lab2.c” look for the endless “while(1)” loop and verify the operation of this
test program. The provided solution is based on a look-up table “LED[8]”. All the
code does is to take the next value out of this table and move it to the LED’s. In be-
tween the steps, the function “delay _loop()” is called to generate a pause interval.

Build and Load

9. Click the “Rebuild All” button or perform:
Project > Build

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

10. Load the output file down to the DSP Click:
File 2 Load Program

and choose the desired output file.

Test

11. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart

12. Run the program until the first line of your C-code by clicking:
Debug 2 Go main.
Verify that in the working area the window of the source code “Lab2.c” is high-
lighted and that the yellow arrow for the current Program Counter is placed under
the line “void main(void)”.
13. Perform a real time run.

Debug = Run

Verify that the LED’s behave as expected. If yes, then you have successfully finished
the first part of Lab2.

DSP28 - Digital I/0 3-19

Lab 2: Digital Output — 8 LED’s

Enable Watchdog Timer

14.

15.

16.

17.

18.

19.

20.

21.

22.

Now let’s improve our Lab2 a little bit. Although it is quite simple to disable the
watchdog for the first part of this exercise, it is not a good practice for a ‘real’
hardware project. The watchdog timer is a security hardware unit, it is an internal part
of the 28x and it should be used in all projects. Let’s change our code:

Look again for the function “InitSystem()”” and modify the WDCR — line to NOT
disable the watchdog.

What will be the result? Answer: If the watchdog is enabled after RESET, our
program will stop operations somewhere in our while(1) loop and will start all over
again and again. How can we verify this? Answer: by setting a breakpoint to the first

line of “main” our program should hit this breakpoint periodically. AND: Our
“Knight-Rider” program will never reach its full period.

Click the “Rebuild All” button or perform:
Project > Build

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

Load the output file down to the DSP Click:
File > Load Program and choose the desired output file.
Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug 2 Restart

Run the program until the first line of your C-code by clicking:
Debug > Go main.

Perform a real time run.
Debug 2 Run

Now our “Knight-Rider” code should start all over again before the last LED has
been switched on. This is a sign that the DSP starts from RESET periodically.

To verify the watchdog operation we can use a breakpoint at line “InitSystem()”.

To do so, click right mouse and select “Toggle Breakpoint”. A red dot will mark this
active breakpoint. Under normal circumstances this line would be passed only once
before we enter the while(1) loop. Now, with an active watchdog timer, this break-
point will be hit periodically.

DSP28 - Digital I/O

Lab 2: Digital Output — 8 LED’s

Serve the Watchdog Timer

23. To enable the watchdog timer was only half of the task to use it properly. Now we
have to deal with it in our code. That means, if our control loop runs as expected, the
watchdog, although it is enabled, should never trigger a RESET. How can we
achieve this? Answer: We have to execute the watchdog reset key sequence
somewhere in our control loop. The key sequence consists of two write instructions
into the WDKEY -register, a 0x55 followed by a 0xAA. Look for the function
“delay loop()” and uncomment the two lines:

SysCtrIRegs.WDKEY = 0x55;

SysCtriRegs.WDKEY = 0xAA;

24. Click the “Rebuild All” button or perform:
Project = Build

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

25. Load the output file down to the DSP Click:
File > Load Program and choose the desired output file.
26. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart

27. Run the program until the first line of your C-code by clicking:
Debug > Go main.
28. Perform a real time run.

Debug 2 Run

Now our “Knight Rider”’-code should run again as expected. The watchdog is
still active but due to our key sequence it will not trigger a RESET unless the
DSP code crashes. Hopefully this will never happen!

DSP28 - Digital I/0 3-21

Lab 2A: Digital Output — 8 LED’s (modified)

Lab 2A: Digital Output — 8 LED’s (modified)

Objective

Let’s modify the code of Lab2. Instead of switching on one LED at a time, as we
have done in Lab2, let’s now switch on 2 LED’s at a time, according to the
diagram in the following slide:

Lab Exercise 2A

Modify the C -source - code :
* switch 2 LED’s on (B7 and B0)
* let the ‘light’ move one step to the centre
of the LED-bar (B6 and B1 switched on)
* continue the move until the ‘lights’ touch each
other
* ‘move’ the in the opposite direction

I I 4 B7and BO=on

|:I I:I B6 and B1 = on
DI]:D B5 and B2 =on
m B4 and B3 =on

Procedure

Modify Code and Project File

1.

Open the source code “Lab2.c” from project Lab2.pjt in E:\C281x\Labs and save it as
“Lab2A.c".

Remove the file “L.ab2.¢” from the project Lab2.pjt. Right click at Lab2.c in the
project window and select “Remove from pl’Oj ect”.

Add the file “Lab2A.c¢” to the project “Lab2.pjt”.

Modify the code inside the “Lab2A.c” according to the objective of this Lab2A. Take
into account the lookup table and the control loop in main.

Rebuild and test as you’ve done in Lab2.

DSP28 - Digital I/O

Lab 3: Digital Input

Lab 3: Digital Input

Objective

Now let’s add some digital input functions to our code. On the Zwickau Adapter
Board, the digital I/O lines GPIO-B15 to B8 are connected to 8 input switches.

When a switch is closed it will be red as digital ‘0, if it is open as ‘1.

The objective of Lab3 is to copy the status of the 8 switches to the 8 LED’s as the
only task of the main loop. Hopefully our DSP will not complain about the
simplicity of this task!

3.

Lab 3: Digital Input (GPI1O B15..B8)
Aim :
» 8 DIP-Switches connected to GPIO-Port B (B15...B8)

* 8 LED*s connected to B7...B0
* read the switches and show their status on the LED’s

Project - Files :

1.
2.

C - source file: “Lab3.c”
Register Definition File:
“DSP281x_GlobalVariableDefs.c
Linker Command File :

F2812 EzDSP RAM Ink.cmd
Runtime Library “rts2800_ml.lib

-27

Procedure

Open Files, Create Project File

1. Create a new project, called Lab3.pjt in E:\C281x\Labs.

2. Open the file Lab2.c from E:\C281x\Labs\Lab2 and save it as Lab3.c in

E:\C281x\Labs\Lab3.

3. Modify Lab3.c. Remove the lookup table “LED[8]”. Keep the function calls to
“InitSystem()” and “Gpio_select()”. Inside the endless while(1)-loop modify the
control loop as needed. Do you still need the for-loop? How about the watchdog?

DSP28 - Digital I/0

Lab 3: Digital Input

Remember, we served the watchdog inside “delay function()” — it would be unwise
to remove this function call from our control loop!

4. Add the source code file to your project:
o Lab3.c

5. From C:\tides\c28\dsp281x\W100\DSP281x_headers\source add:
o DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\vI00\DSP281x _common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd
From C:\tides\c28\dsp281x\vI100\DSP281x_headers\cmd add:
e F2812 Headers_nonBlIOS.cmd
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

6. We need to setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;..\include

7. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Build and Load

8. Click the “Rebuild All” button or perform:

Project = Build

3-24 DSP28 - Digital I/O

Lab 3: Digital Input

Test

10.

11.

12.

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

Load the output file down to the DSP Click:

File > Load Program and choose the desired output file.

Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug 2 Restart

Run the program until the first line of your C-code by clicking:
Debug 2 Go main.

Start the code
Debug 2 Run

and test the operation of your code. When you change the status of the switch-
line you should see the new value immediately shown at the LED’s.

If not, your modification of the code (Step 3 of the procedure) was not correct. In
this case try to find out why by using the debug tools that you’ve learned about in
Labl (Breakpoint, Step, Watch Variables...).

DSP28 - Digital I/0

Lab 3A: Digital Input + Output

Lab 3A: Digital Input + Output

Objective

Now let’s combine Lab3 and Lab2! That means I’d like you to control the speed
of your “Knight Rider” (Lab2) depending on the status of the input switches.
Question: What’s the minimum / maximum value that can be produced by the 8
input switches? Use the answer to calculate the length of function “delay loop()”
depending on the input from GPIO B15...BS.

Lab 3A

“Knight - Rider” plus frequency control :
* modify Lab 2 :

* read the input switches (B15-B8)

* modify the frequency of the ‘running light’
(B7-B0) subject to the status of the input
switches, e.g. between 10sec and 0.01 sec per
step of the LED-sequence

* enable the watchdog timer !

* Verify that, ones your program is in the main
loop, the watchdog causes a reset periodically.

Procedure

Create Project File

1.

2.

Create a new project, called Lab3A.th in E\C281x\Labs.

Open the file Lab2.c from E:\C281x\Labs\Lab2 and save it as Lab3A.c in
E:\C281x\Labs\Lab3A.

Add the source code file to your project:

« Lab3A.c

From C:\tides\c28\dsp281x\W100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

DSP28 - Digital I/O

Lab 3A: Digital Input + Output

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd

From C:\ti\c2000\cgtoolslib add:

o rts2800_ml.lib

Setup Build Options
5. We need to setup the search path to include the peripheral register header files. Click:
Project - Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;..\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Lab3A.C

7. Modity the run time of function “delay loop”. The input parameter of this function
defines the run time of the software delay loop. All you have to do is to adjust the
actual parameter using the GP1O-input’s B15...B8.

8. The best position to update the parameter for the delay loop time is inside the endless
loop of main, between two steps of the “Knight Rider” sequence.

DSP28 - Digital I/0 3-27

Lab 3A: Digital Input + Output

Lab 3A (cont.)

Serve the watchdog :

* do not disable the watchdog timer !

* Inside the main-loop execute the watchdog-
reset instructions (WDKEY) to prevent the
watchdog timer from overflow.

* Place the software-delay in a function and
experiment with different delay period’s.
What is the period when the watchdog-timer
does reset the DSP ?

9. Remember, it is always good practice to work with an enabled watchdog! Eventually
for a large parameter for the period of delay loop() you will have to adjust your
watchdog good key sequence instructions to prevent the watchdog from causing a
RESET.

Build, Load and Test

10.Build, Load and Test as you’ve done in previous exercises.

DSP28 - Digital I/O

Lab 3B: Start / Stop Option

Lab 3B: Start / Stop Option

Objective

A last improvement of our Lab is to add a START/STOP option to it. The Zwickau
adapter board has two momentary push buttons connected to GPIO-D1 and GPIO-D6. If a
button is pushed, the input line reads ‘0’; if it is not pushed it reads ‘1°. The objective is
now to use D1 as a start button to start the ‘Knight Rider’ sequence and D6 to stop it.

Lab 3B

Add start/stop control:
* use Lab 2 to start:

* GPIO-D1 and D6 are connected to two push-
buttons. If they are pushed, the input level
reads 0, if released 1.

* Use D1 to start the LED “Knight-rider” and
D6 to halt it. If D1 is pushed again the
sequence should continue again.

* To do so, you also need to add the instructions
to initialise GPIO-D

Procedure

Create Project File

1. Create a new project, called Lab3B.th in E:\C281x\Labs.

2. Open the file Lab3A.c from E:\C281x\Labs\Lab3A and save it as Lab3B.c in
E:\C281x\Labs\Lab3B.

3. Add the source code file to your project:
» Lab3B.c

DSP28 - Digital I/0 3-29

Lab 3B: Start / Stop Option

4. From C:\tidcs\c28\dsp281x\vI00\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\vI00\DSP281x _common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd
From C:\tides\c28\dsp281x\vI100\DSP281x_headers\cmd add:
e F2812 Headers_nonBlIOS.cmd
From C:\ti\c2000\cgtoolslib add:

. rts2800_ml.lib

Setup Build Options
5. Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search Path (-
1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;..\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in
the Stack Size (-stack) box: 400

Close the Build Options Menu by Clicking <OK>.

Modify Lab3B.C

7. Take into account to modify the endless while(1) loop of main. The for-loop should
run after D1 is pushed and freeze when D6 is pushed. With the next D1 the procedure
should resume from its frozen status.

Build, Load and Test

8. Build, Load and Test as you’ve done in previous exercises.

3-30 DSP28 - Digital I/O

Interrupt System

Introduction

This module is used to explain the interrupt system of the C28x DSP.
So what is an interrupt?

Before we go into the technical terms let us start with an analogy; Think of a nice evening and
you working at your desk to prepare the next day laboratory experiments. Suddenly the phone
rings, you answer it and then you get back to work (after the interruption). The shorter the phone
call, the better! Of course, if the call comes from your girlfriend you might have to re-think your
next step due to the “priority” of the interruption... Anyway, sooner or later you will have to get
back to the preparation of the next day task; otherwise you might not pass the next exam.

This analogy touches some basic definitions for interrupts;
e interrupts appear “suddenly”: in technical terms it is called “asynchronous”
e interrupts might be more or less important: they have a “priority”
o they must be dealt with before the phone stops ringing: “immediately”

e the laboratory preparation should be continued after the call - the “interrupted task is
resumed”

o the time spent with the phone call should be as small as possible - “interrupt latency”

o after the call you should continue your work at the very position where you left it -
“context save” and “context restore”

To summarize the technical terms:

Interrupts are defined as asynchronous events, generated by an external or internal hardware unit.
This event causes the DSP to interrupt the execution of the current program and to start a service
routine, which is dedicated to this event. After the execution of this interrupt service routine the
program, that was interrupted, will be resumed.

The quicker a CPU performs this “task-switch”, the more this controller is suited for real time
control. After going through this chapter you will be able to understand the C28x interrupt
system.

At the end of this chapter we will exercise with an interrupt controlled program that uses one of
the 3 core timers of the CPU. The core timer’s period interrupt will be used to perform a periodic
task.

DSP28 - Interrupts 4-1

Module Topics

Module Topics

Interrupt System 4-1
TRIPOAUCHION ...ttt a ettt ettt ettt ettt e e ne et e ne e neaneas 4-1
MOAUIE TOPICS........ccoeeeeeeeeeieeiee ettt ettt et ettt b et e sae e it e e tt et e e ta e beesa e b e ensenssenseaseenns 4-2
C28X COFe INLETTUPE LITEScoeeeee ettt ettt ettt ettt et e e sbe et e e e et e ennee e 4-3
The C28X RESET ..ottt ettt ettt 4-4
ReS$€t BOOHOAUET ...t 4-5
TREEETUPDE SOUFCES ...ttt ettt ettt ettt et e et e st e et eenteeseneenneeenes 4-7
Maskable INterrupt PPOCESSINGccccoeiiciiiiiiiiieeiieteeteet ettt ettt 4-8
Peripheral INterrupt EXPARSTIONcccevimuiiuieiiniiieiesteeeet ettt e 4-10
C28X CPU TUIEES ..ottt ettt ettt ettt b et h ettt ettt ettt et et nee s 4-13
SUTIIIATY: <.t ettt ettt b e e e h et h et a e bt et b ettt et sae et nne e 4-15
Lab 4: CPU Timer 0 INterrupt & 8 LEDS.........ccc.ooouiiiiieiiieeeeieeet e n 4-16

DSP28 - Interrupts

C28x Core Interrupt Lines

C28x Core Interrupt Lines

The core interrupt system of the C28x consists of 16 interrupt lines; two of them are
called “Non-Maskable” (RESET, NMI). The other 14 lines are ‘maskable’ — this means
the programmer can allow or dis-allow interrupts from these 14 lines.

What does “maskable” or “non-maskable” mean?

A “mask” is a binary combination of ‘1’ and ‘0’. A ‘1’ stands for an enabled interrupt
line, a ‘0’ for a disabled one. By loading the mask into register “IER” we can select,
which interrupt lines will be allowed to request an interrupt.

For a “non-maskable” interrupt we can’t deny an interrupt request. Once the signal line
goes active, the running program will be suspended and the dedicated interrupt service
routine will start.

C28x Core Interrupt Lines

RS «—
NMI [«

INT1

::Ii : ¢ 2 non-maskable
INT4 b interrupts (RS,
INT5 [« “selectable” NMI)

Eesx INT6 [«— .
CORE N7 e ¢ 14 maskable interrupts

(INT1 — INT14)
INT8 «—

INT9 «—
INT10 [«—
INT11 [«
INT12 [«—
INT13 [«—
INT14 [«—

All 16 lines are connected to a table of ‘interrupt vectors’, which consists of 32 bit
memory locations per interrupt. It is the responsibility of the programmer to fill this table
with the start addresses of dedicated interrupt service routines.

DSP28 - Interrupts 4-3

The C28x RESET

The C28x RESET

A high to low transition at the external “/RS” pin will cause a reset of the DSP. This event will
force the DSP to start from its reset address (code memory 0x3F FFCO0). This event is not an
‘interrupt’ in the sense that the old program will be resumed. A reset is generated during
powering up the DSP.

Another source for a reset is the overflow of the watchdog timer. To inform all other external
devices that the DSP has acknowledged a reset, the DSP itself drives the reset pin. This means
that the reset pin must be bi-directional!

C28x Reset Sources
C28x Core
Watchdog Timer
RS
RS pin active
To RS pin
4-3

Reset will force the DSP not only to start from address 0x3F FFCO, it will also clear all internal
operation registers, reset a group of CPU-Flags to initial states and disable all 16 interrupt lines.
We will not go into details about all the flags and registers for now, please refer to the data sheet
of the F28x.

Let’s have a look now into the start procedure triggered by a reset. Remember, the memory map
of the C28x allows us to have two memories at physical address 0x3F FFCO, the internal ROM
and the external memory. Another physical pin, called Microprocessor/Microcontroller-Mode
(XMP/MC) makes the decision as to which one will be used. Setting this pin to 1 will select the
external memory and disable the internal address. Connecting this pin to zero will select the
internal ROM to be used as the start address area. The status of XMP/MC will be copied into a
flag ‘XMP/MC’ that can be used by software later.

DSP28 - Interrupts

Reset Bootloader

Reset Bootloader

When internal ROM is selected, bootloader software is started. This function determines the next
step, depending on the status of four GPIO —pins. On the eZdsp we have 5 jumpers to setup the
start condition (JP1, JP7, JPS, JP11, and JP12 — see manual).

Reset — Bootloader

XMPNMC=1

(microprocessor mode)
Reset Reset vector fetched
OBJMODE=0 AMODE=0 » from XINTF zone 7
ENPIE=0 VMAP=1 0x3F FFCO
MOM1MAP=1

XMPNMC=0
(microcomputer mode)

Re:-‘::rr‘:%cgg: fRe(t)ﬁed Boot determined by

"| state of GPIO pins

0x3F FFCO

Execution Bootloading
Notes: Entry Point Routines
- FLASH SPI
F2810 XMPNMC tied low internal to device HO SARAM SCI-A
XMPNMC refers to input signal OTP Parallel load
MP/MC is status bit in XINTFCNF2 register
XMPNMC only sampled at reset 4-

Bootloader Options

GPIO pins
F4 F12 F3 F2
1 X X X [jump to FLASH address 0x3F 7FF6 *
0 0 1 0 |jumpto HO SARAM address 0x3F 8000 *
0 0 0 1 |jumpto OTP address 0x3D 7800 *
0 1 x x | bootload external EEPROM to on-chip memory via SPI port
0 0 1 1 |bootload code to on-chip memory via SC/-A port
0 0 0 0 |bootload code to on-chip memory via GPIO port B (parallel)

* Boot ROM software configures the device for C28x mode before jump

DSP28 - Interrupts

Reset Bootloader

For our Lab exercises we use HO SARAM as execution entry point. Make sure that the eZdsp’s
jumpers are set to: JP1 - 2:3; JP7 — 2:3; JP8 — 2:3; JP11 — 1:2 and JP12 — 2:3. The next slide
summarises the reset code flow for the 6 options in microcontroller mode.

Reset Code Flow - Summary

0x3D 7800

OTP (2K)

0x3D 8000 [+,
| FLASH (128K)
— 0x3F 7FF6
0x3F 8000 [~ o SARAM (8K)

Execution Entry

0x3F F000 Boot ROM (4K) Point Determined ---~

Boot Code By GPIO Pins
0x3F FC00 T
BROM vector (32) H
RESET BB 0x3F FFCO|___ 0x3F FCO00 Bootloading
Routines
——————————————————————— (SPI, SCI-A,

_______________________ Parallel Load)

The option ‘Flash Entry’ is usually used at the end of a project development phase when the
software flow is bug free. To load a program into the flash you will need to use a specific
program, available either as Code Composer Studio plug in or as a stand-alone tool. For our lab
exercises we will refrain from loading (or ‘burning”) the flash memory.

The bootloader options via serial interface (SPI / SCI) or parallel port are usually used to
download the executable code from an external host or to field update the contents of the flash
memory. We will not use these features during this tutorial.

OTP-memory is a ‘one time programmable’ memory; there is no second chance to fill code into
this non-volatile memory. This option is usually used for company specific startup procedures
only. Again, to program this portion of memory you would need to use Code Composer Studio’s
plug in. You might assess your experimental code to be worth storing forever, but for sure your
teacher will not. So, PLEASE do not upset your supervisor by using this option, he want to use
the boards for future classes!

DSP28 - Interrupts

Interrupt Sources

Interrupt Sources

As you can see from the next slide the DSP has a large number of interrupt sources (96 at the
moment) but only 14 maskable interrupt inputs. The question is: How do we handle this
‘bottleneck’?

Obviously we have to use a single INT-line for multiple sources. Each interrupt line is connected
to its interrupt vector, a 32-bit memory space inside the vector table. This memory space holds
the address for the interrupt service routine. In case of multiple interrupts this service routine
must be used for all incoming interrupt requests. This technique forces the programmer to use a
software based separation method on entry of this service routine. This method will cost
additional time that is often not available in real time applications. So how can we speed up this
interrupt service?

Interrupt Sources
Internal Sources
TINT2
TINTO ———— RS
EV and Non-EV PIE NMI
Peripherals (Peripheral INT1
(EV, ADC, SPI, IR INT2
SCI, McBSP, CAN) Expansion) a INT3
External Sources .
XINTA INT12
X5 INT13
- INT14
PDPINTx —
RS
XNMI_XINT13
________ 4-9

The answer is the PIE (Peripheral Interrupt Expansion)-unit.

This unit ‘expands’ the vector address table into a larger scale, reserving individual 32 bit entries
for each of the 96 possible interrupt sources. An interrupt response with the help of this unit is
much faster than without it. To use the PIE we will have to re-map the location of the interrupt
vector table to address Ox 00 0D00. This is in volatile memory! Before we can use this memory
we will have to initialise it.

Don’t worry about the PIE-procedure for the moment, we will exercise all this during Lab4.

DSP28 - Interrupts 4-7

Maskable Interrupt Processing

Maskable Interrupt Processing

Before we dive into the PIE-registers, we have to discuss the remaining path from an interrupt
request to its acknowledgement by the DSP. As you can see from the next slide we have to close
two more switches to allow an interrupt request.

Maskable Interrupt Processing
Conceptual Core Overview

Core (IFR) (IER) (INTM)

Interrupt “Latch” “Switch” “Global Switch”

INTT ——[1] o > >

INT2 —{ 0] e > | C28x
. . . " ,| Core
iNT1a — [. .

¢ A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

¢ If the individual and global switches are turned “on” the
interrupt reaches the core

4-10
Interrupt Flag Register (IFR)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INTS | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INTA |

Pending: IFRg;=1
Absent : IFRg;:=0

[*** Manual setting/clearing IFR ***/

extern cregister volatile unsigned int IFR;
IFR |= 0x0008; llset INT4 in IFR
IFR &= OxFFF7; llclear INT4 in IFR

& Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
If interrupt occurs when writing IFR, interrupt has priority
& IFR(bit) cleared when interrupt is acknowledged by CPU
& Register cleared on reset

4-8 DSP28 - Interrupts

Maskable Interrupt Processing

Interrupt Enable Register (IER)

15 14 13 12 11 10 9 8
|RTOSINT|DLOGINT| INT14 | INT13 | INT12 | INT11 | INT10 | INT9 |
7 6 5 4 3 2 1 0
| INTS | INT7 | INT6 | INT5 | INT4 | INT3 | INT2 | INT1 |

Enable: Set IERg; =1
Disable: Clear IERg;=0

[*** Interrupt Enable Register ***/

extern cregister volatile unsigned int IER;
IER |= 0x0008; /lenable INT4 in IER
IER &= O0xFFF7; /ldisable INT4 in IER

& Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER

& Register cleared on reset

Interrupt Global Mask Bit

Bit 0
ST INTM

¢ INTM used to globally enable/disable interrupts:
+ Enable:INTM =0
+ Disable: INTM =1 (reset value)

¢ INTM modified from assembly code only:

I*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); /I/disable global interrupts

DSP28 - Interrupts 4-9

Peripheral Interrupt Expansion

Peripheral Interrupt Expansion

All 96 possible sources are grouped into 12 PIE-lines, 8 sources per line. To enable/disable
individual sources we have to program another group of registers: ‘PIEIFRx’ and ‘PIEIERx’.

Peripheral Interrupt Expansion - PIE

Interrupt Group 1
PIEIFR1 PIEIER1

PIE module for 96 Interrupts

© -
o INT1.x interrupt group INT1.1—{T] A
I INT2.x interrupt group [-
- INT1.2—[0}—— —
INT3.x interrupt group . . NTT
INT4.x interrupt group ° .
INT5.x interrupt group : /.
INT1 .8—>]

INT6.x interrupt group
INT7.x interrupt group

18l

28x Core Interrupt logic

INT8.x interrupt group

Peripheral Interrupts 12x8

INT9.x interrupt group | | 'NT1-INT 12
INT10.x interrupt group | | 43 |nterrupts ﬁ E 28x
=| |Z]| [Core

INT11.x interrupt group

INT12.x interrupt group

3 (TINT1/XINT13)

4 (TINT2)
NMI
4-14
PIE Registers
PIEIFRx register (x=1to 12)
15-8 7

| reserved | INTx.8| INTx.7| INTx.6| INTx.5| INTx.4| INTx.3| INTx.2| INTx.1|

PIEIERX register (x=1to12)
15-8 7 6

| reserved | INTx.8| INTx.7| INTx.6| INTx.5| INTx.4| INTx.3| INTx.2| INTx.1|

PIE Interrupt Acknowledge Reglster (PIEACK)

15-12 11 10 9 8 4 3 2 1 0
| reserved | PIEACKXx |
PIECTRL register 15-1 0
| PIEVECT | ENPIE |

#include “DSP28_Device.h”
PieCtrIRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrIRegs.PIEIER3.bit.INTx5 = 1; //enable CAPINT1 in PIE group 3
PieCtrIRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrIRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

4-10 DSP28 - Interrupts

Peripheral Interrupt Expansion

All interrupt sources are connected to interrupt lines according to this assignment table:

F2812/10 PIE Interrupt Assignment Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1
INT1 WAKEINT TINTO ADCINT XINT2 XINT1 PDPINTB | PDPINTA
INT2 T1OFINT | T1UFINT | T1CINT T1PINT CMP3INT | CMP2INT | CMP1INT
INT3 CAPINT3 | CAPINT2 | CAPINT1 | T20FINT | T2UFINT T2CINT T2PINT
INT4 T3OFINT | T3UFINT T3CINT T3PINT CMP6INT | CMP5INT | CMP4INT
INT5 CAPINT6 | CAPINT5 | CAPINT4 | TAOFINT | T4UFINT T4CINT T4PINT
INT6 MXINT MRINT SPITXINTA|SPIRXINTA
INT7
INT8
INT9 ECAN1INT| ECANOINT|SCITXINTB|SCIRXINTB|SCITXINTA[SCIRXINTA
INT10
INT11
INT12
4-18

Examples: ADCINT = INT1.6; T2PINT = INT3.1; SCITXINTA =INT9.2

The vector table location at reset is:

Default Interrupt Vector Table at Reset
Prio| Vector Offset
1 Reset 00 Default Vector Table
5 Int 1 02 Remapped when
6 | Int2 04 ENPIE = 1
7 Int 3 06
8 Int 4 08
9| Int5 0A
10 | nte oc
1; Int 7 0E
13 Int 8 10
14 | Int 9 12 PIE Vectors
15 | Int10 14 e
16 | Int11 16 Y.
17 | Int12 18 | N\ e
18 | Int13 1A
19 | Int14 1C 0x3F FFCO ™,
Diogint 1E BROI\6II4Vv¢\a’ctors
4 Rtosint 20 0x3F FFFF
2 | Emulint 22
S| Bl 24 PIE vector generated by config Tool
- IIIegaI = Used toginitialize Plé vect:;rs
- User 1-12 28-3E 4-16

DSP28 - Interrupts 4-11

Peripheral Interrupt Expansion

The PIE re-map location looks like this:

PIE Vector Mapping (ENPIE = 1)
Vector name |PIE vector address PIE vector Description
Not used 0x00 ODOO Reset Vector Never Fetched Here
—— INT1 0x00 0ODO2 INT1 re-mapped below
T T re-mapped below
| INT12 0x00 0D18 INT12 re-mapped below
| INT13 0x00 ODl1Aa XINT1 Interrupt Vector
| INT14 0x00 0OD1C Timer2 - RTOS Vector
| Datalog 0x00 OD1D Data logging vector
|
| USER11 0x00 OD3E User defined TRAP
— > INT1.1 0x00 0D40 PIEINT1.1 interrupt vector
INT1.8 0x00 OD4E PIEINT1.8 interrupt vector
INT12.1 0x00 ODFO PIEINT12.1 interrupt vector
INT12.8 0x00 ODFE PIEINT12.8 interrupt vector
> PIE vector space - 0x00 0D00 — 256 Word memory in Data space
> RESET and INT1-INT12 vector locations are Re-mapped
> CPU vectors are remapped to 0x00 0D0O0 in Data space 4-17

As you can see from the slide, the address area 0x00 0D40 to 0x00 ODFF is used as the expansion
area. Now we do have 32 bits for each individual interrupt vector PIEINT1.1 to PIEINT12.8.

Device Vector Mapping - Summary

MPNMC = 0 (on-chip ROM memory) MPNMC = 1 (external memory XINTF)
Reset Vector <0x3F FFCO> = Boot-ROM Code Reset Vector <0x3F FFCO> = _c_int00
Flash Entry Point <0x3F 7FF6 > = LB _c_int00 User Code Start <_c_int00>
User Code Start < _c_int00 >

_c_int00:

CALL main()

Initialization ()

{

- EALLOW
main () Load PIE Vectors
{ initialization() ; Enable the PIEIER
L Enable PIECTRL
} Enable Core IER
Enable INTM

EDIS

}

4-19

4-12 DSP28 - Interrupts

C28x CPU Timers

C28x CPU Timers

The C28x has 3 32-Bit CPU Timers. The block diagram for one timer is shown here:

C28x CPU Timers

RESET
Timer Reload
A 4
16 - Bit divide down - Bi :
TDDRH:TDDR 3 it bertod
SYSCLKOUT
> 16 - Bit prescaler 32 - Bit counter
PSCH:PSC TIMH:TIM
TCRA4
.
BORROW R
O >

INT

As you can see the clock source is the internal clock “SYSCLKOUT” which is usually 150MHz,
assuming an external oscillator of 30MHz and a PLL-ratio of 10/2. Once the timer is enabled
(TCR-Bit 4) the incoming clock counts down a 16-Bit prescaler (PSCH: PSC). On underflow, its
borrow signal is used to count down the 32 bit counter (TIMH: TIM). At the end, when this timer
underflows, an interrupt request is transferred to the CPU.

The 16-bit divide down register (TDDRH: TDDR) is used as a reload register for the prescaler.
Each times the prescaler underflows the value from the divide down register is reloaded into the

prescaler. A similar reload function for the counter is performed by the 32-bit period register
(PRDH_PRD).

Timer 1 and Timer 2 are usually used by Texas Instruments real time operation system
“DSP/BIOS” whereas Timer 0 is free for general usage. Lab 4 will use Timer 0. This will not
only preserve Timer 1 and 2 for later use together with DSP/BIOS but also help us to understand
the PIE-unit, because Timer 0 is the only timer of the CPU that goes through the PIE. Note: The
Event Manager Timer T1, T2, T3 and T4 are explained later. Do not mix up the Core Timer
group with the Event Manager (EVA and EVB)!

‘When the DSP comes out of RESET all 3-core timers are enabled.

DSP28 - Interrupts 4-13

C28x CPU Timers

C28x Timer Interrupt System

PIE unit

TINTO

INT1.7 interrupt

28x Core Interrupt logic

|
_‘ INT1

—
TINT1 / XINT13 INT13 s 28x
INT1 4‘: E Core
TINT2 R
4-23
C28x Timer Registers
Address Register Name
0x0000 0C00 TIMEROTIM Timer 0, Counter Register Low
0x0000 0C01 TIMEROTIMH Timer 0, Counter Register High
0x0000 0C02 TIMEROPRD Timer 0, Period Register Low
0x0000 0C03 TIMEROPRDH Timer 0, Period Register High
0x0000 0C04 TIMEROTCR Timer 0, Control Register
0x0000 0C06 TIMEROTPR Timer 0, Prescaler Register
0x0000 0C07 TIMEROTPRH Timer 0, Prescaler Register High
0x0000 0C08 TIMERITIM Timer 1, Counter Register Low
0x0000 0C09 TIMERITIMH Timer 1, Counter Register High
0x0000 0COA TIMER1PRD Timer 1, Period Register Low
0x0000 0COB TIMER1PRDH Timer 1, Period Register High
0x0000 0COC TIMERITCR Timer 1, Control Register
0x0000 0COD TIMERITPR Timer 1, Prescaler Register
0x0000 0COF TIMERITPRH Timer 1, Prescaler Register High

0x0000 0C10 to 0C17 Timer 2 Registers ; same layout as above

DSP28 - Interrupts

Summary:

C28x Timer Control Registers
TIMERxTCR
Emulator Interaction
Timer Interrupt Flag Timer Interrupt Enable 1x = run free
Write 1 clear bit Write 1 to enable INT
15 14 13 12 11 {/9
TIF TIE reserved | reserved | FREE SOFT | reserved | reserved
7 6 5 4 3 2 1 0
reserved | reserved TRB TSS reserved | reserved | reserved | reserved
Timer Reload Bit Timer Stop Status
1 =reload 0 = start/ 1 = stop
4-25

Summary:

Sounds pretty complicated, doesn’t it? Well, nothing is better suited to understand the PIE unit
than a lab exercise. Lab 4 is asking you to add the initialization of the PIE vector table, to re-map
the vector table to address 0x00 0D00 and to use CPU Timer 0 as a clock base for the source code
of Lab 2 (“Knight Rider”).

Remember, so far we generated time periods with the software-loop in function “delay loop()”.
This was a poor use of processor time and not very precise.

The procedure on the next page will guide you through the necessary steps to modify the source
code step by step.

Take your time!

We will use functions, predefined by Texas Instruments as often as we can. This principle will
save us a lot of development time; we don’t have to re-invent the wheel again and again!

DSP28 - Interrupts 4-15

Lab 4: CPU Timer 0 Interrupt & 8 LED’s

Lab 4: CPU Timer 0 Interrupt & 8 LED’s

Objective

The objective of this lab is to include a basic example of the interrupt system into
the “Knight Rider” project of Lab2. Instead of using a software delay loop to
generate the time interval between the output steps, which is a poor use of
processor time, we will now use one of the 3 core CPU timers to do the job. One
of the simplest tasks for a timer is to generate a periodic interrupt request. We can
use its interrupt service routine to perform periodic activities OR to increment a
global variable. This variable will then show the number of periods that are
elapsed from the start of the program.

CPU Timer 0 is using the Peripheral Interrupt Expansion (PIE) Unit. This gives us
the opportunity to exercise with this unit as well. Timer 1 and 2 are bypassing the
PIE-unit and they are usually reserved for Texas Instruments real time operating
system, called “DSP/BIOS”. Therefore we implement Timer O as the core clock
for this exercise.

Procedure

Open Files, Create Project File

1. Create a new project, called Lab4.pjt in E:\C281x\Labs.

2. Open the file Lab2.c from E:\C281x\Labs\Lab2 and save it as Lab4.c in
E:\C281x\Labs\Lab4.

3. Add the source code file to your project:
e Lab4d.c

4. From C:\tides\c28\dsp281x\Wv100\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd
From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers _nonBIOS.cmd
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

DSP28 - Interrupts

Lab 4: CPU Timer 0 Interrupt & 8 LED'’s

Modify Source Code

5.

10.

Open Lab4.c to edit: double click on “Lab4.c” inside the project window. At the start
of your code add the function prototype statement for CPU Timer0 Interrupt Service:

interrupt void cpu_timer0_isr(void);
Inside main, direct after the function call “Gpio_select()” add the function call to:
InitPieCtrl();

This is a function that is provided by TI’s header file examples. We use this function
as it is. The purpose of this function is to clear all pending PIE-Interrupts and to
disable all PIE interrupt lines. This is a useful step when we’d like to initialize the
PIE-unit. Function “InitPieCtrl ()” 1is defined in the source code file
“DSP281x_PieCtrl.c”’; we have to add this file to our project:

From C:\tides\c28\dsp28 1x\v100\DSP28 1x_common\source add to project:
DSP281x_PieCtrl.c

Inside main, direct after the function call “InitPieCtrl();” add the function call to:
InitPieVectTable();

This TI-function will initialize the PIE-memory to an initial state. It uses a predefined
interrupt table “PieVectTablelnit()” — defined in source code file
“DSP281x_PieVect.c” and copies this table to the global variable “PieVectTable” —
defined in “DSP281x_GlobalVariableDefs.c”. Variable “PieVectTable” is linked to
the physical memory of the PIE area. To be able to use “InitPieVectTable” we have
to add two more code files to our project:

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
DSP281x_PieVect.c and
DSP281x_Defaultlsr.c

Code file “DSP281x_Defaultlsr.c” will add a lot of interrupt service routines to our
project. When you open and inspect this file you will find that all ISR’s consist of an
endless for-loop and a specific assembler instruction “ESTOPO”. This instruction
behaves like a software breakpoint. This is a security measure. Remember, at this
point we have disabled all PIE interrupts. If we would now run the program we
should never see an interrupt request. If, for some reason like a power supply glitch,
noise interference or just a software bug, the DSP calls an interrupt service routine
then we can catch this event by the “ESTOPO0” break.

Now we have to re-map the entry for CPU-TimerO Interrupt Service from the

“ESTOPO” operation to a real interrupt service. Editing the source code of TI’s code
“DSP281x_Defaultlsr.c” could do this. Of course this is not a good choice, because
we’d modify the original code for this single Lab exercise. SO DON’T DO THAT!

DSP28 - Interrupts

Lab 4: CPU Timer 0 Interrupt & 8 LED’s

11.

12.

13.

14.

15.

A much better way is to modify the entry for CPU-Timer0 Interrupt Service directly
inside the PIE-memory. This is done by adding the next 3 lines after the function call
of “InitPieVectTable();":

EALLOW;
PieVectTable.TINTO = &cpu_timer0_isr;
EDIS;

EALLOW and EDIS are two macros to enable and disable the access to a group of
protected registers and the PIE is part of this area. “cpu_timer(Q_ist” is the name of
our own interrupt service routine for Timer0. We made the prototype statement
earlier in the procedure of this Lab. Please be sure to use the same name as you used
in the prototype statement!

Inside main, directly after the re-map instructions from procedure step 10 add the
function call “InitCpuTimers();”. This function will set the core Timer0 to a known
state and it will stop this timer.

InitCpuTimers();

Again, we use a predefined TI-function. To do so, we have to add the source code
file “DSP281x_CpuTimers.c” to our project.

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
DSP281x_CpuTimers.c

Now we have to initialize TimerO to generate a period of 50ms. TI has provided a
function “ConfigCpuTimer”. All we have to do is to pass 3 arguments to this
function. Parameter 1 is the address of the core timer structure, e.g. “CpuTimer0”;
Parameter 2 is the internal speed of the DSP in MHz, e.g. 150 for 150MHz;
Parameter 3 is the period time for the timer overflow in microseconds, e.g. 50000 for
50 milliseconds. The following function call will setup Timer0 to a S0ms period:

ConfigCpuTimer(&CpuTimer0, 150, 50000);
Add this function call in main directly after the line InitCpuTimers();
Before we can start timer0) we have to enable its interrupt masks. We have to care
about 3 levels to enable an individual interrupt source. Level 1 is the PIE unit. To
enable we have to set bit 7 of PIEIER1 to 1. Why? Because the TimerO interrupt is
hard connected to group INT1, Bit7. Add the following line to your code:
PieCtrIRegs.PIEIER1.bit.INTx7 = 1;

Next, enable interrupt core line 1 (INT1). Modify register IER accordingly.

DSP28 - Interrupts

Lab 4: CPU Timer 0 Interrupt & 8 LED'’s

16.

17.

18.

19.

20.

21.

22.

Next, enable interrupts globally. This is done by adding the two macros:
EINT; and
ERTM;

Finally we have to start the timer 0. The bit TSS inside register TCR will do the job.
Add:

CpuTimerORegs.TCR.bit.TSS = 0;

After the end of main we have to add our new interrupt service routine
“cpu_timer(0_isr”. Remember, we’ve prototyped this function at the beginning of our
modifications. Now we have to add its body. Inside this function we have to perform
two activities:

1* - increment the interrupt counter “CpuTimer0.InterruptCount”. This way we
will have global information about how often this 50 milliseconds task was called.

2" _ acknowledge the interrupt service as last line before return. This step is
necessary to re-enable the next timer0 interrupt service. It is done by:

PieCtriIRegs.PIEACK.all = PIEACK_GROUP1;

Now we are almost done. Inside the endless while(1) loop of main we have to delete
the function call: “delay loop(1000000);”. We do not need this function any longer;
we can also delete its prototype at the top of our code and its function body, which is
still present after the code of “main”.

Inside the endless loop “while(1), after the “if-else”-construct we have to implement
a statement to wait until the global variable “CpuTimer0.InterruptCount” has reached
a predefined value, which is the multiple of 50 milliseconds. Setup a wait-statement
for 150 milliseconds. Remember to reset the variable “CpuTimer0.InterruptCount” to
zero when you continue after the wait statement.

Done?

No, not quite! We forgot the watchdog! It is still alive and we removed the service
instructions together with the function “delay loop()”. So we have to add the
watchdog reset sequence somewhere into our modified source code. Where? A good
strategy is to service the watchdog not only in a single portion of our code. Our code
now consists of two independent tasks: the while-loop of main and the interrupt
service routine of timer 0. Place one of the two reset instructions for WDKEY into
the ISR and the other one into the while(1)-loop of main.

If you are a little bit fearful about being bitten by the watchdog, then disable it first;
try to get your code running without it. Later, when the code works as expected, you
can re-think the watchdog service part again.

DSP28 - Interrupts

Lab 4: CPU Timer 0 Interrupt & 8 LED’s

Project Build Options

23. We need to setup the search path to include the peripheral register header files. Click:
Project - Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;..\include

24. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Build and Load

25. Click the “Rebuild All” button or perform:
Project - Build

and watch the tools run in the build window. If you get errors or warnings debug
as necessary.

26. Load the output file down to the DSP Click:

File 2 Load Program and choose the desired output file.

Test

27. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug 2 Restart

28. Run the program until the first line of your C-code by clicking:

Debug 2> Go main.

29. Debug your code as you’ve done in previous labs.

4-20 DSP28 - Interrupts

C28x Event Manager

Introduction

Now it is time to discuss one of the most powerful hardware modules of the C28x, called the
‘Event Manager (EV)’. An EV is a unit that is able to deal with different types of time-based
procedures. The core of this manager is a little bit similar to the DSPs core timer units Timer 0, 1
and 2. Although the Event Manager Timer units are also called "Timer 1, 2, 3 and 4", these timers
are totally independent of the three core timers. So please do not mix them up! From now, when
we speak of a timer unit, we have to clarify if it is a Core timer or an Event Manager timer!

The Event Manager Timer unit is a 16-bit counter/timer unit, whereas a Core Timer is a 32-bit
register. The most important difference between the Event Manager and the Core timers is its
input/output system. An EV is able to produce hardware signals directly from an internal time
event. Thus this unit is most often used to generate time based digital hardware signals. This
signal is a digital pulse with binary amplitude (0, 1). With the help of the EV-logic we can modify
the frequency and/or the pulse width of these output signals. When we apply an internal control
scheme to modify the shape of the signals during run time, we call this ‘Pulse Width Modulation’
(PWM).

PWM is used for two main purposes:
e Digital Motor Control (DMC)
e Analogue Voltage Generator

We will discuss these two main areas a little bit later. The C28x is able to generate up to 16 PWM
output signals.

The Event Manager is also able to perform time measurements based on hardware signals. With
the help of 6 edge detectors, called ‘Capture Unit’s’ we can measure the time difference between
two hardware signals to determine the speed of a rotating shaft in rotations per minute.

The third part of the Event Manager is called ‘Quadrature Encoder Pulse’ —unit (QEP). This is a
unit that is used to derive the speed and direction information of a rotating shaft directly from
hardware signals from incremental encoders or resolvers.

The C28x is equipped with two Event Managers, called EVA and EVB. These are two identical
hardware units; two 16-bit timers within each of these EVs generate the time base for all internal
operations. In case of EVA the timers are called ‘General Purpose Timer’ T1 and T2, in case of
EVB they are called T3 and T4.

This module includes also two lab-exercises ‘Lab5’ and ‘Lab5A’ based on the eZdsp and the
Zwickau Adapter board. To perform Lab5A you will need a simple analogue oscilloscope.

DSP28 - Event Manager 5-1

Module Topics

Module Topics

C28x Event Manager 5-1
TRIPOAUCHION ...ttt a ettt ettt ettt ettt e e ne et e ne e neaneas 5-1
MOAUIE TOPICS........ccoeeeeeeeeeieeiee ettt ettt et ettt b et e sae e it e e tt et e e ta e beesa e b e ensenssenseaseenns 5-2
Event Manager BlOCKk DIG@EAMc.cccoocueiiiiiiieieeiece ettt ettt eae e saa e eeaessaennas 5-3
GENETAL PUFPOSE TIMET ...ttt ettt ettt ettt e e bt ettt et e ste b e enaeeseensenaeenaeeneenes 5-4
Timer OPerating MOGESc.cccueeeeiueeiesieii et ettt sttt ettt ae et e sbeesbe bt enbeeseenseentesseensesnee e 5-5
TREEETUPDE SOUFCES ...ttt ettt ettt ettt et e et e st e et eenteeseneenneeenes 5-6
GP TMEF REGISTOFS ...ttt ettt ettt 5-7
GP TIMEF INIEFFUPDLS ...ttt ettt 5-12
Lab 5: Let’s PIAY G HUNE!oocuooeiieiiieeee ettt ettt ettt ettt aae s 5-14
Event Manager COmPAre UNILScccccuuoiiieiiiiiiie sttt ettt sttt 5-20
CADTUIE URILS ..ottt et e bttt e st e e it e st e st e e e sbeeasaeesbeeeseeenseesbeeeaseeseesnseanns 5-31
Quadrature Encoder Pulse URIt (QEP)ccoccoiiiiieiieieeeeieeie ettt ettt aessaese s s anes 5-36
Lab 5A4: Generate @ PWM SINE WAVEccccueiiiiiaeiiieeeeeee ettt 5-39
OPEIONAL EXCFCIS@.......oceeieeeeeeee ettt ettt ettt eae et sbe st ebeesbeeta e b e e ssesaeesaesseetsessesnaennas 5-50

DSP28 - Event Manager

Event Manager Block Diagram

Event Manager Block Diagram

Each Event Manager is controlled by its own logic block. This logic is able to request various
interrupt services from the C28x PIE unit to support its operational modes. Two external input
signals ‘TCLKINA’ and ‘TDIRA’ are optional control signals and are used in some specific
operational modes. A unique feature of the Event Manager is it ability to start the Analogue to
Digital Converter (ADC) from an internal event. A large number of common microprocessors
would have to request an interrupt service to do the same — the C28x does this automatically. We
will use this feature in the next module!

The GP Timers 1 and 2 are two 16-bit timers with their own optional output signals
TIPWM/TICMP and T2PWM/T2CMP. We can also use the two timers for internal purposes
only. Recall: to use any of the C28x units we have to set the multiplex registers for the I/O ports
accordingly!

Compare Unit 1 to 3 are used to generate up to 6 PWM signals using GP Timer 1’s time base. A
large number of technical applications require exactly 6 control signals, e.g. three phase electrical
motors or three phase electrical power converters.

Three independent capture units CAPI1, 2, and 3 are used for speed and time estimation. An
incoming pulse on one of the CAP lines will take a ‘time stamp’ from either GP Timer 1 or 2.
This time stamp is proportional to the time between this event and the previous one.

The QEP-unit redefines the 3 input lines CAP1, 2, and 3 to be used as sensed edge pulses (QEP1,
2) and a zero degree index pulse (QEPI1) for an incremental encoder.

Event Manager Block Diagram (EVA)

Reset¢ T PIE
2
<—>| EV Control Registers / Logic"j, L%Lch:aﬁtl TDIRA

GP Timer 1 Compare
GP Timer 1

A4

Output Logic———— — » T1IPWM_T1CMP

A

3 R P . F—>PWM1
2 Compare Unit 1 » PWM Circuits | Output Logic [5 piym2
g < » Compare Unit 2 > PWM Circuits| Output Logic [gwmz
5 Compare Unit 3 » PWM Circuits | Output Logic 5 PWMS5

v

GP Timer 2 Compare Output Logic———— > T2PWM_T2CMP

GP Timer 2
CLK «— QEP
DIR «—{Circuit
A
< T CAP1/QEP1
< > Capture Units < CAP2/QEP2
< CAP3/QEPI1

DSP28 - Event Manager 5-3

General Purpose Timer

General Purpose Timer

The central logic of a General Purpose Timer is its Compare Block. This unit continually
compares the value of a 16-bit counter (TXCNT) against two other registers: Compare (TXCMPR)
and Period (TxPR). If there is a match between counter and compare, a signal is sent to the output
logic to switch on the external output signal (TxPWM). If counter matches period, the signal is
switched off. This is the basic operation in “asymmetric”” mode. The second basic operating mode
- “symmetric” mode — will be explained a little bit later. Register GPTCONA controls the shape
of the physical output signal.

The timer’s clock source is selectable to be an external signal (TCLKIN), the QEP-unit or the
internal clock. TxCON-bits5 and 4 control the multiplexer. In case of internal clock selection the
clock is derived from the high-speed clock prescaler (HSPCLK). When you calculate the desired
period you will have to take into account the setup of register HISPCP! To adjust the period of a
General Purpose Timer one can use an additional prescaler (TPS, TxCON2-0), which gives a
scaling factor between 1 and 128.

The direction of counting depends on the selected operation mode.

General-Purpose Timer Block Diagram (EVA)

(l-llgtlf(rjl;?ll() TxCMPR . 15 - (|

TPS 2-0 Shadowed
Clock TxCON.10-8 Compare
Prescaler Register
T ! —
TxCNT.15-0] GPTCONA
M . .
16 - Bit Timer Compare Output TxPWM_
External g | Counter Logic Logic TxCMP
QEP——
TCLKS 1-0

Period
Register
Shadowed

Note: x=1or2 TxPR.15-0

TxCON.5-4

Another unique feature of the C28x is its “shadow” functionality of operating registers, in the
case of GP Timers 1 and 2 available for compare register and period register. For some
applications it is necessary to modify the values inside a compare or period register every period.
The advantage of the background registers is that we can prepare the values for the next period in
the previous one. Without a background function we would have to wait for the end of the current
period, and then trigger a high priorized interrupt. Sometimes this principle will miss its
deadline...

DSP28 - Event Manager

Timer Operating Modes

Timer Operating Modes

Continuous-Up Counting Mode
(Used for Asymmetric PWM Waveforms)
This example:
TxCON.3-2 =00 (reload TxCMPR on underflow)
TxPR=3 : .
Seamless counting continues
TxCMPR = 1 (initially) * nting
Prescale = 1 + Up count period is TxPR+1
CPU writes a 2 to
compare reg. buffer
anytime here TyCMPR=2 is loaded here
—————— sl —
3! 3!
2
1
TXCNT Reg. —| | 0 . § 0
TXPWM/TXCMP___ | | | C L oL T
(active high) P i i
ceock LU LU UL
5-5

The slides give two examples of the two most used operating modes. Note: There are two more
modes — see data sheet.

Continuous-Up/Down Counting Mode

(Used for Symmetric PWM Waveforms)

This example:
TxCON.3-2 =01 (reload TxCMPR on underflow or period match)
TxPR=3

TxCMPR = 1 (initially)

+ Seamless up/down repetition

Prescale = 1 + Up/down count period is 2*TxPR
TxCMPR load TxCMPR loads TxCMPR loads
witha 1 : with a 2 / witha 1
i3 i3

TxCNT Reg.

TxPWM/TxCMP I l l l

(active high) : : :

DSP28 - Event Manager 5-5

Interrupt Sources

Interrupt Sources

Each of the two timers of Event Manager A (EVA) is able to generate four types of interrupt
requests: timer underflow (counter equals zero), timer compare (counter equals compare register),
timer period (counter equals period register) and timer overflow (counter equals OXFFFF — not
shown on slide). The slide also shows two options for the physical shape of the output signal
(TxPWM) -"active high” and “active low”. The two options not shown are “forced low” and
“forced high”. All four options are controlled by register GPTCONA.

Generated Outputs and Interrupts

PWM period #2

<
' P
New Period is

CPU Changes
Auto-loaded on

Period Reg. Buffer | Underflow h
anytime here H nderflow here
i

| PWM period #1 | A ,

5 1 \ \l

= 1 I !

H £ Comp2 /\ { /\ 1 i
NG | |
5> Compl '

E ' ; |

= | ;

: | :
TxCMP/TxPWM !

(active high) H H !

TxCMP/TxPWM
(active low)

Compare Ints i : i

Period Ints E 1 i

Underflow Ints t t t

|
'
'
'
'
'
'
'
'
'
'
—————
|
— [r—
'
1
'
'
'
'
'

The example on the slides assumes “Counting up/down Mode” and that the timer starts with
value “Comp1” loaded into TXCMPR and “period #1” in TXPR. At some point in period 2 our
code changes the value in TXCMPR from “Comp1” to “Comp2”. Thanks to the compare register
background (or “shadow”) function this value is taken into foreground with the next reload
condition. This leads to the new shape of the output signal for period 3. Somewhere in period 3
our code modifies register TXxPR — preparing the shape of period 4.The answer is the PIE
(Peripheral Interrupt Expansion)-unit.

Please note that we have two points for Compare Interrupts within each period. Question: How do
we distinguish between them? When we go through all timer control registers on the next pages
please remember this question. There must be a way to specify whether we are in the first or
second half of a period.

DSP28 - Event Manager

GP Timer Registers

GP Timer Registers

To set up an Event Manager Timer we have to configure five registers per timer. If we’d like to
use one or more timer interrupt sources, then we have to set up a few more registers. The next
slides are going through the registers step by step, at the end a lab exercise is waiting for you!

GP Timer Registers

Register Address escription

/| GPTCONA 0x007400 General Purpose Timer Control Register A
TI1CNT 0x007401 Timer 1 Counter Register
T1CMPR 0x007402 Timer 1 Compare Register Buffer
T1PR 0x007403 Timer 1 Period Register Buffer

EVA < TICON 0x007404 Timer 1 Control Register

T2CNT 0x007405 Timer 2 Counter Register
T2CMPR 0x007406 Timer 2 Compare Register Buffer
T2PR 0x007407 Timer 2 Period Register Buffer

\.| T2CON 0x007408 Timer 2 Control Register

/| GPTCONB 0x007500 General Purpose Timer Control Register B
T3CNT 0x007501 Timer 3 Counter Register
T3CMPR 0x007502 Timer 3 Compare Register Buffer
T3PR 0x007503 Timer 3 Period Register Buffer

EVB < T3CON 0x007504 Timer 3 Control Register

T4CNT 0x007505 Timer 4 Counter Register
T4CMPR 0x007506 Timer 4 Compare Register Buffer
T4PR 0x007507 Timer 4 Period Register Buffer

\| T4CON 0x007508 Timer 4 Control Register

EXTCONA 0x007409 / EXTCONB 0x007509 ;Extension Control Register 5.8

GP Timer Control Register A (EVA)

GPTCONA @ 0x007400
Upper Byte:

Timer 2 Compare Trip Enable Timer 1 Compare Trip Enable
T2CTRIPE (if EXTCONA[0]=1) T1CTRIPE (if EXTCONA[0]=1)

0 = disable 0 = disable
1= enable 1= enable
15 14 13 12 11 10-9 8-7
T T
reserved | T2STAT | TISTAT T2TOADC T1TOADC
| |
*/—/
GP Timer Status (read-only) ADC start by event of GP Timer x
0 = counting down 00: no event starts ADC
1 = counting up 01: setting of underflow interrupt flag

10: setting of period interrupt flag
11: setting of compare interrupt

DSP28 - Event Manager 5-7

GP Timer Registers

GP Timer Control Register GPTCONA

Bits 14 and 13 are status bits used to report if the timer is counting up or down. Bits 10 to 7 are
used to perform the automatic start of the ADC from the specified timer event. Bits 3 to 0 define
the shape of the output signal. Bit 6 is used to enable the two physical output signals for timer 1
and timer 2 simultaneously.

Note: There is an enhanced operating mode available. This extended mode is switched on by
setting bit 0 in register EXTCONA to 1. In this case the definition of some of the register bits will
change. Bit 6 is no longer used; instead bits 5 and 4 are used to enable/disable the output signals
separately for timer 1 and timer2. Bits 12 and 11 are now used to enable a new power electronic
safety feature called “Timer Compare Trip”. We will not go into these extended operating modes
during this tutorial, so just treat all these new control bits as “reserved”. Reserved means for a
write operation into registers you can set the bit position as a “don’t care”.

GP Timer Control Register A (EVA)

GPTCONA @ 0x007400
Lower Byte:
Timer 2 Compare Output Enable Timer 1 Compare Output Enable
T2CMPOE (if EXTCONA[0]=1) T1CMPOE (if EXTCONA|[0]=1)
0 = disable (hi-Z) 0 = disable (hi-Z)
1= enable 1= enable

N /

6 3-2 1-0
T T
TCOMPOE T2PIN T1PIN
1 1
‘ TxPWM/TxCMP Output Pin Conditioning
Compare Output Enable 00: forced low
(reserved when EXTCONA[0]=1) 01: active low
. . 10: active high
0 = all disable (hi-impedance) 11: forced high

1 = all enable

Timer Control Register TXCON

Next, we have to set up the individual timer control registers. The layout is shown on the next two
slides. Bits 15 and 14 are responsible for the interaction between the timer unit and a command
executed by the JTAG-Emulator unit. We will find this control bits pair for all other peripheral
units of the C28x. It is very important to be able to set up a definite behaviour when, for example,
the execution of our code hits a breakpoint. In case of real hardware connected to the outputs it
could be very dangerous to stop the outputs in a random fashion. For the timer unit we can
specify to stop its operation immediately, at the end of a period, or not at all. Of course this
depends on the hardware project, for our lab exercises its good practice to stop immediately.

DSP28 - Event Manager

GP Timer Registers

Timer Control Register (EVA)
T1CON @ 0x007404 / T2CON @ 0x007408

Upper Byte:

15 14 13 12 11 10 9 8

FREE SOFT reserved |[TMODE1TMODEO| TPS2 TPS1 TPSO

%/—/
) . Timer Clock Prescale
Emulation Halt Behavior
00 = stop immediately 000: =1 100: + 16
01 = stop at end of period 001: +2 101: + 32
1x = free run (do not stop) 010: = 4 110: =+ 64

011: +8 111: +128

Count Mode Select
00 = stop/hold
01 = continuous-up/down
10 = continuous-up
11 = directional-up/down

Bits 12-11 select the operation mode. We’ve discussed the two most important modes before; the
two remaining modes are the “Directional Up/Down” mode and the “Stop/Hold” mode. The first
mode uses an external input (TDIRA) to specify the counting direction; the latter just halts the
timer in its current status, no re-initialization needed to resume afterwards.

Bits 10 to 8 are the input clock prescaler to define another clock division factor. Recall that the
counting frequency is derived from:

e The external oscillator (30MHz)

e The internal PLL-status (PLLCR: multiply by 10/2 =150 MHz)

o The High speed clock prescaler (HSPCP = divide by 2: 75 MHz) and
e The Timer Clock Prescale factor (1 to 128)

This gives us the option to specify the desired period for a timer. For example, to setup a
timer period of 100 milliseconds, we can use this calculation:

Timer input pulse = (1/ext_clock freq) * 1/PLL * HISPCP * Timer TPS
1,7067 ps = (1/30 MHz) * 15 0 20 %128
100 ms / 1,7067 us = 58593.

= Load TxPR with 58593 to set the timer period to 100 milliseconds.

DSP28 - Event Manager 5-9

GP Timer Registers

Bit 6 enables the timer operation. At the end of an initialization procedure we will have to set bit
6 to 1 to start the timer.

Bits 5 and 4 select the timer clock source; Bits 3 and 2 define the point of time to reload the value
out of the background register into the foreground compare register.

Bit 1 is used to enable the compare operation. Sometimes you’ll need an internal period generator
only, for these applications you can switch off the compare operation that is the generation of
switch patterns for the output lines.

Bits 7 and 0 are timer 2 specific bit fields. They are “don’t cares” for register TICON. With the
help of bit 7 we can force a start of timer 1 and 2 simultaneously. In this case, both timers start if
bit 6 (TENABLE) of TICON is set.

Bit 0 forces timer 2 to use period register of timer 1 as base to generate a synchronized period for
timer 2 and timer 1.

Timer Control Register (EVA)
T1CON @ 0x007404 / T2CON @ 0x007408

Lower Byt e: Timer Compare Operation Enable
0 = disable

Timer Clock Source 1=cnable Period Register Select
Timer Enable

00 = internal (HSPCLK) 0 = use own per. reg.
0 = timer disable 01 = external TCLKIN pin 1= use Timer 1 per. reg
1 = timer enable 10 = reserved (bit reserved in TICON)

11 = QEP |

/—/%
7 6 5 4 3 2 1 0
T2SWT1 |TENABLE| TCLKS1 | TCLKS0 | TCLD1 | TCLDO |TECMPR |SELTIPR

! —

Start with Timer 1 Compare Register Reload Condition

0 = use own TENABLE 00 = when counter equals zero (underflow)

1 =use Timer 1 TENABLE 01 = when counter equals zero or period reg
(bit reserved in TICON) 10 = immediately

11 =reserved

DSP28 - Event Manager

GP Timer Registers

Now let’s make a calculation. Assume that your task is to setup a PWM signal with a period of 50
kHz and a pulse width of 25%:

GP Timer Compare PWM Exercise

Symmetric PWM is to be generated as follows:
¢ 50 kHz carrier frequency
e Timer counter clocked by 30Mhz,
e PLL: multiply by 10/2,
e HSPCLK = divide by 2
e Use the +1 prescale option
¢ 25% duty cycle initially
e Use GP Timer Compare 1 with PWM output active high
e T2PWM/T2CMP pins forced low

Determine the initialization values needed in the GPTCONA,
T1CON, T1PR, and TICMPR registers

Solution :
e PLLCR =

e HSPCLK =
e GPTCONA =
e TICON =
e TIPR =

e TICMPR =

DSP28 - Event Manager 5-11

GP Timer Interrupts

GP Timer Interrupts

To enable one of the interrupt sources of Event Manager A we have to set a bit inside

EVAIMRA, B or C.

EVAIMRA Register

1 = enable interrupt

@ 0x742C
15 14 13 12 11 10 9 8
- - - - - T1OFINT | TIUFINT | T1CINT
7 6 5 4 3 2 1 0
T1PINT - - - CMP3INT [CMP2INT |CMP1INT | PDPINT
Interrupt Mask Bits Bit Event
0 = disable interrupt 10: Timer 1 Overflow

Timer 1 Underflow

Timer 1 Compare match

Timer 1 Period match

Compare Unit 3, Compare match
Compare Unit 2, Compare match
Compare Unit 1, Compare match
Power Drive Protect input, EVA

5-16
EVAIMRB Register
@ 0x742D
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
- - - - T20FINT | T2UFINT | T2CINT | T2PINT
Interrupt Mask Bits Bit Event
0 = disable interrupt 3: Timer 2 Overflow
1 = enable interrupt 2 Timer 2 Underflow
1: Timer 2 Compare match
0: Timer 2 Period match
5-17

DSP28 - Event Manager

GP Timer Interrupts

EVAIMRC Register

@ 0x742E

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

- - - - - CAP3INT | CAP2INT | CAP1INT
Interrupt Mask Bits Bit Event
0 = disable interrupt 2 Capture Unft 3 fnput

1: Capture Unit 2 input

1 = enable interrupt 0 Capture Unit 1 input

5-18
An interrupt event will be marked by the DSP in Register EVAIFRA, B and C.
EVAIFRx Register
15 14 13 12 11 10 9 8
EVAIFRA - - - - - | TIOFINT | TIUFINT | TICINT
@ 0x742F
7 6 5 4 3 2 1 0
(I){e:;io event TI1PINT - - - CMP3INT | CMP2INT | CMP1INT | PDPINT
1 = flag set
15 14 13 12 11 10 9 8
EVAIFRB - - - - - - - -
0x7430
@ 7 6 5 4 3 2 1 0
Write: - - - - | T20FINT | T2UFINT | T2CINT | T2PINT
0 = no effect
1 =reset flag
15 14 13 12 11 10 9 8
EVAIFRA _ _ _ _ _ _ _ _
@ 0x7431
7 6 5 4 3 2 1 0
- - - - - | CAP3INT | CAP2INT | CAPLINT
5-19

DSP28 - Event Manager 5-13

Lab 5: Let’s play a tune!

Lab 5: Let’s play a tune!

Objective

The Zwickau Adapter board has a small loudspeaker connected to output TIPWM
(a small on-board amplifier is also necessary) - close Jumper JP3 of the adapter
board. The task for this lab exercise is to play 8 basic notes of an octave.
Optionally, you can improve this lab to play a real tune. To keep it simple we will
generate all notes as simple square waves. Of course, for a real musician this
would be an offence because a real note is a pure sine wave and harmonics. To
generate a sine wave one would have to adjust the pulse width of the PWM signal
to the instantaneous voltage of the sine. This scheme is a basic principle to
generate sine waves with the help of a PWM output, but as I said, let’s keep it
simple. If you’ve additional time in your laboratory and you’d like to hear pure
notes, then try it later.

Lab 5: Let’s play a tune !

Aim:

 Exercise with Event Manager A General Purpose Timer 1

» Use Lab 4 as a starting point. In Lab 4 we initialised Core
Timer 0 to request an interrupt every 50 ms. We can use this
ISR to load the next note to TIPWM.

* Timerl output ‘TIPWM’ is connected to a loudspeaker

Basic Tune Frequencies:

c! : 264 Hz
d :297 Hz
e : 330 Hz
f 1352 Hz
g :396 Hz
a 1440 Hz
h :495 Hz
c? : 528 Hz

The result of Lab4 is a good starting point for Lab5. Recall that we initialized the
core timer 0 to request an interrupt service every 50 milliseconds. Now we can
use this interrupt service routine to load the next note into the period and compare
register of T1. A time of 50 milliseconds is a little bit too fast, but we have a 50ms
variable “CpuTimer0.InterruptCount”. If we wait until the value of this variable is
10 we know that an interval of 500ms is over. After this period we can play the
next note starting with ¢' and go to ¢? in an endless loop. Or, try to play the notes
alternately as an ascending and descending sequence (or: recall a nursery rhyme).

DSP28 - Event Manager

Lab 5: Let’s play a tune!

New Registers involved in Lab 5:

* General Purpose Timer Control A
* Timer 1 Control Register

* Timer 1 Period Register

* Timer 1 Compare Register

* Timer 1 Counter Register

* EV- Manager A Interrupt Flag A
* EV- Manager A Interrupt Flag B
» EV-Manager A Interrupt Flag C

* EV- Manager A Interrupt Mask A
* EV- Manager A Interrupt Mask B
* EV- Manager A Interrupt Mask C
* Interrupt Flag Register

* Interrupt Enable Register

GPTCONA
T1CON
T1PR
TICMPR
TICNT
EVAIFRA
EVAIFRB
EVAIFRC
EVAIMRA
EVAIMRB
EVAIMRC
IFR

IER

-21

Procedure

Open Files, Create Project File

1. Create a new project, called LabS.pjt in E:\C281x\Labs.

2. Open the file Lab4.c from E:\C281x\Labs\Lab4 and save it as Lab5.c in

E:\C281x\Labs\Lab5.

3. Add the source code file to your project:

e Lab5.c

4. From C:\tidcs\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

DSP28 - Event Manager

Lab 5: Let’s play a tune!

From C:\ti\c2000\cgtoolslib add:
e rts2800_ml.lib
From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_CpuTimers.c
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c

e DSP281x_Defaultlsr.c

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project 2> Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;..\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Build and Load

7. Click the “Rebuild All” button or perform:
Project > Build

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

So far we just generated a new project ‘Lab5’ with the old code from Lab4. If you
run the code now you should see the ‘Knight Rider’ of Lab4. Now we can start to
modify our code in ‘Lab5.c’.

5-16 DSP28 - Event Manager

Lab 5: Let’s play a tune!

Modify Source Code

8. Open Lab5.c to edit: double click on “Lab5.¢” inside the project window. First we
have to cancel the parts of the code that we do not need any longer. The definition of
array “LED [8]” in function “main” is of no use for this lab — cancel it.

9. Next we have to change the GPIO multiplex status; we need TIPWM as signal at the
pin. Go into function “Gpio_select()” and modify the multiplex register setup.

10. Go into your local function “InitSystem” and enable the clock for Event Manager A.
11. Inside “main”, just before the line:
CpuTimerORegs.TCR.bit.TSS = 0;

we have to initialize the Event Manager Timer 1 to produce a PWM signal. This
involves the registers “GPTCONA”, “T1CON”, “TICMPR” and “T1PR”.

For register “GPTCONA” it is recommended to use the bit-member of this
predefined union to set bit “TCMPOE” to 1 and bit field “T1PIN” to “active low”.

For register “T1CON” set
e The “TMODE”-field to “counting up mode”;
Field “TPS” to “divide by 128”;
e Bit “TENABLE” to “disable timer” (we will enable it later)

e Field “TCLKS” to “internal clock”
o Field “TCLD” to “reload on underflow” and
¢ Bit “TECMPR” to “enable compare operation”

12. Last question is: how do we initialize “T1PR“? Well, obviously we need 8 different
values for our 8 basic notes. So let’s define a new integer array “frequency [8]” as a
local variable in main!

13. How do we initialize array “frequency [8]?

We can initialize the array together with the definition inside main:

int frequency [8] = {?,?2,?,?,2,7,2,?};

A basic octave is a fixed series of 8 frequencies. AND: there is a relationship between
the basic note ¢l (264 Hz) and the next notes:

264 Hz (c1) 396Hz (g) = 3/2 * c1
297Hz (d) = 9/8 * c1 440Hz (a) = 5/3 * c1
330Hz (e) = 5/4 * c1 495Hz (b) = 15/8 * c1
352Hz (f) = 4/3 * 1 528 Hz (c2) = 2 * c1

DSP28 - Event Manager 5-17

Lab 5: Let’s play a tune!

14.

What is the relationship between these frequencies and TIPWM? Answer: We have
to setup T1PR to generate a PWM period according to this list. The equation is:

T1_PWM_Freq = 150MHz / (HISPCP * TPS * T1PR)
For ¢l = 264 Hz we get: TIPR = 150MHz / (2 * 128 * 264 Hz) = 2219.
For d = 297 Hz we use: TIPR = 150MHz / (2 * 128 * 297 Hz) = 1973.

Calculate the 8 initial numbers and complete the initial part for array “frequency”!

Next step: Modify the endless while(1) loop of main! Recall:
i. The Core Timer TO requests an interrupt every 50 milliseconds.

il. The Watchdog Timer is alive! It will trigger a reset after
33ns*512*256*WDPS. If WDPS was initialized to 64 this reads as 280ms.

iii. Timer TO Interrupt Service Routine increment variable
“CpuTimer0.InterruptCount” every 50 milliseconds

We have to reset the watchdog every 200 milliseconds and we should play the next
note after 500 milliseconds. Two tasks within this while(1) loop. Later we will learn
that this type of multi tasking is much better solved with the help of “DSP/BIOS” —
Texas Instruments Real Time Operating System. For now we have to do it by our
self.

How can we find out, if a period of 200ms is over?

We just have to test if “CpuTimer0.InterruptCount” is a multiple of 4. In language C
this could be done by modulo division with 4 = reminder is zero:

if ((CpuTimerO0.InterruptCount%4)==0)

If it is TRUE then we have to perform the second half of the watchdog re-trigger
sequence:

EALLOW;
SysCtriIRegs.WDKEY = 0xAA;
EDIS;

In a similar technique we can wait for 10 times 50 ms = 500 ms before we apply the
next note into TIPR and TI1CMPR. In Lab4 we did a reset of variable
“CpuTimer0.InterruptCount” every time a period was over. Doing so, we limited the
values for this variable between 0 and 3, which was fine for this single task exercise.
When we have to take care of more activities with different periods, it is not a good
recommendation to reset this variable. A better approach is to build a time interval
out of two read operations of “CpuTimer0.InterruptCount”. With the first access we
gather the actual time and store this value in a local unsigned long variable

DSP28 - Event Manager

Lab 5: Let’s play a tune!

“time_stamp”. With a second access to “CpuTimer0.InterruptCount” we can read the
new time information and the difference between this value and the value of
“time_stamp” is the elapsed time in multiples of 50ms.
A wait instruction for 500ms could now look like this:

if ((CpuTimerO0.InterruptCount — time_stamp) > 10)

If TRUE, then:

Load “time_stamp” with “CpuTimer0.InterruptCount”

¢ Load the next note into EvaRegs. T1PR

e Load EvaRegs.TICMPR = EvaRegs.T1PR/2

e Enable TIPWM, set EvaRegs.T1CON.bit. TENABLE = 1

¢ Implement and handle a status counter (variable i) to loop through array
“frequency|[8]

Build and Load

15. Click the “Rebuild All” button or perform:
Project > Build

and watch the tools run in the build window. If you get errors or warnings debug
as necessary.

16. Load the output file down to the DSP Click:

File 2 Load Program and choose the desired output file.

Test

17. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart

18. Run the program until the first line of your C-code by clicking:

Debug = Go main.

19. Debug your code as you’ve done in previous labs.

DSP28 - Event Manager 5-19

Event Manager Compare Units

Event Manager Compare Units

Compare Units (EVA)

Reset¢ T PIE
2
<—>| EV Control Registers / Logic"j, LCDIE;Kg:aI:tI TDIRA

Output Logic——— » T1PWM_T1CMP

v

GP Timer 1 Compare
GP Timer 1

A

) Compare Unit 1 »{PWM Circuits| Output Logic P
@le—»] Compare Unit2 » PWM Circuits| Output Logic o]
g Compare Unit 3 $|PWM Circuits| Output Logic Ewmg

v

GP Timer 2 Compare
GP Timer 2

CLK «— QEP
DIR «—Circuit
T A

Capture Units

Output Logic——— » T2PWM_T2CMP

CAP1/QEP1
CAP2/QEP2
CAP3/QEPI1

A
A

A A A

A compare unit is a peripheral that is designed to generate pulse width modulated (PWM) output
signals. What is a PWM signal and what is it used for?

What is Pulse Width Modulation?

¢ PWMis a scheme to represent a signal as a
sequence of pulses

+ fixed carrier frequency
+ fixed pulse amplitude

+ pulse width proportional to instantaneous
signal amplitude

+ PWM energy = original signal energy

¢ Differs from PAM (Pulse Amplitude
Modulation)

+ fixed width, variable amplitude

5-20 DSP28 - Event Manager

Event Manager Compare Units

With a PWM signal we can represent any analogue output signal as a series of digital pulses! All
we need to do with this pulse series is to integrate it (with a simple low pass filter) to imitate the
desired signal. This way we can build a sine wave shaped output signal. The more pulses we use
for one period of the desired signal, the more precisely we can imitate it. We speak very often of
two different frequencies, the PWM-frequency (or sometimes “carrier frequency”) and the
desired signal frequency.

PWM Signal Representation

Original Signal

/7 same areas (energy) 7
ML T -

PWM representation PAM representation

A lot of practical applications have an internal integrator, for example the windings of an
electrical motor are perfectly suited to behave as a low-pass filter.

One of the most used applications of PWM is digital motor control. Why is that? Answer: The
overall goal is to control electrical drives by imprinting harmonic voltages and currents into the
windings of the motor. This is done to avoid electromagnetic distortions of the environment and
to achieve a high power factor. To induce a sine wave shaped signal into the windings of a motor
we would have to use an amplifier to achieve high currents. The simplest amplifier is a standard
NPN or PNP transistor that proportionally amplifies the base current into the collector current.
Problem is, for high currents we can’t force the transistor into its linear area; this would generate
a lot of thermal losses and for sure exceed its maximal power dissipation.

The solution is to use this transistor in its static switch states only (On: I, = I e, Off: I.e = 0). In
this states a transistor has its smallest power dissipation. AND: by adapting the switch pattern of a
PWM (recall: amplitude is 1 or 0 only) we can induce a sine wave shaped current!

DSP28 - Event Manager 5-21

Event Manager Compare Units

Why Use PWM in Digital Motor Control?

¢ Desired motor phase currents or voltages are known

¢ Power switching devices are transistors
+ Difficult to control in proportional region
+ Easy to control in saturated region

¢ PWDM is a digital signal = easy for DSP to output

DC Supply DC Supply
9 LU
b . PWM
De51red PWM approx.
signal to of desired
motor phase signal
Unknown Gate Signal Gate Signal Known with PWM

5-25

We have two different options to generate a PWM-signal, asymmetric and symmetric PWM.

Asymmetric PWM Waveform

A FTPWM_’
Period ..
Compare
_|Counter
Towm / Temp Pin " T_
(active high) Caused by Period match
(toggle output in Asym mode only)

— Caused by Compare match

5-22 DSP28 - Event Manager

Event Manager Compare Units

Symmetric PWM Waveform

i: Tewm ;i
Period ..

Compare

Counter

Tpwm /Temp Pin
(active high)

wews 11 11 411t

General Purpose Timer Full Compare Units
»PWM1
Period o Compare > PWM2
Compare > Tpwa/Tcemp Pin \: gompare EE&&%
| ompare <
Counter p > PWMG
5-27

NOTE: The value in TIPR defines the length of a period “TPWM?” in asymmetric operating
mode. For symmetric mode the value of TxPR defines only half of the length of a period
“TPWM”.

The Compare Unit consists of 6 output signals “PWM1” to “PWM6”. The time base is derived
from Event Manager Timerl, e.g. register “T1PR” together with the setup for T1 (Register
“T1CON”) defines the length of a PWM-period for all six output signals. Register “T1CNT” is
used as the common counter register.

With 3 new registers “CMPR1”,”CMPR2”and “CMPR3” we can specify 3 different switch
pattern based on TIPR. Obviously this leads to a 3-phase control pattern for 3 phase electrical
motors.

Each Compare Unit is able to drive a pair of two output signals. With the help of its own output
logic we usually define the two lines to be opposite or 180-degree out of phase to each other - a

typical pattern for digital motor control.

The next slide shows a typical layout for a three-phase power-switching application.

DSP28 - Event Manager 5-23

Event Manager Compare Units

Voltage source inverter components

Upper & lower
devices can not
be turned on
simultaneously
(dead band)

PWM signal is [

applied between

gate and source \\ 4@
-~

DC bus / B

Three phase

capacitor outputs which
go to the motor
/ | terminals
Power
Switching
Devices
5-28

Compare Units Block Diagram

Compare Units Block Diagram (EvA)

ACTRA .11-0
.
TICNT.15-0 Compare
GP Timer 1 Action Control
Counter Register

DBTCONA .11-2 v

Dead BandI Output
Units Logic PWMy, y+1

COMCONA .9

FCOMPOE

Compare
Logic

Compare
Register

Shadowed

Note: x=1,2,3;y=1,3,5

CMPRx.15-0

5-24 DSP28 - Event Manager

Event Manager Compare Units

The central block of the Compare Unit is a compare logic that compares the value of Event
Manager Timer 1 counter register “T1CNT” against Compare Register “CMPRx”. If there is a
first match, a rising edge signal goes into the next block called “Dead Band Unit”. With the
second match between “T1CNT” and “CMPRx” in symmetric PWM mode a falling edge signal is
generated. We will discuss this “Dead Band Unit” a little bit later. We do have three Compare

Units available.

The output logic is controlled by means of a register, called “Action Control Register - ACTRA”
and register “COMCONA”. With the help of this register set we can adjust the shape of the

physical PWM output signal to our needs. We can specify four types for all 6 output lines:

e Active High:

o First CMPRx match switches PWM output from 0 to 1. After second CMPRx
match the signal is set back to 0.

e Active Low:

o First CMPRx match switches PWM output from 1 to 0. After second CMPRx

match the signal is setback to 1.

e Forced High:

o PWM output always at 0.

e Forced Low:

o PWM output always at 1.

EVA<

EVB<

Compare Unit Registers

Register

Address

Description

COMCONA 0x007411

Compare Control Register A

ACTRA 0x007413 Compare Action Control Register A
DBTCONA 0x007415 Dead-Band Timer Control Register A
CMPR1 0x007417 Compare Register 1

CMPR2 0x007418 Compare Register 2

CMPR3 0x007419 Compare Register 3

COMCONB 0x007511 Compare Control Register B
ACTRB 0x007513 Compare Action Control Register B
DBTCONB 0x007515 Dead-Band Timer Control Register B
CMPR4 0x007517 Compare Register 4

CMPRS 0x007518 Compare Register 5

CMPR6 0x007519 Compare Register 6

EXTCONA 0x007409 / EXTCONB 0x007509 ;Extension Control Register

DSP28 - Event Manager

Event Manager Compare Units

The next two slides explain the set up for the individual bit fields of COMCONA. Most of the
bits are reserved in basic operation mode (EXTCONA [0] = 0).

Compare Control Register (EVA)

COMCONA @ 0x007411
Upper Byte:

Compare Enable Full Compare Output Enable

(reserved when EXTCONA[0]=1)

Space Vector PWM

10 = immediately
11 =reserved

0 = disable 0 = SV disable
1 = enable 1 =SV enable 0 = all disable (hi-impedance)
1 = all enable
15 14 13 12 11
CENABLE| CLD1 CLD0 [SVENABLE|ACTRLD1
%/—/ _T—/

CMPRXx reload condition ACTRA reload condition PDPINT Status
00 =when TICNT =0 00 =when TICNT =0 0=low
01 =when TICNT =0 or TIPR 01 =when TICNT =0 or TIPR 1 = high

10 = immediately
11 =reserved

-31

Compare Control Register (EVA)

6

4

COMCONA @ 0x007411
Lower Byte:

Full Compare 2 Full Compare 2

Output Enable Trip Enable
FCMP20E C2TRIPE

(if EXTCONA[0]=1) (if EXTCONA[0]=1)

0 = disable 0 = disable
1 =enable 1 =enable

3

reserved

reserved

I_‘

Full Compare 3 Full Compare 1 Full Compare 3 Full Compare 1
Output Enable Output Enable Trip Enable Trip Enable
FCMP3OE FCMP1O0E C3TRIPE CI1TRIPE
(if EXTCONA[0]=1) (if EXTCONAJ[0]=1) (if EXTCONA[0]=1) (if EXTCONA[0]=1)
0 = disable 0 = disable 0 = disable 0 = disable
1 = enable 1 = enable 1 = enable 1 = enable

,_l

-32

DSP28 - Event Manager

Event Manager Compare Units

COMCONA [15] is the enable bit for the three phase compare units.

With COMCONA [14:13] and COMCONA [11:10] we specify the point in time when the
compare registers and action control registers are reloaded (shadow register content into
foreground). As we have seen with the timers we can prepare the next period in the current
running period.

COMCONA [8] shows the status of the power drive protection flag. If it is a 1, the DSP has seen
an interrupt request from its over-current input PDPINT.

With EXTCONA [0] =1 all three pairs of compare output lines can be enabled independently of
each other.

If EXTCONA [0] =0 then all six lines are enabled with COMCONA [9] =1. If EXTCONA [0] =1
we can use three more individual over current inputs signals. To use these over current signals we
can enable or disable this feature using bits COMCONA [2:0].

COMCONA [12] =1 enables a special switch pattern for digital motor control, called “Space
Vector Modulation” (SVM). This feature is built-in hardware support for one specific theoretical
control algorithm. For details see literature or your lectures about power electronics.

Extension Control Register A (EVA)

EXTCONA @ 0x007409
Independent Compare
QEP Index Enable Output Enable Mode
0 = disable 0 = disable
1 = enable 1 =enable
15-4 3 2 1 0
reserved EVSOCE QEPIE QEPIQUAL INDCOE

EV Start-of-Conversion CAP3/QEPI Index

Output Enable Qualification Mode
0 = disable 0 = off
1 = enable 1=o0n

DSP28 - Event Manager 5-27

Event Manager Compare Units

ACTRA @ 0x007413

Basic Space Vector Bits
can write as 0 when SV not in use

Compare Action Control Register (EVA)

can write as 0 when SV not in use

15 14 13 12 11 10 9 8
SVRDIR D2 D1 DO CMP6ACT1| CMP6ACT0| CMP5ACT1 CMP5SACTO
7 6 5 4 3 2 1 0
CMP4ACT1 | CMP4ACTO0| CMP3ACT1| CMP3ACTO0[CMP2ACT1| CMP2ACT0| CMP1ACT1| CMP1ACTO
Pin Action on Compare: CMPyACT1-0
00 force low
. L. 01 active low
SV Rotation Direction

10 active high

11 forced high

ACTRA [11:0] define the shapes of the six PWM output signals as discussed before.

ACTRA [15:12] are used to support Space Vector Modulation. Bit 15 defines the rotation
direction of the resulting electromagnetic vector as clockwise or anti clockwise.

ACTRA [14:12] declare the Basic Space Vector for the next PWM periods. A Basic Space Vector
is a 60-degree section of the unit circle. This gives 6 vectors per rotation plus two virtual vectors
with no current imprint.

If SVM is not used, one can initialize bits 15:12 to zero.

DSP28 - Event Manager

Event Manager Compare Units

Hardware Dead Band Unit

Dead-band control provides a convenient means of combating current “shoot-through” problems
in a power converter. “Shoot-through” occurs when both the upper and lower transistors in the
same phase of a power converter are on simultaneously. This condition shorts the power supply
and results in a large current draw. Shoot-through problems occur because transistors (especially
FET’s) turn on faster than they turn off, and also because high-side and low-side power converter
transistors are typically switched in a complimentary fashion. Although the duration of the shoot-
through current path is finite during PWM cycling, (i.e. the transistor will eventually turn off),
even brief periods of a short circuit condition can produce excessive heating and stress the power
converter and power supply.

Motivation for Dead-Band
supply rail

Gate Signals are H \‘
Complementary PWM to motor phase

LT

¢ Transistor gates turn on faster than they shut off
¢ Short circuit if both gates are on at same time!

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the switch-on time of the transistor
gate must be increased so that it (slightly) exceeds the switch-off time.

The hard way to accomplish this is by adding a cluster of passive components such as resistors
and diodes in series with the transistor gate to act as low-pass filter to implement the delay.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements.

DSP28 - Event Manager 5-29

Event Manager Compare Units

Dead-Band Functionality (EVA)

Clock /\/\/ HSPCLK —» Prescaler

DT ~|_| |_| H_I_I detect 4-bit

= = Counter
e
DTPH, _| LT DT

A 4

reset

DTPH

N . 4-bit period
G S -
dead time
DTPH,
Asymmetric PWM Example
P DTPH,
5-36

Each compare unit has a dead-band timer, but shares the clock prescaler unit and the dead-band
period with the other compare units. Dead-band can be individually enabled for each unit.

Dead-Band Timer Control Register (EVA)
DBTCONA @ 0x007415

dead time = DB period * DB prescaler * CPUCLK period

DB Timer Period

15 14 13 12 m

reserved | reserved| reserved| reserved| DBT3 | DBT2 DBT1 | DBTO

7 6 5 4 3 2 1 0

EDBT3 | EDBT2 | EDBT1 | DBTPS2| DBTPS1| DBTPS0| reserved | reserved

DB Timer Enable DB Timer Prescaler
0 = disable 000=1 100=16
1 = enable 001=2 101=32

010=4 110=32
011=8 111=32

DSP28 - Event Manager

Capture Units

Capture Units

Capture Units (EVA)

Reset¢ T PIE
2
<—>| EV Control Registers / Logicr:, L%Lch:aﬁtl TDIRA

A4

GP Timer 1 Compare
GP Timer 1

Output Logic———— — » T1IPWM_T1CMP

A

3 R - . —>PWM1
2 Compare Unit 1 » PWM Circuits | Output Logic [5 pwm2
% < » Compare Unit 2 > PWM Circuits| Output Logic [gwmz
- 3 > S i ——>PWM5
8 Compare Unit 3 PWM Circuits | Output Logic > PWM6

v

_|GP Timer 2 Compare Output Logic——— > T2PWM_T2CMP

GP Timer 2
CLK «— QEP
DIR «—{Circuit
A
< T CAP1/QEP1
< > Capture Units < CAP2/QEP2
< CAP3/QEPI1

The capture units allow time-based logging of external logic level signal transitions on the
capture input pins.

Event Manager A has three capture units, and each is associated with a capture input pin. The
time base is selectable to be either GP timer 1 or 2. The timer value is captured and stored in the
corresponding 2-level-deep FIFO stack when a specified transition is detected on a capture input
pin.

Capture Unit 3 can be configured to trigger an A/D conversion that is synchronized with an
external signal of a capture event.

DSP28 - Event Manager 5-31

Capture Units

Capture Units
Timer J |_
i‘z Trigger _S
Timestamp
Values

¢ Capture units timestamp transitions on
capture input pins

¢ Three capture units (per event manager) -
each associated with a capture input pin

Three potential uses for the Capture Units are:
e Measurement of the width of a pulse or a digital signal
e Automatic start of the AD — Converter by a Capture Event from CAP3
e Low speed estimation of a rotating shaft. A potential advantage for low speed estimation

is given when we use “time capture” (16Bit resolution) instead of position pulse counting
(poor resolution in slow mode).

5-32 DSP28 - Event Manager

Capture Units

Some Uses for the Capture Units

¢ Synchronized ADC start with capture event
¢ Measure the time width of a pulse
¢ Low speed velocity estimation from incr. encoder:

Problem: At low speeds, calculation of X, - X,
speed based on a measured position Vi & T A I
change at fixed time intervals produces

large estimate errors

Alternative: Estimate the speed using a measured time
interval at fixed position intervals

Ax Signal from one ‘
VR Quadrature

T = tir Encoder Channel Ax _.{

Capture Units Block Diagram

The edge detector stores the current value of the time base counter into a FIFO-buffer.

Capture Units Block Diagram (EVA)

TICNT .15 -0 T2CNT . 15 - 0
| :) .] Can latch on:
GP Timer 1 GP Timer 2 . .
Counter Counter * rising edge
,J * falling edge
CAPCONA . 14 -12 * both
([cAPcONA . 10- 9]\ MUX CAP3TOADC
[Enable CAPCONA . 8
ADC Start
Edge e (CAP 3)
Detect
<« CAP1,2,3 ‘4_»|<_>|

2-Level Deep | RS Edge Select | |
FIFO CAPCONA .7-2 TTL Signal

CAPXFIFO Status CAPRESET min. valid width:
(capcona. 5] 2 CPUCLK lo
2 CPUCLK hi

DSP28 - Event Manager 5-33

Capture Units

Capture Units Registers

Capture Units Registers

Register Address Description
| CAPCONA 0x007420 Capture Control Register A

CAPFIFOA 0x007422 Capture FIFO Status Register A
CAPIFIFO 0x007423 Two-Level Deep FIFO 1 Stack
CAP2FIFO 0x007424 Two-Level Deep FIFO 2 Stack

EVA < CAP3FIFO 0x007425 Two-Level Deep FIFO 3 Stack
CAPIFBOT 0x007427 Bottom Register of FIFO 1
CAP2FBOT 0x007428 Bottom Register of FIFO 2
_| CAP3FBOT 0x007429 Bottom Register of FIFO 3
/| CAPCONB 0x007520 Capture Control Register B
CAPFIFOB 0x007522 Capture FIFO Status Register B
CAP4FIFO 0x007523 Two-Level Deep FIFO 4 Stack
CAPSFIFO 0x007524 Two-Level Deep FIFO 5 Stack
EVB<

CAPG6FIFO 0x007525 Two-Level Deep FIFO 6 Stack
CAP4FBOT 0x007527 Bottom Register of FIFO 4
CAP5FBOT 0x007528 Bottom Register of FIFO 5

| CAP6FBOT 0x007529 Bottom Register of FIFO 6
EXTCONA 0x007409 / EXTCONB 0x007509 ;Ext. Cntrl Reg.

5-42
o
Capture Control Register (EvA)
CAPCONA @ 0x007420
Capture Reset (not latched) .
0 = clear all result FIFO’s and I{]n_ltd‘?_’ Cb(:ntr()l APC Sta.rt
CAPFIFO register ~ disable 0= no action
1=no action 1=enable 1=CAP3INT flag
15 14-13 12 11 10 9 8
T
CAPRES CAPQEPN CAP3EN reserved | CAP3TSEL |CAPI12TSEL|CAP3TOADC
|
P —
Unit 1 & 2 Control .
00 = disable Timer S'elect
01 = enable for capture 0=GP T{mer 2
10 = reserved 1 =GP Timer 1
11 = enable for QEP
7-6 5-4 3-2 1-0
T T T T
CAP1EDGE CAP2EDGE CAP3EDGE reserved
I 1 I I
Edge Detection Control
00 = no detection 10 = falling edge
01 =rising edge 11 = both edges
5-43

DSP28 - Event Manager

Capture Units

CAPCONA [15] is a reset bit for the Capture state machine and the status of the FIFO. It should
be used in a single instruction to reset the Capture units during initialization. Note: to execute
reset you will have to apply a zero!

With CAPCONA [14-12] the Capture Units are enabled. Please note that CAP1 and CAP2 are
enabled jointly, whereas CAP3 has its own enable bit.

CAPCONA [10-9] are used to select the clock base for the capture units. Again, for CAP1 and
CAP2 we have to select the same GP timer.

CAPCONA [8] allows CAP3 to start an AD conversion. Of course, before we use this option, we
have to initialize the ADC. This will be explained in the next chapter.

CAPCONA [7-2] specify if the capture units are triggered with a rising or falling edge or with

both edges.
Capture FIFO Status Register (EVA)
CAPFIFOA @ 0x007422
15-14 13712 11-|10 978 7-0
reserved CAP3FIFO CAP2FIFO CAPI1FIFO reserved

FIFOx Status:

CAPXFIFO bits are 00— .
automatically adjusted on a o1 " emp yt
capture or FIFO read = one entry

10 = two entries
11 = three entries attempted,
1st entry lost

Register CAPFIFOA reflects the filling status of the three result register FIFO’s. In case of an
overflow the oldest entry will be lost. This principle ensures that a capture unit stores the two
latest measurement results. If our program performs a read access to one of the FIFO result
registers the status value in the corresponding CAPFIFOA bit field is decremented.

DSP28 - Event Manager 5-35

Quadrature Encoder Pulse Unit (QEP)

Quadrature Encoder Pulse Unit (QEP)

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

photo sensors spaced 0/4 deg. apart
V slots spaced 0 deg. apart

Incremental Optical Encoder Quadrature Output from Photo Sensors

A QEP unit is normally used to derive direction and speed information from an incremental
encoder circuit mounted on a rotating shaft. As shown on the previous slide two sensor signals
are used to generate two digital pulse streams “Channel A” and “Channel B”.

Quadrature Encoder Pulse (EVA)

Reset¢ T PIE
2
<—>| EV Control Registers / Logic'j, Z%%Ké'::rtl TDIRA

GP Timer 1 Compare
GP Timer 1

v

Output Logic——— » T1PWM_T1CMP

A

A
Compare Unit 1

PWM Circuits | Output Logic | me;

< » Compare Unit 2 » PWM Circuits| Output Logic _,gwmz
Compare Unit 3 » PWM Circuits | Output Logic PWM5

Data Bus

v

GP Timer 2 Compare
GP Timer 2

CLK €4 QEP
% DIR € Circuit] €]
* A

Capture Units

Output Logic———— > T2PWM_T2CMP

CAP1/QEP1
CAP2/QEP2
CAP3/QEPI1

A
A 4

A A A

5-36 DSP28 - Event Manager

Quadrature Encoder Pulse Unit (QEP)

The time relationship between A and B lead to a state machine with four states. Depending on the
sequence of states and the speed of alternation, the QEP unit timer is decremented or
incremented. By reading and comparing this timer counter information at fixed intervals, we can
obtain speed and/or position information.

How is Position Determined from
Quadrature Signals?

Position resolution is 0/4 degrees.
00) (11) increment decrement
(A.B) = '(10) | (01) counter counter
| Pl
Lol | \
i I I re
|
|

|
|
|
: Quadratu
|
| l Decoder

! State Machine

|
Ch.B '
| (o1

Ch. A

Incremental Encoder Connections (EVA)

QEP CAP1/QEPI1
decoder CAP2/QEP2
logic Index
CLK DIR i
"
=
.
(g .
A ¢ GP Timer 2 selected as
QEPIQ[-J-A-I{ 3 pulse counter

¢ Timer Prescaler bypassed
(i.e. Prescale always 1)

.

GP Timer 2 [¢<—

DSP28 - Event Manager 5-37

Quadrature Encoder Pulse Unit (QEP)

Extension Control Register A (EVA)
EXTCONA @ 0x007409

Independent Compare

QEP Index Enable Output Enable Mode
0 = disable 0 = disable
1 = enable 1 = enable
15-4 3 2 1 0
reserved EVSOCE QEPIE QEPIQUAL INDCOE

EV Start-of-Conversion CAP3/QEPI Index

Output Enable Qualification Mode
0 = disable 0 = off
1 = enable 1=on

The third capture input pin “QEPI1”can be used as an absolute position information signal for a
zero degree crankshaft position. This signal is then used to reset the QEP timer to its initial state.
To enable the “QEPI1” index function we have set EXTCONA [2] to 1. Then we have two more
options, selected with EXTCONA [1]:

e Use index pulse “QEPI1” independent from the state of QEP1 and QEP2

e Use index pulse “QEPI1” as a valid trigger pulse only if this event is qualified by the
state of QEP1 =1 AND QEP2 = 1.

5-38 DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

Lab 5A: Generate a PWM sine wave

Objective

So far we generated square wave signals to drive a loudspeaker. To ask a
musician to listen to this type of music would be impudent. So let’s try to improve
the shape of our output signals. A musical note is a pure - or harmonic — sine
wave signal of a fixed frequency. The objective of this lab exercise is to generate
a harmonic sine wave signal out of a series of pulse width modulated digital
pulses (PWM).

Remark: The first generation of cell phones used the square wave technology to
generate ringing sounds. Compare this with today’s latest cell phones!

Procedure

Open Files, Create Project File

1. Create a new project, called LabSA.th in E:\\C281x\Labs.

2. Open the file Lab5.c from E:\C281x\Labs\Lab5 and save it as Lab5A.c in
E:\C281x\Labs\Lab5A.

3. Add the source code file to your project:
° Lab5A.c

4. From C:\tidcs\c28\dsp281x\v100\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
o DSP281x_PieVect.c
o DSP281x_Defaultlsr.c

From C:\ti\c2000\cgtoolslib add:

DSP28 - Event Manager 5-39

Lab 5A: Generate a PWM sine wave

e rts2800_ml.lib

Project Build Options

5.

6.

Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include; C:\tidcs\C28\IQmath\clQmath\include

Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7.

10.

Open Lab5A.c to edit: double click on “Lab5A.c” inside the project window. First we
have to cancel the parts of the code that we do not need any longer. We will not use
the CPU core timer 0 in this exercise; therefore we do not need the prototype of
interrupt service routine “cpu_timerO isr()”. Instead, we need a new ISR for GP
Timer1-Compare-Interrupt. Add a new prototype interrupt function: “interrupt void
T1_Compare isr(void)”.

We do not need the variables “i”,’time_stamp” and frequency[8]” from Lab5 - delete
their definition lines at the beginning of function “main”.

Next, modify the re-map lines for the PIE entry. Instead of “PieVectTable. TINTO =
& cpu_timer0_isr” we need to re-map:

PieVectTable.T1CINT = &T1_Compare_isr;

Delete the next two function calls: “InitCpuTimers();” and
“ConfigCpuTimer(&CpuTimer0, 150, 50000);” and add an instruction to enable the
EVA — GP Timerl — Compare interrupt. Recall Module 4 “Interrupt System” and
verify that the EVA — GP Timerl — Compare interrupt is connected to PIE Group2
Interrupt 5. Which Register do we have to initialize? Answer:

PieCtrIRegs.PIEIER2.bit.INTx5 = 1;
Also modify the set up for register IER into:

IER = 2;

DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

11. Next we have to initialize the Event Manager Timer 1 to produce a PWM signal. This
involves the registers “GPTCONA”, “T1CON”, “TICMPR” and “T1PR”.

For register “GPTCONA” it is recommended to use the bit-member of this
predefined union to set bit “TCMPOE” to 1 and bit field “T1PIN” to “active low”.

For register “T1CON” set
e The “TMODE”-field to “counting up mode”;
o Field “TPS” to “divide by 17;
e Bit “TENABLE” to “disable timer”;
e Field “TCLKS” to “internal clock”
e Field “TCLD” to “reload on underflow”

e Bit “TECMPR” to “enable compare operation”
12. Remove the 3 lines before the while(1)-loop in main:

e “CpuTimerORegs. TCR.bit.TSS = 0;”

o i =0y

e “time stamp = 0;”

and add 4 new lines to initialise TIPR, TICMPR, to enable GP Timerl Compare
interrupt and to start GP Timer 1:

EvaRegs.T1PR = 1500;
EvaRegs.T1CMPR = EvaRegs.T1PR/2;
EvaRegs.EVAIMRA.bit.T1CINT = 1;

EvaRegs.T1CON.bit. TENABLE = 1;

What is this number 1500 for? Well, it defines the length of a PWM period:

f — Seru
"M T\PR-TPS,, - HISCP

with TPSt=1, HISCP = 2, fcpy = 150MHz and a desired fpwy = S0kHz
we derive: T1PR = 1500!

TICMPR is preloaded with half of TIPR. Why’s that? Well, in general TICMPR
defines the width of the PWM-pulse. Our start-up value obviously defines a pulse
width of 50%.

DSP28 - Event Manager 5-41

Lab 5A: Generate a PWM sine wave

Recall slide 5-24: “PWM-Representation”

PWM Signal Representation

Original Signal

/7 same areas (energy) 7

PWM representation PAM representation

A duty cycle of 50% represents a sine angle of 0 degrees! And, it makes sense to
initialize the PWM unit for this angle. From the bottom left of the slide we can

derive:
Degree Sin Duty — Cycle
0° 0 50%
90° 1 100%
180° 0 50%
270° -1 0%
360° 0 50%

5-42 DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

13. Modify the endless while(1) loop of main! We will perform all activities using GP
Timer 1 Compare Interrupt Service. Therefore we can delete almost all lines of this
main background loop, we only have to keep the watchdog service:

while(1)
{
EALLOW;

SysCtriIRegs.WDKEY = 0xAA;
EDIS;

}

14. Rename the interrupt service routine “cpu_timer0 ist” into “T1_Compare isr”.

Remove the line “CpuTimer0.InterruptCount++;” and replace the last line of this
routine by:

PieCtriIRegs.PIEACK.all = PIEACK_GROUP2;

Before this line add another one to acknowledge the GP Timer 1 Compare Interrupt
Service is done. Remember how? The Event Manager has 3 interrupt flag registers
“EVAIFRA”,”EVAIFRB” and “EVAIFRC”. We have to clear the TICINT bit (done
by setting of the bit):

EvaRegs.EVAIFRA.bit.T1CINT =1;
Build and Load
15. Click the “Rebuild All” button or perform:

Project > Build

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

16. Load the output file down to the DSP Click:

File 2 Load Program and choose the desired output file.

Test

17. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart and
Debug = Go main.

DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

18. When you now run the code the DSP should generate a 50 kHz PWM signal with a

duty cycle of 50% on TIPWM. If you have an oscilloscope you can use jumper JP7
(in front of the loudspeaker) of the Zwickau Adapter board to measure the signal.

If your laboratory can’t provide a scope, you can set a breakpoint into the interrupt
service routine of Tl Compare at line “PieCtrlRegs.PIEACK.all =
PIEACK GROUP2; Verify that your breakpoint is hit periodically, that register
TIPR holds 1500 and register TICMPR is initialized with 750. Use the watch
window to do so.

Do not continue with the next steps until this point is reached successfully! Instead go
back and try to find out, what went wrong during the modification of your source
code.

Tek .. @ Leq Complete M Pos: 0,0005 CLRSOR
+
Typ

et

uelle
CH1

b 500 s

DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

Generate the sine wave

So far we generated a pure square wave PWM signal of 50 KHz. Our goal is to
produce a sine wave signal which is build up from a series of this 50 KHz carrier
period cycles. We have to modify the pulse width according to the current sine angle.
Obviously we have to increment the angle from 0° to 360° in a couple of steps.

Question is: how do we calculate the sine-values?

e Use the sin(x) function

This function is part of the C compilers “math.lib”. All we would need to do
is to add the header file “math.h” to our project. Problem: sin(x) is a floating-
point function; our DSP is a fixed point processor. That means the compiler
has to generate quite a lot of assembler instructions to calculate the sine
values. This will cost us a quite a lot of CPU time, just to calculate the same
series of sine values over and over.

> Feasible, but not recommended

e Use a lookup table with pre calculated sine values

We do not need a floating-point precision; our goal is to adjust the 16-bit
register “TICMPR”. It is much quicker to prepare an array with
precalculated sine values. Instead of calculating the next value during
runtime we access a table with pre-defined results of sine calculations. This
principle is called “Lookup Table Access” and is widely used in embedded
control. Almost all control units for automotive electronics are using one or
more of these lookup tables, not only for trigonometric functions but also for
control parameters.

> Highly recommended

Next Question:

How do we generate a lookup table? Well, use a calculator, note all results and type
them into an array! How many values? Well, the more values we have the better we
can approximate the analogue sine wave shape! Recall, we need sine values from 0°
to 360°. Sounds like a lot of boring work, doesn’t it?

Answer: Texas Instruments has already done the work for you. The C28x — DSP
comes with a “BOOT-ROM” (see memory map — module 1). A part of this memory
area is a sine wave table!

From Address 0x3F FO0O to 0x3F F3FF we find 512 values for sin(x). The numbers
are stored as 32 Bit — numbers in “Q30”-notation. With 512 entries we have an angle
step of 0.703° (360°/512) for a unit circle.

DSP28 - Event Manager 5-45

Lab 5A: Generate a PWM sine wave

But what is “Q30”?

“Q30” or “I2Q30” is a fractional fixed-point representation of 32-Bit numbers. We
will discuss the advantage of fractional numbers for embedded control in detail in
Part 2 of this DSP course. So far, let’s try to understand the basics:

The data format “Q30” separates a 32-bit number into an integer part and a fractional
part. The integer part is the usual sequence of positive powers of 2; the fractional part
is the sequence of negative powers of 2. For a “Q30” number we get the following
binary representation:

Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25

(-DH*2" | 1%2° %27 1%27 1%27 1%27* 1%2°

The decimal range of a “Q30” number is —2...+1.9999:

Most negative number: 0x8000 0000 -2

Decimal minus 1: 0xC000 0000 -1

Smallest negative number OxFFFF FFFF -9.31322e-10
Zero 0x0000 0000 0

Smallest positive number 0x0000 0001 +9.31322e-10
Decimal plus 1: 0x4000 0000 +1

Most positive number: Ox7FFF FFFF: +1.999999999

IQ-Math Library

Texas Instruments has built a whole library of fixed-point math operations based on
this “Q”-format. This library called “IQ-Math” is widely used in closed control
applications like digital motor control, FAST FOURIER TRANSFORM (FFT) or
digital filters (FIR, IIR). The library is free, no royalties and can be downloaded
from TI’s web. The appendix of this CD contains the current version of IQ-Math. We
will discuss and use this library in a specific module in Part 2 of this DSP course.

DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

Boot ROM Table

The following table shows the contents of the sine wave area of the Boot ROM:

Address Low word High Word Angle in °© Sine value in 1Q30
0x3F F000 0x0000 0x0000 0 0.0

0x3F F002 0x0E90 0x00C9 0.703 0.01227153838
0x3F F004 0x155F 0x0192 1.406 0.02454122808
0x3F F006 0xO0CAF 0x025B 2.109 0.03680722322
0x3F F100 0x0000 0x4000 90 1.0

0x3F F200 0x0000 0x0000 180 0.0

0x3F F300 0x0000 0xC000 270 -1.0

0x3F F3FE 0xF170 0xFF36 359,3 -0.01227153838

Resume Lab Exercise 5A

Let’s resume the procedure for Lab5SA:
19. How do we get access to this boot ROM sine wave table?
We have to add some basic support from the “IQ-Math” library to our project. At the
top of your code, just after the line “#include “DSP281x_ Device.h” add the next
lines:
#include "lIQmathLib.h”
#pragma DATA_SECTION(sine_table, "IQmathTables");

_iq30 sine_table[512];

DSP28 - Event Manager 5-47

Lab 5A: Generate a PWM sine wave

20.

21.

The #pragma statement declares a specific data memory area, called “IQmathTables”.
This area will be linked in the next procedure step to the address range of the Boot
ROM sine table. The global variable “sine table[512]” is an array of this new data
type “1Q30”.

Add an additional Linker Command file to your project. From E:\C281x\Labs\Lab5A
add:

Lab5A.cmd
Open and inspect this file. You will see that we add just one entry for the physical
memory location (“ROM®) in data page 1 and that we connect the memory area
“IQmathTables” to address “ROM?”. The attribute “NOLOAD” assures that the

debugger will not try to download this area into the DSP when we load the program —
because it is already there, it is ROM — read only memory.

Modify “T1_Compare isr()”

This interrupt service routine is a good point to modify the pulse width of the PWM
signal. Recall, we do have now a global array “sine table[512]” that holds all the sine
values we need for our calculation.

Now we have to do a little bit of math’s.

What is the relationship between this sine value and the value of TICMPR?

Answer:

(1) We know that the difference between T1PR and TICMPR defines the pulse width
of the current PWM period. So the goal is to calculate a new value for TICMPR.

(2) Next, we have to take into account that the sine table delivers signed values
between +1 and —1. Therefore we have to add an offset of +1.0 to this value.

(3) This shifted sine value has to be multiplied with T1PR/2.

Summary:

TICMPR =T1PR —((sine_tabze[indexh1.0)* e R)

To code this into the “IQ-Math” form we use:
TICMPR =TI1PR - 1Q30mpy(sine table[index] + 1Q30(0.9999),T1PR/2)

“ 1Q30mpy(a,b)” is an intrinsic function call to do a multiplication in IQ30-Format.
The value from sine table is already in 1Q30-format, whereas the constant 1.0 has to
be translated into it by function call “ 1Q30(0.9999)”.

DSP28 - Event Manager

Lab 5A: Generate a PWM sine wave

To avoid fixed-point overflows we can embed the calculation into a saturation
function “ IQsat(x,max,min)” to limit the result between T1PR and 0. This leads to

our final instruction:

EvaRegs.T1CMPR =

EvaRegs.T1PR — _IQsat(
_lQmpy(sine_table[index] + _1Q30(0.9999), EvaRegs.T1PR/2),
EvaRegs.T1PR,0) ;

Add this line just after the “EDIS“ instruction that follows the service of the
Watchdog timer.

22. Setup the sine wave frequency.

Recall that the Boot ROM sine table consists of 512 entries for a unit circle. The
frequency of the sine wave is given by:

fPWM
Number of PWM - periods per 360°

fsuv =

For example, if we use all 512 entries of the Boot ROM table we get:

50KH:z
fS]N = T = 97,6HZ

If we use only one lookup table entry out of 4, we end up with:

S = 22KHZ _ 390 6112

128

Let’s use this last set up. It means we have to increment the index by 4 to make the
next access to the lookup table. Add the next line after the update line for TICMPR:

index +=4;
Do not forget to:

(1) Reset variable index to 0 if it is increased above 511.

(2) Declare the integer variable index to be static.

Build and Load

23. Click the “Rebuild All” button or perform:

Project = Build

DSP28 - Event Manager

Optional Exercise

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

24. Load and test the final version of the output file as you’ve done before. With the help

25.

of the oscilloscope we should see now a change of the pulse width of the PWM signal
‘on the fly’.

Optional: Low pass filter:

The low pass filter capacity of the tiny loudspeaker is not strong enough to integrate
the pulse sequence to a sine wave shaped signal. We can improve this by adding a
simple low-pass filter between the two connectors of jumper JP7-2 (DSP-T1PWM)
and JP7-1 (Loudspeaker). Build a passive low pass filter of first order with a
frequency of 25 KHz:

1

—— =25KHz
2-n-R-C

fFi/ter =

Optional Exercise

How about other frequencies?

In the previous exercise we generated a modulated sine wave of 390 Hz. We used the
512-point look-up table and stepped through it using an increment of 4.

How do we generate other frequencies?

Answer: when we change the step size for variable “index” we can generate more
(or less PWM-periods per 360°. More means we slow down the sine frequency, less
means we increase the sine wave frequency. The following table shows the different
sine wave frequencies for a PWM carrier frequency of 50 KHz and a lookup table of
512 points per 360°:

fPWM
S Number of PWM - periods per 360°
Incremental step of Number of PWM periods Sine wave frequency
“index” per 360° In Hz
1 512 97.6
2 256 195.3
3 171 293
4 128 390
5 102 488
10 51 976
15 34 1,460
20 26 1,950
50 10 4,880

We can’t increase the step size much above 50 because this gives us only 10 points
per 360° to synthesize the sine wave.

DSP28 - Event Manager

Optional Exercise

What about frequencies that we do not match with any of these incremental steps?
Recall our Lab Exercise 5 with the range of 8 notes; it started with a note of 264Hz.

How do we generate a sine wave of 264 Hz?

The answer is: We have to modify the PWM frequency itself. So far we did all
experiments with a fixed PWM signal of 50 KHz. Let’s fix now the number of
points taken out of the look up table to 128 (that is an index increment by 4). To get
a sine wave of 264Hz we calculate:

fon =L 2641

Sowy =264Hz*128 =33,792KHz

To setup a PWM signal of 33,792 KHz we have to re-calculate T1PR:

f — fCPU
"M T1PR-TPS,, - HISCP
TipR=— DPOMHZ 5 51946
33.792KHz -1-2

T1PR has to be loaded with an integer value, so we have to round the result to 2219.

Test: Fomny = Jery _ 1SOMHZ 33 299 k2
T1PR-TPS,, - HISCP 2219%1*2
- Jong _33TOKHE oo
128 128

That’s a reasonable result; the intended frequency of 264Hz is missed by an error of
0.02%.

26. Try to setup your code to generate a sine wave of 264Hz!

27. If you have additional time in your laboratory try to improve Lab5 to generate all 8
notes with sine wave modulated PWM’s!

End of Lab 5A

DSP28 - Event Manager 5-51

Optional Exercise

This page was intentionally left blank.

5-52 DSP28 - Event Manager

C28x Analogue Digital Converter

Introduction

One of the most important peripheral units of an embedded controller is the Analogue to Digital
Converter (ADC). This unit provides an important interface between the controller and the real
world. Most physical signals such as temperature, humidity, pressure, current, speed and
acceleration are analogue signals. Almost all of these can be represented as an electrical voltage
between Vi, and Vi, €.g. 0...3V, which is proportional to the original signal. The purpose of
the ADC is to convert this analogue voltage in a digital number. The relationship between the
analogue input voltage (Vi,), the number of binary digits to represent the digital number (n) and
the digital number (D) is given by:

_ D (Vegre =Vrer-) i 4
REF-

" 2" ~1

Vrer+ and Vg are reference voltages and are used to limit the analogue voltage range. Any input
voltage beyond these reference voltages will deliver a saturated digital number. NOTE: Of course
all voltages must stay inside the limits of the maximum ratings according to the data sheet.

In case of the C28x and especially with the eZdsp2812 and the Zwickau adapter board voltage
Vrer. 18 set to 0V, Vggps to +3.0V. The C28x internal ADC has a 12 Bit resolution (n =12) for the
digital number D. This gives:

_ D*3.0V

" 4095

Most applications require not only one analogue input signal to be converted into a digital value;
their control loop usually needs several different sensor input signals. Therefore, the C28x is
equipped with 16 dedicated input pins to measure analogue voltages. These 16 signals are
multiplexed internally, that means they are processed sequentially. To do the conversion, the
ADC has to make sure that during the conversion procedure there is no change of the analogue
input voltage Vi,. Otherwise the digital number would be totally wrong. An internal “sample and
hold unit(s&h)” takes care of this. The C28x is equipped with two s&h-units, which can be used
in parallel. This allows us to convert two input signals (e.g. two currents) at the same time.

But there’s more: The C28x ADC has an “auto-sequencer” capability of 16 stages. That means
that the ADC can automatically continue with the conversion of the next input channel after the
previous ones are finished. Thanks to this enhancement we do not have to fetch the digital results
in the middle of a measurement sequence, one single interrupt service routine call at the end of
the sequence will do it.

DSP28 - Analogue Digital Converter 6-1

Module Topics

Module Topics

C28x Analogue Digital Converter 6-1
TRIPOAUCHION ...ttt a ettt ettt ettt ettt e e ne et e ne e neaneas 6-1
MOAUIE TOPICS........ccooeeeeeeeieie ettt ettt ettt b et e e aeeabeeseebeessesseesaesbeesseeseenseareenes 6-2
ADC MOAUIE OVEFVIEW ...ttt ettt ettt ens 6-3
ADC in Cascaded MOde......................cccocciieoiniciniiiiiiiiiiiiceceeee e 6-4
ADC in Dual SeqUENCEr MOdE................ccoeeiiiiiiiiiieiee ettt 6-5
ADC COnVEFSION TIMe..........cc.ccuiiiiiiiiiiiiiiiiceee e 6-6
ADC ReGISIEr BIOCK ...ttt e 6-7
Example: 3 phase MeaSUFemMEnLc.ccccoeviruiiiieiiiiiiiiiieieteet ettt 6-12
ADC ReSUIt REGISIET SOI ..ottt ettt ettt ettt ettt e eee 6-13
Lab 6: Two Potentiometer VOIIAZES..............ccccociiciiiiiiiiieiiieeeiet ettt 6-14
Lab 6A4: Speed Control of ‘Knight Riderccccooiioiiiiiiiiiiiitieeie ettt 6-22

6-2 DSP28 - Analogue Digital Converter

ADC Module Overview

ADC Module Overview

Before we go into the details how to program the internal ADC let’s summarize some details of
the ADC Module. It was said that the digital resolution of the converted number is 12 bit.
Assuming an input voltage range from 0..+3V we get a voltage resolution of 3.0V/4095 =
0.732mV per bit.

We have two s&h units, which can be used in parallel (“simultaneous sampling”). Each sample
and hold is connected to 8 multiplexed input lines. The auto sequencer is a programmable state
machine and is able to automatically convert up to 16 input signals. Each state of the auto
sequencer puts a measurement into its own result register.

The fastest conversion time is 80ns per sample in a sequence and 160ns for the very first sample.

ADC Module
¢ 12-bit resolution ADC core
Sixteen analog inputs (range of 0 to 3V)

*

¢ Two analog input multiplexers

+ Up to 8 analog input channels each
¢ Two sample/hold units (for each input mux)
Sequential and simultaneous sampling modes

¢ Auto sequencing capability - up to 16 auto
conversions
+ Two independent 8-state sequencers
+ “Dual-sequencer mode”
+ “Cascaded mode”

*

Sixteen individually addressable result registers
Multiple trigger sources for start-of-conversion

+ External trigger, S/W, and Event Manager events

A start of a conversion sequence can be initiated from four sources:

By software - just set a start bit to 1
By an external signal “ADCSOC”
By an event (period, compare, underflow) of Event Manager A

By an event (period, compare, underflow) of Event Manager B

DSP28 - Analogue Digital Converter

ADC in Cascaded Mode

ADC in Cascaded Mode

L
ADC Module Block Diagram (cascaged Mode)
Analog MUX
ADCINAO —
ADCINA1—|Mux SH Result MUX
: A A —{ RESULT0
ADCINAT— 12-bit A/D LRESULTL
T ﬁﬁ'x -
ADCINBO — Converter s
ADCINB1 —MUX S/H SoC EOC Result .
: B B Select —>{RESULT15
ADCINB7 — Auto sequencer
I— MAX_CONV1
CHSELO00 (state 0)
CHSELO1 (state 1)
CHSELO2 (state 2)
Software CHSELO3 (state 3)
EVA .
EVB :
Ext Pin (ADCSOC) CHSELIS (state 15)
Start Sequence
Trigger
6-3

The slide shows the block diagram for the ADC operating in “cascaded mode”. One Auto
sequencer controls the flow of the conversion. Before we can start a conversion, we have to setup
the number of conversions (“MAX_ CONV1”) and which input line should be converted in which
stage (“CHSELxx”). The results are buffered in individual result registers (“RESULTO0” to
“RESULT15”) for every stage.

We can choose between two more options: “Simultaneous” and “Sequential” sampling. In the
first case, both s&hs are used in parallel. Two input lines with the same input code (for example
ADCINA3 and ADCINB3) are converted at the same time by stage CHSELOO. In “Sequential
mode” the input lines can be connected to any of the states of the auto sequencer.

To trigger a conversion sequence we can use a software start by setting a particular bit. We also
have three more start options using hardware events. Especially useful is the hard-wired output of
a timer event, which leads to very precise sample periods. This is a necessity for correct operation
of digital signal processing algorithms. No need to trigger an interrupt service (with its possible
jitter due to interrupt response delays) to switch the input channel between subsequent
conversions — the auto sequencer will do it.

We can use the ADC’s interrupt after the end of a sequence (or for some applications at the end
of every other sequence) to read out the result register block.

DSP28 - Analogue Digital Converter

ADC in Dual Sequencer Mode

ADC in Dual Sequencer Mode

ADC MOdule BlOCk Diagram (Dual-Sequencer mode)

Analog MUX Result MUX
ADCINAO — esu S
ADCINA1 —* MUX S/H >

: A A RESULT1
‘ 12-bit A/D .

N .
ADCINAT i 1\§[/Jlx Converter l;e:“l: .
ADCINB0 —| Sequencer C e: RESULT?
ADCINBI —MUX SH Arbiter i

: B B soc/ S0C2/ L RESULTS |
ADCINB7 —> EOC1 EOC2 RESULT9
[t;k SEQ1 SEQ2 Result .
! Auto sequencer| | Auto sequencer | | Select | fRpoyyTs]

I | MAX_CONV1 |

| MAX_CONV2 |

Software
EVA

Ext Pin
(ADCSOC)

CHSELO0 (state 0)

CHSELOS (state 8)

CHSELO1 (state 1)

CHSELO09 (state 9)

CHSELO2 (state 2) |[=-

CHSEL10 (state 10)

CHSELO7 (state 7)

Start Sequence

E Software
CHSELI1S5 (state 15) EVB
Start Sequence <]

Trigger Trigger

The second operating mode of the ADC “Dual Sequencer Mode” splits the auto sequencer into
two independent state machines (“SEQ1” and “SEQ2”). This mode uses EVA as the hardware
trigger for SEQ1 and EVB for SEQ2. To code the input channels for the individual states of the
two sequencers we are free to select any of the 16 inputs for any of the 2x8 states. RESULTO to
RESULTY7 cover the values from SEQ1 and RESULTS8 to RESULT15 do it for SEQ?2.

The reason for this split mode is to have two independent ADC’s, triggered by their own
hardware timer units, GP Timer 1 and 2 for SEQ1 and GP Timer 3 and 4 for SEQ2.

In case of a simultaneous start of SEQ1 and SEQ2 the Sequencer Arbiter takes care of this
situation. In this event SEQ1 has higher priority; the start of SEQ2 will be delayed after the end
of SEQL.

DSP28 - Analogue Digital Converter

ADC Conversion Time

ADC Conversion Time

F2812 ADC Clocking Example

CLKIN PLLCR SYSCLKOUT HISPCP HSPCLK

30 MHz 150 MH 150 MH
() | DIV (2) HSPCLK | (2) R
bits | [o cpu 20
10100 000b
PCLKCR.ADCENCLK = 1 ¢
ADCTRL3 FCLK ADCTRL1 ADCCLK
ADCCLKP 25 MHz
CQ S| (5MHz) | o]) , ToADC
bits pipeline
0011b Ob ADCTRLA sampling
FCLK = HSPCLK/(2*ADCCLKPS) ADCCLK = ACQ_Ps| Window
FCLK/(CPS+1) bits
0111b

sampling window = (ACQ_PS + 1)*(1/ADCCLK)
Important: ADCCLK can be a maximum of 25 MHz!

6-5

There are some limitations for the set-up of the ADC conversion time. First, the basic clock
source for the ADC is the internal clock HSPCLK — we cannot use any clock speed we like. This
clock is derived from the external oscillator, multiplied by PLLCR and divided by HISPCP. We
discussed these bit fields in earlier modules; so just in case you do not recall their meanings, look
back.

The second limitation is the maximum frequency for “FCLK” as the internal input signal for the
ADC unit. At the moment this signal is limited to 25MHz. To adjust this clock we have to
initialise the bit field “ADCCLKPS” accordingly. Bit “CPS” gives the option for another divider
by 2. The clock “ADCCLK?” is the time base for the internal processing pipeline of the ADC.

A third limitation is the sampling window controlled by the field “ACQ_PS”. This group of bits
defines the length of the window that is used between the multiplexer switch and the time when
we sample (or “freeze”) the input voltage. This time depends on the line impedance of the input
signal. So it is hardware dependent - we can’t specify an optimal period for all applications. For
our lab exercises in this chapter, it is a ‘don’t care’ because we sample DC-voltages taken from
two potentiometers of the Zwickau adapter board.

DSP28 - Analogue Digital Converter

ADC Register Block

ADC Register Block

Three control registers “ADCTRLI to 3” are used to set-up one of the various operating
conditions of the ADC unit. Register “ADCST” covers the current status of the ADC.

Analog-to-Digital Converter Registers

Register Address Description
ADCTRL1 0x007100 ADC Control Register 1
ADCTRL2 0x007101 ADC Control Register 2

ADCMAXCONV 0x007102 ADC Maximum Conversion Channels Register
ADCCHSELSEQ1 0x007103 ADC Channel Select Sequencing Control Register 1
ADCCHSELSEQ2 0x007104 ADC Channel Select Sequencing Control Register 2
ADCCHSELSEQ3 0x007105 ADC Channel Select Sequencing Control Register 3
ADCCHSELSEQ4 0x007106 ADC Channel Select Sequencing Control Register 4
ADCASEQSR 0x007107 ADC Auto sequence Status Register
ADCRESULTO 0x007108 ADC Conversion Result Buffer Register 0
ADCRESULT1 0x007109 ADC Conversion Result Buffer Register 1
ADCRESULT2 0x00710A ADC Conversion Result Buffer Register 2

ADCRESULT14 0x007116 ADC Conversion Result Buffer Register 14
ADCRESULT1S 0x007117 ADC Conversion Result Buffer Register 15
ADCTRL3 0x007118 ADC Control Register 3

ADCST 0x007119 ADC Status and Flag Register

ADC Control Register 1 - Upper Byte

ADCTRLI1 @ 0x007100

ADC Module Reset

0 = no effect

1 =reset (set back to 0
by ADC logic)

Acquisition Time Prescale (S/H)

Value = (binary+1)

* Time dependent on the “Conversion
Clock Prescale” bit (Bit 7 “CPS”)

15 14 13 12 11 10 9 8

reserved RESET | SUSMOD1|SUSMODO| ACQ_PS3 | ACQ_PS2 | ACQ_PS1 | ACQ_PS0

%/—/

Emulation Suspend Mode

00 = [Mode 0] free run (do not stop)

01 = [Mode 1] stop after current sequence
10 = [Mode 2] stop after current conversion
11 = [Mode 3] stop immediately

DSP28 - Analogue Digital Converter 6-7

ADC Register Block

ADC Control Register 1

Bit 14 (“RESET”) can be used to reset the whole ADC unit into its initial state. It is always good
practice to apply a RESET command before you initialise the ADC.

Bits 13 and 12 define the interaction between the ADC and an emulator command, similar to the
behaviour that we discussed in the event manager module.

The next 4 bits define the length of the sample window.

ADC Control Register 1 - Lower Byte

ADCTRL1 @ 0x007100

Continuous Run Sequencer Mode
0 = stops after reaching 0 = dual mode
end of sequence 1 = cascaded mode

1 = continuous (starts all over
again from “initial state”)

7 6 5 4 3 2 1 0

CPS | CONT_RUN | SEQ1_OVRD | SEQ_CASC| reserved |reserved| reserved| reserved

Conversion Prescale Sequencer Override
0=CLK/1 (continuous run mode)
1=CLK/2 0 = sequencer pointer resets to “initial state”
at end of MAX_CONVn
1 = sequencer pointer resets to “initial state”
after “end state”

“CPS” is used to divide the input frequency by 1 or 2.

Bit 6 (“CONT_RUN?”) defines if the auto sequencer starts at the end of a sequence (=0) and waits
for another trigger or if the sequence should start all over again immediately (= 1).

Bit 5(“SEQ1_OVRD?”) defines two different options for continuous mode. We will not use this
mode during our labs, so it is a ‘don’t care’.

Finally Bit 4 defines the Sequencer Mode to be a state machine of 16 (=1) or to operate as two
independent state machines of 8 states.

6-8 DSP28 - Analogue Digital Converter

ADC Register Block

ADC Control Register 2

ADC Control Register 2 - Upper Byte
ADCTRL2 @ 0x007101
EVB SOC EVA SOC
(cascaded mode only) SEQ1 Mask Bit
(1) - ;lt(;ftc:)lm;EVB 0 = cannot be started
= y A
signal Start Conversion (SEQ1) _ by EVA trigger
. . 1 = can be started
0 = clear pending SOC trigger bv EVA trisser
1 = software trigger-start SEQ1 y g8
15 14 13 12 11 10 9 8
EVB_SOC INT_ENA_[INT _MOD EVA_SOC_
_SEQ RST_SEQ1 ([SOC_SEQI| reserved SEQ1 SEQI reserved SEQ1
Reset SEQ1 Interrupt Enable (SEQ1)
0 = no action 0 = interrupt disable
1 = immediate reset 1 = interrupt enable Interrupt Mode (SEQ1)
SEQI to “initial state” 0 = interrupt every EOS
1 =interrupt every other EOS
6-9

The upper half of register ADCTRL?2 is responsible to control the operating mode of sequencer 1.

Bit 15 “EVB_SOC SEQ” flags if Event Manager B has triggered the conversion. It is a ‘read
only’ flag.

With Bit14 “RST _SEQ1” we can reset the state machine of SEQI to its initial state. That means
that the next trigger will start again from CHSELSEQI.

When we set Bit 13 “SOC_SEQI1” to 1 we perform a software start of the conversion.

Bits 11 and 10 define the interrupt mode of SEQI. We can specify to whether we have an
interrupt request for every “End of Sequence” (EOS) or every other (EOS).

Bit 8 “EVA_SOC _SEQ1” is the mask bit to enable or disable Event Manager A’s ability to
trigger a conversion. In Lab6 we will make use of this start feature, so please remember to enable
this start option during the procedure of Lab6!

DSP28 - Analogue Digital Converter 6-9

ADC Register Block

ADC Control Register 2 - Lower Byte

ADCTRL2 @ 0x007101

External SOC (SEQ1) EVB SOC

0 =no action SEQ2 Mask bit

1 = start by signal) 0 = cannot be started
from ADCSOC pin

by EVB trigger
Start Conversion (SEQ?2) 1 = can be started

(dual-sequencer mode only) by EVB trigger
0 = clear pending SOC trigger

1= softvlvare trigger-start SEQ2

7 6 5 4 3 2 1 0
EXT_SOC| INT ENA |INT MOD EVB_SOC_
SEQ1 RST_SEQ2|SOC_SEQ2| reserved SEQ2 SEQ2 reserved SEQ2
Reset SEQ2 Interrupt Enable (SEQ2)
0 = no action 0 = interrupt disable
1 = immediate reset 1 = interrupt enable Interrupt Mode (SEQ2)
SEQ?2 to “initial state” 0 = interrupt every EOS

1 = interrupt every other EOS

6-10

The lower byte of ADCTRL2 is similar to its upper half: it controls sequencer SEQ2. Bit 7 flags
the event that the external pin “ADCSOC” has caused the conversion. The rest is identical to the
upper half.

ADC Control Register 3

ADCTRL3 @ 0x007118

ADC Reference ADC Bandgap ADC Power Down

Power Down Power Down (except Bandgap & Ref.)
0 = powered down 0 =powered down 0 =powered down
1 =powered up 1 =powered up 1 =powered up
15-8 7 6 5
reserved ADCRFDN | ADCBGND | ADCPWDN
4 3 2 1 0
ADCCLKPS3| ADCCLKPS2{ ADCCLKPS1| ADCCLKPS0SMODE_SEL

_

\/
ADC Clock Prescale Sampling Mode Select
0 = sequential sampling mode
1 = simultaneous sampling mode

6-10 DSP28 - Analogue Digital Converter

ADC Register Block

ADC MAXCONYV Register

"MAXCONV” defines the number of states per trigger.

Maximum Conversion Channels Register
ADCMAXCONYV @ 0x007102

¢ Bit fields define the maximum number of auto conversions (binary+1)

Cascaded Mode
AL
- ™
reserved | MAX_ MAX_ MAX_ MAX_ MAX_ MAX_ MAX_
CONV2 2(CONV2 1|CONV2 0|CONV1 3(CONV1 2(CONV1 1|CONV10
\ / - %
Y v

SEQ2 —0 Dual Mode — SEQI

¢ Auto conversion session always starts with the “initial state”
and continues sequentially until the “end state”, if allowed

SEQ1 SEQ2 Cascaded ||
Initial state | CONVO0 CONV0S CONV00
Endstate | CONV07 CONV15 CONVI5

ADC Input Channel Select Sequencing
Control Register

Bits 15-12 Bits 11-8 Bits 7-4 Bits 3-0

0x007103| CONVO03 | CONV02 | CONVO01 | CONVO00 § ADCCHSELSEQ1
0x007104| CONVO07 | CONV06 | CONV05 | CONV04 | ADCCHSELSEQ2
0x007105| CONV11 | CONV10 | CONV09 | CONV0S8 | ADCCHSELSEQ3
0x007106| CONV15 | CONV14 | CONV13 | CONV12 J ADCCHSELSEQ4

DSP28 - Analogue Digital Converter 6-11

Example: 3 phase measurement

Example: 3 phase measurement

Example - Sequencer “Start/Stop” Operation

N /\\ml

EVA
PWM

LIyl Vi, VyVy Ilyly V,V,,V,

System Requirements:
*Three auto conversions (I, I,, L,) off trigger 1 (Timer underflow)

*Three auto conversions (V,, V,, V,) off trigger 2 (Timer period)

Event Manager A (EVA) and SEQI1 are used for this example
with sequential sampling mode

The two slides give a typical example of a 3-phase control system for digital motor control.

Example - Sequencer “Start/Stop” Operation
(Continued)

* MAX _CONVl is set to 2 and Channel Select Sequencing Control Registers are set to:

Bits > 15-12 11-8 7-4 3-0
0x007103 [V, [I, [1, [I, | ADCCHSELSEQ1
0x007104 [x | x |V, |V,| ADCCHSELSEQ2

* Once reset and initialized, SEQ1 waits for a trigger
* First trigger three conversions performed: CONV00 (I,), CONV01 (I,), CONV02 (I,)

* MAX_CONV1 value is reset to 2 (unless changed by software)

* SEQ1 waits for second trigger

* Second trigger three conversions performed: CONV03 (V,), CONV04 (V,), CONVO05 (V,)
* End of second auto conversion session, ADC Results registers have the following values:
RESULT0 I, || RESULT3 V,

RESULTI I, | RESULT4 V,
RESULT2 1, || RESULT5 V,

— User can reset SEQ1 by software to state CONV00 and repeat same trigger 1, 2 session
* SEQI1 keeps “waiting” at current state for another trigger

6-12 DSP28 - Analogue Digital Converter

ADC Result Register Set

ADC Result Register Set

ADC Conversion Result Buffer Register

ADCRESULTO0 @ 0x007108 through ADCRESULT15 @ 0x007117
(Total of 16 Registers)

14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

15
S I T N N - I B

With analog input 0V to 3V, we have:

analog volts converted value RESULTX
3.0 FFFh 1111j1111]1111]0000
1.5 7FFh 01111111|1111]0000
0.00073 1h 0000/0000|0001|0000
0 Oh 0000/0000|0000]0000

The 12 Bit digital results are left justified. Why is that? Answer: The ‘native’ numbering scheme
of the C28x, which is fractional. We’ll see how this makes scaling easier in Part II of this course.

How do we Read the Result?
Integer format

EIXIXIXIXIXIXIXIXIX[X]x] 0] 0] 0] 0] RESULTx

15 bit shift right — 0
[oToToToToToToToToToToToToToToTo EXEIXXIXIXIXIXIXIXIX] [[[| ACC

[oToToTo XIXIXIXIXIXIXIXIXIXIXIX] Data Mem

Example: read RESULTO register
#include "DSP281x Device.h"

void main (void)
{

Uintl6 value; // unsigned

value = AdcRegs.ADCRESULTO >> 4;
}

DSP28 - Analogue Digital Converter 6-13

Lab 6: Two Potentiometer Voltages

Lab 6: Two Potentiometer Voltages

Lab 6: Two Channel Analogue Conversion
initiated by GP Timer 1

AIM :

¢ AD-Conversion of ADCIN_AO0 and ADCIN_BO initiated by
GPT1-period of 0.1 sec.

¢ ADCIN_AO0 and ADCIN_BO are connected to two
potentiometers to control analogue input voltages between 0
and 3,0V.

¢ no GPTl-interrupt-service = Auto-start of ADC with
T1TOADC-bit !!

¢ Use ADC-Interrupt Service Routine to read out the ADC
results

¢ Use main loop to show alternately the two results as light-
beam on LED’s (GPIO port B7..B0)

6-18
Additional Registers to initialize Lab 6:
General Purpose Timer Control : : GPTCONA
Timer 1 Control : T1CON
Timer 1 Period T1PR
Timer 1 Compare TICMPR
Timer 1 Counter TICNT
Interrupt Flag IFR
Interrupt Enable ask IER
ADC - Control 3 ADCTRL3
ADC - Control 2 ADCTRL2
ADC — Control 1 ADCTRLI1
Channel Select Sequencer 1 CHSELSEQ1
Max. number of conversions MAXCONV
ADC - Result 0 ADCRESULTO
ADC - Result 1 ADCRESULT1
6-19

DSP28 - Analogue Digital Converter

Lab 6: Two Potentiometer Voltages

Objective

The objective of this exercise is to practice using the integrated Analogue-Digital
Converter of the C28x. The Zwickau Adapter board is equipped with 2
potentiometers at ADCIN_ A0 and ADCIN_BO0. The two voltages can be changed
between 0 and 3.0Volt. The goal of this lab is to read the current status of the
potentiometers and to show the voltages as ‘Light-Beam’ on 8 LED’s (GPIO Port
B0...B7).

GP Timer 1 generates the sample period of 100msec. The conversion is triggered

automatically by a GP Timer 1 period event. The ADC interrupt service routine is
the only interrupt needed in this example.

Procedure

Open Files, Create Project File

1. Create a new project, called Lab6.pjt in E:\C281x\Labs.

2. Open the file Lab5A.c from E:\C281x\Labs\Lab5A and save it as Lab6.c in
E:\C281x\Labs\Lab6.

3. Add the source code file to your project:
. Lab6.c

4. From C:\tidcs\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c
o DSP281x_Defaultlsr.c
e DSP281x_Adc.c

e DSP281x_usDelay.asm

DSP28 - Analogue Digital Converter 6-15

Lab 6: Two Potentiometer Voltages

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab6.c to edit: double click on “Lab6.c¢” inside the project window. First we
have to cancel the parts of the code that we do not need any longer. We will not use
the IQ-Math Library for this exercise:

At the beginning of the code, delete the lines:

#include “IQmathLib.h”
#pragma DATA_SECTION(sine_table,”IQmathTables”);
_iq30 sine_table[512];

8. We do not need the interrupt service routine “T1_Compare_isr()”; instead, we need a
new one for the ADC, called “adc_isr()”.

Change the prototype declaration for the interrupt service routine into:
interrupt void adc_isr(void);

9. Next, just after the function prototype section include the definition of two global
integer variables, called “Voltage A0” and “Voltage B0”. The two variables will be
used to pass the current measurement values from the ADC interrupt service routine
to the main loop. Add:

int Voltage_AO0;

int Voltage_BO;

6-16 DSP28 - Analogue Digital Converter

Lab 6: Two Potentiometer Voltages

10. Inside “main”, after the function call “InitPieVectTable();” add the following line to
call the basic ADC initialization:

InitAdc();

11. Change the three lines that re-map the PIE — entry and that enable the ADC interrupt
into:

PieVectTable.ADCINT = &adc_isr;
PieCtrIRegs.PIEIER1.bit.INTx6 = 1;
IER =1;

12. Although we initialized the ADC in step 10, we still have to configure its operating
mode. Place the corresponding lines after the global interrupt enable instruction
“ERTM”. Take into account the following setup:

Dual Sequencer Mode:

AdcRegs.ADCTRL1.bit.SEQ_CASC =?

No continuous run:

AdcRegs.ADCTRL1.bit. CONT_RUN =?

Conversion Prescale = CLK/1:
AdcRegs.ADCTRL1.bit.CPS =?

2 conversions (ADCINO and ADCINBO) out of a GP Timer 1 start:
AdcRegs.ADCMAXCONV.all =?

Setup the channel sequencer to ADCINO and ADCINBO:
AdcRegs.ADCSELSEQ1.bit.CONV00 = ?
AdcRegs.ADCSELSEQ1.bit. CONV01 = ?

Enable the Event Manager A to start the conversion:
AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1="7?

Enable the ADC interrupt with every end of sequence:
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 =?

We also have to initialize the speed of the ADC (see also slide 6-5). In function

“InitSystem()” the high-speed clock prescaler HISPCP is set to ‘divide by 2°.
Assuming a SYSCLOCKOUT of 150MHz we have an ADC input clock of 75SMHz.

DSP28 - Analogue Digital Converter 6-17

Lab 6: Two Potentiometer Voltages

For ‘FCLK’ the maximum frequency is 25MHz, so we have to setup the ADC clock
prescaler “ADCCLKPS” to ‘0010° = FCLK = 18.75 MHz.

AdcRegs.ADCTRL3.bit. ADCCLKPS = 2;

13. We also have to adjust the Event Manager A configuration. We do not need to drive
any output signal from the GP Timer 1. For Register “GPTCONA” we can disable
the two outputs and set the polarity to “forced low*:

EvaRegs.GPTCONA.bit. TCMPOE = 0;
EvaRegs.GPTCONA.bit.T1PIN = 0;

To enable the auto start of the ADC with every timer period we have to enable this
feature:

EvaRegs.GPTCONA.bit. TITOADC = 2;
14. Modity the setup for GP Timer 1(Register TICON)! Take into account to setup:
e “Continuous up count mode”,
e “Internal clock source”,
e “Stop on emulation suspend” and
e “Disable Compare Operation”.

15. Setup the GP Timer 1 Period:

fCPU
T1PR-TPS,, - HISCP

fPWM =

To setup the timer for a sample period of 100 ms we calculate:
o fCPU =150 MHZ,

HSPCP =2 and

fPWM = 10Hz

TPSTI = 128

T1PR = 58594

EvaRegs.T1CON.bit.TPS = 7;
EvaRegs.T1PR = 58594;

16. Delete the line “EvaRegs.EVAIMRA.bit. TICINT = 1;” — we do not need a Timer
Interrupt for this lab.

6-18 DSP28 - Analogue Digital Converter

Lab 6: Two Potentiometer Voltages

17. Inside function “Gpio_select()”” do not enable TIPWM as pin function.
18. Delete the whole interrupt function “T1_Compare_isr()”.
19. Add a new interrupt service routine “adc_isr()” to your code. Inside this function, do:

e Service the watchdog, part 1:
EALLOW;
SysCtrIRegs.WDKEY = 0x55;
EDIS;

¢ Read the two ADC result register and load the value into variables “Voltage A0”
and “Voltage B0:

Voltage_A0 = AdcRegs.ADCRESULTO0 >> 4;
Voltage_B0 = AdcRegs.ADCRESULT1 >> 4;

e Reset ADC Sequencerl (Register ADCCTRL?2):
AdcRegs.ADCTRL2.bit.RST_SEQ1 =1;

e C(Clear Interrupt Flag ADC Sequencer 1 (Register ADCST)
AdcRegs.ADCST.bit.INT_SEQ1_CLR =1;

e Acknowledge PIE Interrupt:
PieCtriIRegs.PIEACK.all = PIEACK_GROUP1;

20. Inside function “InitSystem()”” enable the clock system for the ADC:

SysCtriIRegs.PCLKCR.bit. ADCENCLK = 1;
Build and Load
21. Click the “Rebuild All” button or perform:

Project > Build

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

22. Load the output file down to the DSP Click:

File > Load Program and choose the desired output file.

DSP28 - Analogue Digital Converter 6-19

Lab 6: Two Potentiometer Voltages

Test

Run

23.

Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart and
Debug = Go main.

24. Set a breakpoint into interrupt service routine “adc_isr()” at the last line of its code.

25.

26.

When you’ve modified your code correctly and you execute a real time run, this
breakpoint should be hit periodically. If not, you missed one or more steps in your
procedure for this lab exercise. In this case try to review your modifications. If you
do not spot a mistake immediately try to test systematically:

e A good start is to temporarily disable the watchdog timer

Verify that GP Timer1 is counting (TICNT)

Verify that the clock system is enabled (PCLKCR) for EVA and ADC

Inspect the Interrupt Registers (IER, PIEIER, INTM)
e Inspect the ADC Register Set (ADCTRLI1-3)

If nothing helps, ask your instructor for advice. Please do not ask questions like “It is
not working” or “I do not know what’s wrong...” Instead, summarize your test
strategy and show intermediate results for inspection.

After you verified that the interrupt service routine “adc_isr()” is called periodically,
check the ADC results. Add variables “Voltage A0” and “Voltage B0” to your
watch window. With the breakpoint still set, modify the analogue input voltages with
the two potentiometers “R1” and “R2” of the Zwickau Adapter board. You should be
able to get values between 0 and 4095 for the leftmost and rightmost positions of R1
and R2.

Add the display code (LED beam)

27.

So far we verified that the GP Timer 1 every 100 ms triggers the ADC to convert the
two input voltages periodically. Now we need to add a next portion of code to display
the current status of Voltage A0 and Voltage BO0. To display it, we have to use the 8
LEDs at GPIO — B0 to B7.

A good point to add this code is the while(1) loop of main. After we served the
watchdog we can easily add our display code. Question is: how do we display two
values with 8 LED’s only?

DSP28 - Analogue Digital Converter

Lab 6: Two Potentiometer Voltages

One option could be to alternate every 2 seconds from display “Voltage A0 to
“Voltage BO0”. Recall, the digital number is in the range 0 to 4095. The rule is
simple: the bigger the number the more LED’s should be switched on.

To generate the 2 seconds alternation you can use a simple loop counter in main, or
you could use GP Timer 1, now enabled for period interrupt, and count the number

of 100ms periods up to 20 before you alternate the display value.

Try to finish this portion of Lab6 by yourself!

END of LAB 6

Optional Lab6A
Modify Lab-Exercise 4 (‘Knight-Rider’) :

* use the Analogue Input ADCINO to change
the frequency for the LED’s
* to add the ADC-setup use Lab6 as a start
* use a LED-frequency range between S0Hz and 1 Hz
* use (1) alinear or (2) a logarithm scale
between F _, and F ..

DSP28 - Analogue Digital Converter 6-21

Lab 6A: Speed Control of ‘Knight Rider’

Lab 6A: Speed Control of ‘Knight Rider’

Objective

Now that we have exercised both with the ADC (Lab 6) and the CPU hardware
Timer 0 (LAB 4) we can combine the two exercises. The objective is to control
the speed step of the LED’s sequence of Lab4 (“Knight Rider””) with the ADC-
Input ADCIN_AO =>» the higher the voltage ADCIN_AO the higher the speed of
the LED-sequence.

We will need two interrupts along with the main function, interrupt 1 for the ADC
results and interrupt 2 for core CPU Timer 0.

Use your code from Lab4 and Lab6 as a starting point.

Procedure

Open Files, Create Project File

1. Create a new project, called Lab6A.pjt in E:\C281x\Labs.

2. Open the file Lab4.c from E:\C281x\Labs\Lab4 and save it as Lab6A.c in
E:\C281x\Labs\Lab6A.

3. Add the source code file to your project:
e Lab6A.c

4. From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:

e F2812 Headers _nonBIOS.cmd

From C:\tides\c28\dsp281x\Wv100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c

e DSP281x_Defaultlsr.c

6-22 DSP28 - Analogue Digital Converter

Lab 6A: Speed Control of ‘Knight Rider’

e DSP281x_Adc.c

e DSP281x_CpuTimers.c

e DSP281x_usDelay.asm
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options
7. Setup the search path to include the peripheral register header files. Click:
Project = Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

8. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

9. Open Lab6A.c to edit: double click on “Lab6A.c” inside the project window. Also
open the file “Lab6.c” and copy the portions of code that are necessary to use the
ADCIN_AO input voltage to control the period of CPU core Timer 0. In detail:

At the beginning of “Lab6A.c” add the prototype declaration for the interrupt service
routine of the ADC:

interrupt void adc_isr(void);
10. Add directly after the prototype section a global integer variable “Voltage A0”:
int Voltage_AO0;

11. Next, in function “main” after the line which calls “InitPieVectTable()” add the
function call to initialize the ADC:

InitAdc();

DSP28 - Analogue Digital Converter 6-23

Lab 6A: Speed Control of ‘Knight Rider’

12.

13.

14.

15.

14.

15.

In function “main”, after the re-map instruction for PieVectTable. TINTO add the
second re-map instruction:

PieVectTable.ADCINT = &adc_isr;

Inside “main”, after PIEIER1.bit.INTx7 is enabled, enable also INTx6 for the ADC-
interrupt:

PieCtrIRegs.PIEIER1.bit.INTx6 = 1;

Before the line “CpuTimerORegs. TCR.bit. TSS = 0” add the code from Labb6.c to
configure the ADC. Take into account some minor modifications: Only 1 conversion
(ADCIN_AO0) needed, Channel Select Sequencer. CONV00 to ADCIN_AO0.

Also before the line “CpuTimerORegs. TCR.bit.TSS = 0” add another part from
“Lab6.c” to initialize the GP Timer 1 (GPTCONA, T1CON, T1PR). No GP Timer 1
period interrupt is needed now. In case you have included this interrupt service in
your last part of Lab6, delete these interrupt enable lines.
In function “InitSystem()” enable the clock distribution for EVA and ADC:
SysCtriIRegs.PCLKCR.bit.EVAENCLK = 1;
SysCtriIRegs.PCLKCR.bit. ADCENCLK = 1;

At the end of the code “Lab6A.c” add the interrupt service routine for the ADC
“adc_isr” from Lab6. Delete the line: “Voltage BO = AdcRegs. ADCRESULT1 >>4;”

Build and Load

16.

17.

Test

18.

Click the “Rebuild All” button or perform:

Project = Build

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

Load the output file down to the DSP Click:

File > Load Program and choose the desired output file.

Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart and
Debug > Go main.

DSP28 - Analogue Digital Converter

Lab 6A: Speed Control of ‘Knight Rider’

Run

19. Run the code. The LED’s should do the “Knight Rider”.

20. So far we have reached the same result as in Lab4, a 200msec (50ms *4) period
between the steps of the LED-sequence. But additionally now we have an active
ADC in the background!

21. Open a watch window to watch variable “Voltage A0”. Click right mouse inside the
watch window and select “Refresh”. When you modify the potentiometer you should
be able to see values between 0 and 4095, assuming you repeat the “Refresh” mouse
click.

Modify the main loop

22. All we have to do now is to use variable “Voltage A0 to control delay line that we
so far used in the main loop:

while(CpuTimer0.InterruptCount < 3);

Now we can replace the constant ‘3’ by a variable that is modified by “Voltage A0”.
It is also recommended to include the watchdog service into this while-loop:

while(CpuTimer0.InterruptCount < x)

EALLOW;
SysCtriIRegs.WDKEY = 0xAA;
EDIS;

}

All you have to do now is to find a useful construction to calculate an expression for
x out of Voltage AO0. Hint: InterruptCount is a multiple of 50us, so let’s try to limit
the value for x between 1 (= 50us period) and 20(=1 sec period).

END of LAB 6A

DSP28 - Analogue Digital Converter 6-25

Lab 6A: Speed Control of ‘Knight Rider’

This page was intentionally left blank.

6-26 DSP28 - Analogue Digital Converter

C28x Serial Peripheral Interface

Introduction

The TMS320C28x contains built-in features that allow several methods of communication and
data exchange between the C28x and other devices. This chapter deals with the Serial Peripheral
Interface (SPI). Two other interface techniques (SCI and CAN) will be discussed in later
chapters.

The SPI module is a synchronous serial I/O port that shifts a serial bit stream of variable length
and data rate between the ‘C28x’ and other peripheral devices. Here “synchronous” means that
the data transmission is synchronized to a clock signal.
During data transfers, one SPI device must be configured as the transfer MASTER, and all other
devices configured as SLAVES. The master drives the transfer clock signal for all SLAVES on
the bus. SPI communication can be implemented in any of three different modes:

e MASTER sends data, SLAVES send dummy data

e MASTER sends data, one SLAVE sends data

e MASTER sends dummy data, one SLAVE sends data

SPI Data Flow

¢ Simultaneous transmits and receive
¢ SPI Master provides the clock signal

SPI Device #1 - Master SPI Device #2 - Slave

| SPI Shift Register

\ 4

clock

DSP28 - Serial Peripheral Interface 7-1

Module Topics

Module Topics

C28x Serial Peripheral Interface 7-1
THEPOAUCHION ...ttt ettt et b e e e as et e e et e e teesbeete e beesaesbeenseessenbesseenns 7-1
MOAUIE TOPICS........ccoeeeeeeeeeeieee ettt ettt ettt e b et e ae e it e e teesbeete e beess e s e enseeseenseareenes 7-2
Serial Peripheral Interface (SPI) — OVEIVIEW...........cc.ccueveecueieeieiieieeiiesieeiesieeieseesse s sseessessseseaseennas 7-4
SPIDAIA THARSET ..ottt ettt ettt et st e sttt e b e e st e st este e st enbeesteseenseeseenseensenee 7-5
SPI REGISIEE SEL.........eeeeee ettt ettt ettt et et e e et e ae e e a ettt e bt e e naeenb e e eae e et et eennees 7-6

SPI Confguration Control Register - SPICCR...........cocieiiiriiiiiiiiniieieteeeeeee e 7-7
SPI Operation Control Register — SPICTL.........cccooiiriieieeieieeieiteeese et 7-7
SPI Baud Rate Register — SPIBRR.........cooiiiiiiiiiiiiiieeeste ettt s 7-8
SPI Status RegiSter — SPISTS.......iiiieoieecee ettt ettt st esaesaeesbesseenbesenes 7-8
SPI FIFO TransSmit REISTETc.eecuiririerieeierieeie sttt sttt sttt ettt eteseeebeenbesteenbesnsesseensesseensesenes 7-9
Y BN 7 T2 PSPPSRt 7-10
Lab 7: SPI — Dual DAC Texas Instruments TLVIOIT7Ac.cccoeviiieiiiiiieiieiieeieeeie e 7-11
ODJECLIVE .vvevviieiesiieieeteete et e st et e st ete et e teesae st eesbeesbessaenseaseessesssasseansanssanseassasseassesseensanseensansesnsenseensens 7-11
AT OF LD 71 oottt ettt sttt ettt ebe i 7-12
DAC TLVS5617A Data FOTMALoouiiiiiriiiiiiiiieeiesteee ettt sttt et sbe s 7-13
PLOCEAUIE ...ttt et et at st b bt eb et ae s be st e e et e be e eneene 7-14
Open Files, Create Project FIle.......cocoiiiiiiiiiiiieieeeeeeeeeeet ettt s 7-14
Project BUild OPHIONS ...cc.eecviieiiiieierieeitesieteetteieetestaeste et eseseaesteessessaessesseessesseesseessessesnsessesssesseensens 7-14
MOAIfY SOUICE COA@.....cuvieuieitieiieiieiieteteete sttt sttt ettt e te st esbesea e beeste st entesseensesssesseensansesnsesseensens 7-15
Build and Loadc.cocooiiiiiiiiiieeeeee ettt ettt s 7-15

Add the DAC — UPAate COAC.....eouiiiiiiiiieieitiee ettt sttt et b et sbe st eaeseee e 7-18
Build, Load and RUIN.......c..ooiiiiiiiiie ettt ettt eae e e st e s s ent e e s saaeessaneeesnaessenaeeesnnes 7-19
Lab 74: Code Composer Studio Graph TOOL...................cccccveiieeiiiiiieiieeie et 7-20
ODJECLIVE ..veeuvieeeiieieeteeteette st e et e bt et e bt ettesbeesbeestesseenbesseensesssesseensaseensesssenseansesteensesseensansesnsenseentens 7-20
PLOCEAUIE......cuiiiieiiiiieii ettt ettt et et ettt eae et b e s b enaenneas 7-20
Open Files, Create Project FIle.......ocoviiiiiiiiiiiiieieeieieeeceeestete ettt 7-20
Project BUild OPTIONS ...cc.ceuiiiieiieieiieiesieeie sttt ettt ettt sttt sttt e tesa e besbeesbeeabesbeenbesseenbesseentens 7-21
MOdify SOUICE COAC......uuiruiiiiriiiiiieteeteteetert ettt sttt ettt s bttt sbt et et enbeeabesbe et s 7-21
BUild Qnd LAeceieiieiieiieiecese ettt ettt st ettt et e nbesre e benbeenbeene et s 7-22
TS ettt bttt bbb e h e et h et e h e e bt e h e e bt et e eh e bt et sh b et et e beeabe bt et s 7-23
RU ¢ttt b e bt e bbb e s bt e et bt et e et e beeatenbe et s 7-23
Add a graphical WINAOWccueiiiiiiiiiiieie ettt ettt et sttt e b et e e seee e 7-23
Lab 7B: SPI — EEPROM MO5080..........ccccooctiiiiieieeieeee ettt 7-25
ODJECLIVE .vveuviieieitieieeteeteette st et e st ete et e teeetesteesseesaessaenseaseesseessesseensasaanseassasseassesseensanseensansesnsenseensens 7-25
ATM OTLAD 7Bttt ettt sttt st st 7-26
MOS5080 StatUS REGISTETc..eeutiriieieeiierieeitete ettt ettt ettt ettt ettt ettt s bttt sbe e be et esbe et enbesbe et s 7-27
MOS5080 INSTIUCLION SELveuveutineiieieteiieietei ettt ettt ettt ettt et et e et ebees et e e bt ebeabeseeseebeneennens 7-28
Procedure Lab7Booooiieieiieeieee ettt ettt n e n st ne st eae et e teeenens 7-31
Open Files, Create Project FIle......oooiiieiiiiieiiiiesieeiesieeeseetese ettt e st ste s essesne e s 7-31

DSP28 - Serial Peripheral Interface

Module Topics

Project BUild OPTIONS ...c.eeiiiiieiieieieeiesiteie sttt sttt ettt sttt sttt e tesae e e saeesbesabesbeebesseensesneentens 7-31
MOdify SOUICE COAC......cuviruiiiiriiiiiieieeteteetert ettt ettt bttt et st s bt et s bt e st et e nbeeabesbe et s 7-32
BUild @nd LOAdccoouviiiiieiccee ettt e et e e e e e et ae e e etrae e et 7-33
<] ARSI 7-33
RUI .ottt e ettt e e e e e e e e e e ee e e e e e e e a— e e e e e e et trreaeeeeaaraaaaeean 7-33
Add the SPI initialiZatioN COA@eiiviuriiieiiie et ettt ettt ee e et eeete e e eeaaeeeeeaneeeeareeeens 7-33
Create EEPROM aCCESS TUNCLIONS.eiiiuiiiieiiieieieieeceeeeeeeteeeeteeeeeaeeeeeeaeeeseneeesenteeessanesesnseessesaeeesnnes 7-35
Finalize the Main LOOPccveriiiiiiieiicieieeestee ettt ettt st e e eaeesbeenbeeseenbeeseensesseentens 7-36
Build, Load and RUIN.......c..ooiiiiiiiie ettt ettt e e e st e e e eat e e s eaaeeesaseeesnaesseraeesennes 7-37

DSP28 - Serial Peripheral Interface 7-3

Serial Peripheral Interface (SPI) — Overview

Serial Peripheral Interface (SPI) — Overview

In its simplest form, the SPI can be thought of as a programmable shift register. Data bits are
shifted in and out of the SPI through the SPIDAT register. Two more registers set the
programming interface. To transmit a data frame, we have to write the 16-bit message into the
SPITXBUF buffer. A received frame will be read by the SPI directly into the SPIRXBUF buffer.
For our lab exercises, this means we write directly to SPITXBUF and we read from SPIRXBUF.

There are two operating modes for the SPI: “basic mode” and “enhanced FIFO-buffered mode”.
In “basic mode”, a receive operation is double-buffered, that is the CPU need not read the current
received data from SPIRXBUF before a new receive operation can be started. However, the CPU
must read SPIRXBUF before the new operation is complete or a receiver-overrun error will
occur. Double-buffered transmit is not supported in this mode; the current transmission must be
complete before the next data character is written to SPITXDAT or the current transmission will
be corrupted. The Master can initiate a data transfer at any time because it controls the SPICLK
signal.

SPI Block Diagram
C28x - SPI Master Mode Shown
> SPISIMO
RX FIFO_0
RX FIFO_15
SPIRXBUF.15-0
L BI SPIDAT.15-0 |[&— SPISOMI
SPITXBUF.15-0
TX FIFO_0
TX FIFO_15
baud | clock | clock >
LSPCLK — baud | OO > phase » SPICLK
7-3

In “enhanced FIFO — buffered mode” we can build up to 16 levels of transmit- and receive FIFO
memory. Again, our program interfaces to the SPI unit are the registers SPITXBUF and
SPIRXBUF. This will expand the SPI’s buffer capacity for receive and transmit to up to 16 times.
In this mode we are also able to specify an interrupt level that depends on the filling state of the
two FIFO’s.

DSP28 - Serial Peripheral Interface

SPI Data Transfer

SPI Data Transfer

As you can see from the previous slide, the SPI master is responsible for generating the data rate
of the communication. Derived from the internal low speed clock prescaler (LSPCLK), we can
specify an individual baud rate for the SPI. Because not all SPI devices are interfaced in the same
way, we can adjust the shape of the clock signal by two more bits, “clock polarity” and “clock
phase”. Strictly speaking, the SPI is not a standard; slave devices like EEPROM’s, DAC’s,
ADC'’s, Real Time Clocks, temperature sensors do have different timing requirements for the
interface timing. For this reason TI includes options to adjust the SPI timing.

A transmission always starts with the MSB (most significant bit) out of SPIDAT first and
received data will be shifted into the device, also with MSB first. Both transmitter and receiver
perform a left shift with every SPI clock period. For frames of less than 16 bits, data to be
transmitted must be left justified before transmission starts. Received frames of less than 16 bits
must be masked by user software to suppress unused bits.

SPI Data Character Justification

¢ Programmable data length
of 1 to 16 bits

¢ Transmitted data of less SPIDAT - Processor #1
than 16 bits must be left 11001001 X00OCKXXX
justified

+ MSB transmitted first

& Received data of less than 16
bits are right justified
SPIDAT - Processor #2

o User software must mask- XXXXXXXX11001001 |
off unused MSB’s

DSP28 - Serial Peripheral Interface 7-5

SPI Register Set

SPI Register Set

The next slide summarizes all SPI control registers. In future devices of the C28x family we will

have a second SPI, for this reason the names of the first SPI are expanded with an ‘A’.

SPI-A Registers
Address | Register Name
0x007040 | SPICCR SPI-A configuration control register
0x007041 | SPICTL SPI-A operation control register
0x007042 | SPISTS SPI-A status register
0x007044 | SPIBRR SPI-A baud rate register
0x007046 | SPIEMU SPI-A emulation buffer register
0x007047 | SPIRXBUF | SPI-A serial receive buffer register
0x007048 | SPITXBUF SPI-A serial transmit buffer register
0x007049 | SPIDAT SPI-A serial data register
0x00704A| SPIFFTX SPI-A FIFO transmit register
0x00704B| SPIFFRX SPI-A FIFO receive register
0x00704C| SPIFFCT SPI-A FIFO control register
0x00704F | SPIPRI SPI-A priority control register

SPI-A Configuration Control Register

SPICCR @ 0x007040
15-8 7 6 5-4 3 2 1 0
reserved reserved
— — _
SPI CHAR.3-0

character length = number + 1
e.g. 0000b = length=1
1111b = length =16

— CLOCK POLARITY
0 = rising edge data transfer
1 = falling edge data transfer

— SPI SW RESET
0 = SPI flags reset
1 = normal operation

DSP28 - Serial Peripheral Interface

SPI Register Set

SPI Confguration Control Register - SPICCR

It is good practice to RESET the SPI unit at the beginning of the initialization procedure. This is
done by clearing Bit 7 (SPI SW RESET) to 0 followed by setting it to 1. Bit 6 selects the active
clock edge to declare the data as valid. This selection depends on the particular SPI — device (see
the two examples used in the labs of this chapter). Bits 3...0 define the character length of the
SPI-frame.

SPI Operation Control Register — SPICTL

SPI-A Operation Control Register

SPICTL @ 0x007041

OVERRUN INT ENABLE MASTER/SLAVE

0 = disabled 0 =slave SPIINT .ENABLE
1 = enabled 1 = master 0 = disabled
= enable
| I 1 bled
| |
reserved

CLOCK PHASE TALK
0 = no CLK delay 0 = transmission disabled,
1 = CLK delayed 1/2 cycle output pin hi-Z’d

1 = transmission enabled

Bit 4 and 0 enable or disable the SPI- interrupts; Bit 4 enables the receivers overflow interrupt.
Bit 2 defines the operating mode for the C28x to be master or slave of the SPI-chain. With the
help of bit 3 we can implement another half clock cycle delay between the active clock edge and
the point of time, when data are valid. Again, this bit depends on the particular SPI-device. Bit 1
controls whether the C28x listens only (Bit 1 = 0) or if the C28x is initialized as receiver and
transmitter (Bit 1 = 1).

DSP28 - Serial Peripheral Interface 7-7

SPI Register Set

SPI Baud Rate Register — SPIBRR
SPI-A Baud Rate Register

SPIBRR @ 0x007044

Need to set this only when in master mode!

15-7 6-0
reserved SPI BIT RATE
__LSPCLK SpIBRR=3t0 127
(SPIBRR + 1)
SPICLK signal =
ﬂ , SPIBRR =0, 1, or 2
4

Clock base for the SPI baud rate selection is the Low speed Clock Prescaler (LSPCLK).

SPI Status Register — SPISTS
SPI-A Status Register

SPISTS @ 0x007042

15-8 7 6 5 4-0

reserved reserved

L TX BUF FULL (read only)

* Set to 1 when char written
to SPITXBUF
¢ Cleared when char in SPIDAT

SPI INT FLAG (read only)

* Set to 1 when transfer completed

« Interrupt requested if SPI INT ENA
bit set (SPICTL.0)

* Cleared by reading SPIBRXUF
RECEIVER OVERRUN (read/clear only)
* Set to 1 if next reception completes before SPIRXBUF read

* Interrupt requested if OVERRUN INT ENA bit set (SPICTL.4)
* Cleared by writing a 1

7-8 DSP28 - Serial Peripheral Interface

SPI Register Set

SPI FIFO Transmit Register
SPI-A FIFO Transmit Register

SPIFFTX @ 0x00704A
TX FIFO Status (read-only)
SPI FIFO TX FIFO Reset 00000 TX FIFO empty
Enhancements o _ rocet (pointer to0) 0001 TXFIFO has I'word
0 = disable p . 00010 TX FIFO has 2 words
1 = enable operation 00011 TX FIFO has 3 words
1 = enable : : :
\ / IWX FIFO has 16 words
15 14 13 12 11 10 9 8
TXFIFO
reserved |SPIFFEN| oo o | TXFFST4|TXFFST3| TXFFST2|TXFFST1 TXFFSTO
7 6 5 4 3 2 1 0
TXFFINT TXEE;NT TXFFIEN| TXFFIL4| TXFFIL3 | TXFFIL2 | TXFFIL1| TXFFILO

/N T “\/

TXFIFO TXFIFO TXFIFO ¢y grpQ [nterrupt Level

Interrupt Interrupt Interrupt
Flag (read-only) Flag Clear (on match) Interrupt when TXFFST4-0
0 = not occurred 0= no effect Enable and TXFFIL4-0 match
1 =occurred 1 = clear 0 = disable
1 = enable

SPI-A FIFO Receive Register

SPIFFRX @ 0x00704B

RX FIFO Status (read-only)
RX FIFO RX FIFO 00000 RX FIFO empty

Overflow Overflow RX FIFO Reset 00001 RX FIFO has 1 word
Flag (read-only) Flag Clear (= reset (pointer to 0) 00010 RX FIFO has 2 words

0 =no overflow 0 =no effect | = ¢paple operation 00011 RX FIFO has 3 words
1 = overflow 1 =clear : : :

\\ / / 10000 RX FIFO has 16 words
15 14 13 7 12 11 10 9 8

RXFF- | RXFF- | RXFIFO

OVF |OVF CLR| RESET RXFFST4|RXFFST3|RXFFST2|RXFFST1|(RXFFSTO0

7 6 5 4 3 2 1 0
RXFFINT CIE:]I‘NT RXFFIEN| RXFFIL4| RXFFIL3 | RXFFIL2 | RXFFIL1|RXFFIL0

/N T \/

RXFIFO ~ RXFIFO RXFIFO py pirQ Interrupt Level

Interrupt Interrupt Interrupt
Flag (read-only) Flag Clear (on match) Interrupt when RXFFST4-0
0 =not occurred 0= no effect Enable and RXFFIL4-0 match
1 =occurred 1 =clear 0 = disable
1 = enable

The FIFO operation of the SPI is controlled with Bit 14 as a master switch. The SPI-Transmit
FIFO interrupt service call depends now on the match between TX FIFO Status and TX FIFO
Interrupt Level. The TX FIFO Reset can be used to reset the FIFO state machine (Bit13= 0) and
to re-enable it (Bit 13=1).

DSP28 - Serial Peripheral Interface 7-9

SPI Summary

SPI Summary

SPI Summary

¢ Provides synchronous serial communications
+ Two wire transmit or receive (half duplex)
+ Three wire transmit and receive (full duplex)

¢ Software configurable as master or slave
+ C28x provides clock signal in master mode

¢ Data length programmable from 1-16 bits
¢ 125 different programmable baud rates

7-10 DSP28 - Serial Peripheral Interface

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

Lab 7: SPlI — Dual DAC Texas Instruments TLV5617A

SPI Example 1: DAC TLV 5617

¢ Texas Instruments Digital to Analogue
Converter (DAC) TLYV 5617A

10 MBPS SPI Data Communication
Dual Channel Analogue OQutput (Out A + B)
10 Bit resolution

/CS is connected to C28x GPIO — D0 at the
Zwickau Adapter Board

REF — Voltage defines Analogue Range / 2
SOIC-8
Operating Voltage : 0 to 3.3V

*

*

*

*

*

*

*

Objective

The objective of this lab is to establish an SPI communication between the C28x and a
serial DAC TLV 5617. This DAC has two output channels and a resolution of 10 bits.
The datasheet of this device is available from TI’s website, search for document number
‘SLAS234’. The interface between the C28x and the DAC is defined as follows:

TLV5617 — Signal | Pin — No. Description Connected to...
Name
AGND 5 Ground AGND
/CS 3 Chip - Select C28x- GPIO DO
DIN 1 Input Data C28x-SPISIMO
SCLK 2 SPI Clock C28x-SPICLK
REF 6 Analogue Reference input | 3.3V
VDD 8 Power supply 3.3V
OUT A 4 DAC output A JP7 -1
OUTB 7 DAC output B JP8§ -1

DSP28 - Serial Peripheral Interface 7-11

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

The chip-select (/CS) of the DAC is connected to the GPIO — DO. The TLV5617 is a
‘listen only’ SPI device; it sends no data back to the C28x. The REF voltage defines the
full-scale value for the analogue output voltages. It is connected to 3.3V. Although the
TLV5617 is a 10 Bit DAC it uses an internal multiplier by 2, therefore the digital input
values lies in the range 0 to 511.

The TLV 5617 has the following timing requirements:

SPI Example : DAC TLV 5617

¢ Timing Diagram:

timing requirements

twl | twH
7 I !

SCLK X 1 2 3 4 15 16 X
tsu(D) | th(D) |
—we—l |
| | it |

il
DN X X D15 X D14 X D13 X D12 X D1 X Do X X
(
| H | tsu(C16-CS)
‘su(CS-CK}‘ le N

Figure 1. Timing Diagram

© Texas Instruments SLAS234F — JULY 1999 — REVISED JULY 2002 ; page 6

The active frame is covered with an active /CS-Signal, MSB comes first, the data bit
leads the falling edge of the SCLK-Signal by half of a clock period. The DAC’s internal
operation starts with the rising edge of /CS.

Aim of Lab7:

The Aim of the Lab7 is to generate two saw tooth signals at the outputs of the SPI-DAC:
DAC-A - “rising saw tooth” and DAC-B” - falling saw tooth between 0V and 3.3V. With
the help of a scope meter, if available, we should be able to measure the two voltages. In
an optional exercise (“Lab7A”) we also will make use of the graphical tool of Code
Composer Studio to visualize the two voltages. To do this we have to reconnect the DAC
signals back to two ADC-Input lines. This is done by closing the jumpers JP7 and JP8 on
the Zwickau Adapter board.

DSP28 - Serial Peripheral Interface

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

Lab 7: DACTLYV 5617

¢ Objective:

+ Generate a rising saw-tooth (0V...3.3V) at
channel OUTA and a falling saw-tooth
(3.3V...0V)at channel OUTB

GPIO - D0 is DAC’s chip select (/CS) at the
Zwickau Adapter Board

*

*

To measure the DAC outputs:

+ Use JP7 for OUTA

+ Use JP8 for OUTB (Zwickau Adapter Board)
REF =3.3V
Feedback the voltages into the C28x ADC:

+« JP7 closed: OUTA = ADCINA1
+ JP8 closed: OUTB = ADCINB1

*

*

DAC TLV5617A Data Format

SPI Example : DAC TLV 5617

¢ Serial Data Format:

SPD PWR
Speed Control Power Control

0 = slow mode 0 = normal operation
1 = fast mode 1 =power down
15 14 13 12 11 10 9 8
R1 SPD PWR RO DATA9 | DATAS | DATA7 | DATA6
7 6 5 4 3 2 1 0
DATAS | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 0 0

R1, R0 Register Select

00: Write to DACB and Buffer

01: Write to Buffer

10: Write to DACA and update
DACB with Buffer

11: reserved

DSP28 - Serial Peripheral Interface 7-13

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

Procedure

Open Files, Create Project File

1. Create a new project, called Lab7.pjt in E:\C281x\Labs.

2. Open the file Lab4.c from E:\C281x\Labs\Lab4 and save it as Lab7.c in
E:\C281x\Labs\Lab7.

3. Add the source code file to your project:
. Lab7.c

4. From C:\tidcs\c28\dsp281x\v100\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c
e DSP281x_Defaultlsr.c
e DSP281x_CpuTimers.c

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

7-14 DSP28 - Serial Peripheral Interface

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab7.c to edit: double click on “Lab7.c” inside the project window. First we
have to cancel the parts of the code that we do not need any longer. We will not use
the main variables “LED[8]” and “i” for this exercise:

At the beginning of main, delete the lines:

unsigned int i;
unsigned int LED[8]= {0x0001,0x0002,0x0004,0x0008,
0x0010,0x0020,0x0040,0x0080};

8. Next, inside the “while(1)”-loop of main reduce the code to just the following lines
(we will add some more code later):

while(1)

{
while(CpuTimer0.InterruptCount < 3); / wait for Timer 0
CpuTimerO0.InterruptCount = 0;
EALLOW;
SysCtrIRegs.WDKEY = 0xAA; // and service watchdog #2
EDIS;

}

9. Before we continue to add the SPI modifications lets test if the project in its
preliminary stage runs as expected. Recall, with the start code of Lab4 we initialized
the CPU core timer 0 to generate an interrupt request every 50ms. The interrupt
service routine “cpu_timer0_isr()” increments a global
variable”CpuTimer0.InterruptCount” with every hit. If everything works as expected
the DSP should hit the line

CpuTimerO0.InterruptCount = 0;
in the while(1) — loop (procedure step 8) every 3*50ms = 150 ms.

Build and Load

10. Click the “Rebuild All” button or perform:

Project = Build

DSP28 - Serial Peripheral Interface 7-15

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

11. Load the output file down to the DSP. Click:

File > Load Program and choose the desired output file.

Test
12. Reset the DSP by clicking on:
Debug > Reset CPU followed by
Debug = Restart and

Debug > Go main.

13. In the “while(1)”-loop of main set a breakpoint at line:
CpuTimerO.InterruptCount = 0;

Run

14. Verity, that the breakpoint is hit periodically when you start the DSP by:
Debug 2> Run (F5).

Remove the breakpoint when you are done.

Add the SPI initialization code

15. So far we verified that the CPU Core Timer0 generates a period of 50 ms and that our
main-loop waits for 3 periods of Timer(0 before it moves to the next instruction. Now
we need to add the code for the SPI to control the DAC TLV 5617A. First function
that is called is “InitSystem()”. Do we have to adjust this function? YES! We have to
enable the SPI clock unit! Inside “InitSystem()” do:

SysCtrIRegs.PCLKCR.bit. SPIENCLK=1;

16. The next function that is called in main is “Gpio_select()”. Inside this function we
have to modify the multiplex register to use the four SPI-signals:

GpioMuxRegs.GPFMUX.all = OxF;

Bits 3...0 control the setup for SPISTEA, SPICLKA, SPISOMIA and SPISIMOA.
We also prepare GPIO-signal DO and D5 to be digital outputs. DO will be used as
chip-select for the TLV5617A and D5 for the EEPROM M95080 (used in Lab7B).
To do this, setup GPDDIR register:

7-16 DSP28 - Serial Peripheral Interface

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

GpioMuxRegs.GPDDIR.all=0;
GpioMuxRegs.GPDDIR.bit. GPIODO = 1; ///CS for DAC TLV5617A

GpioMuxRegs.GPDDIR.bit. GPIODS = 1; ///CS for EEPROM

As an initial state we should switch off both /CS-signals as well as the LED’s at
B7...BO:

GpioDataRegs.GPBDAT.all = 0x0000; // Switch off LED's (B7...B0)
GpioDataRegs.GPDDAT.bit.GPIODO0 = 1; ///CS for DAC off
GpioDataRegs.GPDDAT.bit.GPIOD5 = 1; // /CS for EEPROM off

17. In main, just before we enter the “while(1)”-loop add a function call to function
“SPI_Init()”. Also add a function prototype at the start of your code.

At the end of your code, add the definition of function “SPI Init()”.
Inside this function include the following steps:
e SPICCR:
o Clock polarity =1: data output at falling edge of clock
o 16 bit per data frame
e SPICTL:
o No SPI interrupts for this exercise
o Master on
o Talk enabled
o Clock phase = 1: one half cycle delay
e SPIBRR:

o BRR =LSPCLK/SPI Baudrate — 1

Example: assuming LSPCLK = 37.5MHz and SPIBRR = 124 the
SPI-Baud rate is 300 kBPS.

o

DSP28 - Serial Peripheral Interface

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

Add the DAC — update code

18.

19.

Now we can add code to update the DAC-outputs with every loop of our main code.
Recall, the objective of this lab was to generate a rising saw tooth voltage at DAC-
output A and a falling saw tooth at DAC-output B.

Obviously we need two integer variables “Voltage A” and “Voltage B” to store the
current digital value for the two DAC-output lines. “Voltage A” (rising saw tooth)
starts with initial value 0, “Voltage B” (falling saw tooth) with the maximum digital
value 511. Add the two lines at the beginning of “main”:

int Voltage_A = 0;
int Voltage_B = 511;

To update the DAC it would be a good solution to write a function called
“DAC_Update” with two input parameters (channel number and value). Add a
prototype “void DAC Update (char channel, int value)”at the beginning of the code
and the definition at the end of your code:

void DAC_Update(char channel, int value);

In main, call the function “DAC_Update (channel, value) inside the “while(1)”-loop
of main twice, just after the line:

CpuTimerO.InterruptCount = 0;

DAC_Update(‘B’,Voltage_B);

DAC_Update(‘A’,Voltage_A);
After the calls we need to increment “Voltage A” and decrement “Voltage B” and
we have to reset “Voltage A” if it exceeds the maximum of 511. Same if
“Voltage B” is decremented below 0:

if (Voltage_A++ > 511) Voltage_A = 0;

if (Voltage_B-- < 0) Voltage_B = 511;

Now, what should be done inside “DAC_Update(char channel, int value)”?

Obviously, the activity depends on the selected channel. If channel == ‘B’ we have
to load “value” into DAC-Buffer (see Slide 7-15, command R1, RO = 01), if channel
== ‘A’ we have to load “value direct on DAC-output channel A and update DAC-
output channel B with value out of buffer (slide 7-15, command R1, RO = 10). By
doing so, we can make sure that both outputs are updated synchronously.

Before we can load SPITXBUF with a data frame we have to enable the DAC’s chip
select. For this purpose we defined port GPIO-DO0. After the end of the transmission
we have to disable it again.

How can we find out if the transmission from the SPI into the DAC is completed?
We did not enable any SPl-interrupts, so all we can do is to poll the SPI-interrupt
flag to check if the SPI communication has finished. Note, that there will be still one
bit to be transmitted after the SPI-interrupt has been set; therefore it is recommended

DSP28 - Serial Peripheral Interface

Lab 7: SPI — Dual DAC Texas Instruments TLV5617A

to add another small wait loop before we switch off the Chip-Select signal of the
DAC.

To reset the SPI-Interrupt Flag we have to do a dummy-read from SPIRXBUF.

Adding all the tiny bits of procedure step 19 together, your function “DAC_Update”
should include this sequence:

int i;
GpioDataRegs.GPDDAT.bit.GPIODO = 0; Il activate /ICS
if (channel =='B’)

SpiaRegs.SPITXBUF = 0x1000 + (value<<2);

Il transmit data to DAC-Buffer
if (channel =="A")

SpiaRegs.SPITXBUF = 0x8000 + (value<<2);

Il transmit data to DAC-A and update DAC-B with Buffer
while (SpiaRegs.SPISTS.bit.INT_FLAG ==0) ;
Il wait for end of transmission

for (i=0;i<100;i++); /I wait for DAC to finish off
GpioDataRegs.GPDDAT.bit.GPIODO = 1; Il deactivate /CS
i = SpiaRegs.SPIRXBUF; I/l read to reset SPI-INT

Build, Load and Run

20. Click the “Rebuild All” button or perform:

Project = Build

File > Load Program
Debug > Reset CPU
Debug 2 Restart
Debug = Go main
Debug = Run(F5)

21. With the help of a scope meter or a scope you should use jumper JP7 and JP8 at the
Zwickau Adapter board to verify the two saw tooth voltages. Recall that we used
CPU Core Timer0, initialized to a time base of 50ms. In main, we wait for 3
increments of CpuTimer(.InterruptCount (150ms). We have 511 steps of increments
for the DAC; therefore the period of the whole saw tooth is 511 * 150ms = 76.65s.

22. If you like it faster, modify the frequency of core timer0!

END of LAB 7

DSP28 - Serial Peripheral Interface 7-19

Lab 7A: Code Composer Studio Graph Tool

Lab 7A: Code Composer Studio Graph Tool

Objective

At the Zwickau Adapter Board we can re-connect the two saw tooth voltages of
the SPI-DAC into the internal ADC. Doing so, we can verify the results of our
DAC exercise (Lab7). Code Composer Studio has the ability to show the values
of a memory area as a graphical image. The objective of exercise 7A is to use this
feature.

The SPI-DAC channel A is connected to ADCINA1 and SPI-DAC channel B to
ADCINBI (Zwickau Adapter Board JP7 and JP8 closed). Note that any voltage
above 3.0 to 3.3V will be saturated inside the ADC.

Use your code from Lab7 as a starting point.

Procedure

Open Files, Create Project File

1. Create a new project, called Lab7A.pjt in E:\C281x\Labs.

2. Open the file Lab7.c from E:\C281x\Labs\Lab7 and save it as Lab7A.c in
E:\C281x\Labs\Lab7A.

3. Add the source code file to your project:
e Lab7A.c

4. From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c

e DSP281x_Defaultlsr.c

7-20 DSP28 - Serial Peripheral Interface

Lab 7A: Code Composer Studio Graph Tool

e DSP281x_Adc.c

e DSP281x_CpuTimers.c

e DSP281x_usDelay.asm
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project = Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab7A.c to edit: double click on “Lab7A.c” inside the project window. Inside
function “InitSystem” enable the ADC clock system:

SysCtrIRegs.PCLKCR.bit. ADCENCLK=1;
8. In main, just after the function call of “SPI Init()” call the initialization for the ADC:
InitAdc();
This will initialize the ADC’s internal voltages.

9. Direct after the call of “InitAdc” add the remaining steps to initialize the ADC.
Eventually you can use your ADC — setup from lab exercise 6. Take into account:

e Setup Dual Sequencer Mode
e No Continuous run

e Adc - Prescaler=1 (CPS)

DSP28 - Serial Peripheral Interface 7-21

Lab 7A: Code Composer Studio Graph Tool

e 2 conversions per start of conversion

e Channels ADCINA1 & ACINB1

Disable EVASOC to start SEQI
e Enable SEQI interrupt every End of Sequence
e ADCCLKPS =2 (Divide HSPCLK by 4)

10. Next, add an overload for the PIE - vector table (ADCINT) to point to a new function
“ADC ISR()”:

EALLOW;
PieVectTable.ADCINT = &ADC_ISR;
EDIS;
Also, add the enable instruction for the ADC-Interrupt:
PieCtrIRegs.PIEIER1.bit.INTx6 = 1;

11. Add the provided source code for function “ADC _ISR” to your project. From
E\C281x\Labs\Lab74 add to project:

e ADC_ISR.c

12. Add a function prototype for interrupt service routine “ADC_ISR” at the beginning
of your code in “Lab7A.c”:

interrupt void ADC_ISR(void);

13. Inside the while(1)-loop of main, just after the line “CpuTimer0.InterruptCount = 0;”
add the instruction to start a conversion of the ADC:

AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1;
Build and Load
14. Click the “Rebuild All” button or perform:

Project > Build

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

15. Load the output file down to the DSP. Click:

File > Load Program and choose the desired output file.

7-22 DSP28 - Serial Peripheral Interface

Lab 7A: Code Composer Studio Graph Tool

Test
16. Reset the DSP by clicking on:
Debug > Reset CPU followed by
Debug = Restart and

Debug = Go main.

Run

17. Enable Real Time Debug. Click on
=> Debug = Real Time mode

Answer the following window with: Yes

CPU_1 - DSP Device Driver =]

@ Do you want ko allow realtime mode switching?:

Zan't enter realtime mode unless debug events are enabled.
Bit 1 of 5T1 must be 0,

Mein |

18. Open the Watch — Window and add the ADC — Result Register “ADCRESULTO0”
and “ADCRESULT1” to it. Note: you can do this manually, or (recommended) use
the GEL-Menu:

= GEL =» Watch ADC Registers = ADCRESULT 0 to 3

Inside the Watch Window Click right mouse and select “Continuous Refresh”.
19. Run the Code:

= Debug = Run (F5)

ADCRESULTO should show rising values, ADCRESULT 1 falling values. Stop the
DSP.

Add a graphical window

20. To visualize the measured saw tooth voltages open a graph window:
= View = Graph = Time/Frequency

and enter the following properties:

DSP28 - Serial Peripheral Interface 7-23

Lab 7A: Code Composer Studio Graph Tool

Display Type Dual Time

Start Address Upper Display AdcBuf A

Start Address Lower Display AdcBuf B

Acquisition Buffer Size 512

Display Data Size 512

Sampling Rate (Hz) 6.67

DSP Data Type 16-Bit unsigned integer

Auto scale OFF

Time Display Unit S

Click right mouse inside the graph window and select “Continuous Refresh” and run the

code again.

] /F281Z PP Emulator/CPU_1 - 28xx - Code Composer Studio
Fle Edt Wew Project Debug Profler GEL Option Tooks DSPEIOS Window Help

=l8lx]

BeH| L BRaD o]

JERhR(S| G WEEE 4%

Lotk =|[oebug = e 26 A S |
Bleo opEHEHHEL| P
O | [F Fies & Graphical Display. - |oj x|
¥ -] GEL flles 5000
B3 Projects
i -2 Lab7A.pit {Debug) &R,
| (L Dependent Projact
16674
= (L] DSRYBIOS Corfig
it () Generated Files .
— -] Incuds
i -] Libraries 1667
& =29 source
g 3333
'3: -s000]
b3 5000]
= 33339
16679
o
= SP281%_Headers .
| F2812_EzDSP_RAI i
33339
4] | | pEeeed : ; ; 5 ! ; ; ; 5 ; ;
= i} 540 128 19.2 255 320 384 4458 51.2 575 64.0 T4 755
Q]/_‘J (32.084, 1936) (32,064, 2766) [Time Lin |Fized Scale |
[Lab7A.c] "CiWtivc2000\cgteoolsibiniclz000" -g —-g —fr"E:/CZ:‘ Mame Valug Type | Radix
@ ADCRESULTO | 0x4580 it | hex
[Linking...] "C:iti\cZ000Vcgtoolsibin\clz2000" -@"Debug.lkf @ ADCRESULTY | D-E240 int hex
& ADCRESULTZ | 0:0000 int hex
Build Complete, & ADCRESULT3 | 0x0000 it | hex
0 Errors, 0 Warnings, 0 Remarks. e
A suia s i & Wach Locals o Watch 1 |
|CPU RUNNING |POLITE REALTIME | For Help, press F1 Ln 34, Col 1

END of LAB 7A

7-24 DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

Lab 7B: SPI - EEPROM M95080

*

*

*

*

*

*

SPI Example 2: EEPROM M95080

¢ ST Microelectronics EEPROM M95080
10 MBPS SPI Data Communication
Capacity: 1024 x 8 Bit

/CS is connected to C28x GPIO - DS (Zwickau
Adapter Board)

6 Instructions:
+ Write Enable, Write Disable
+ Read Status Register, Write Status Register
+ Read Data, Write Data
SOIC-8

Single Power Supply : 3.3V

Objective

The objective of this lab is to establish an SPI communication between the C28x and a serial

EEPROM ST M95080. The interface between the C28x and this 1024 x 8 Bit - EEPROM is the
standard SPI and uses the following connections:

MO95080 — Signal |Pin# Description Connected to...

VSS 4 Ground GND

VCC 8 3.3V 3.3V

C 6 SPI Clock C28x - SPICLK
D 5 SPI Data In C28x —SPISIMO
Q 2 SPI Data OUT C28x - SPISOMI
/S 1 Chip Select C28x — GPIO D5
/W 3 Write protect 3.3V

/HOLD 7 Hold Communication |3.3V

DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

The chip-select (/CS) of the EEPROM is connected to the GPIO — D5. The EEPROM is able to
store data non-volatile. This means we need to setup a closed SPI — loop to write and to read data.
The EEPROM data input ‘D’ is connected to the DSP’s ‘SIMO’ (Slave In - Master Out) and the
EEPROM’s output line ‘Q’ drives serial signals to ‘SOMI’ (Slave Out — Master In). The signals
‘Write Protect’ and ‘/HOLD’ are not used for this experiment.

The M95080 has the following timing requirements:

SPI Example : EEPROM M95080
¢ Timing Diagram:
o N X XD

CPOL CPHA

MSE X X

AID14388

© ST Microelectronics Datasheet M95080 — November 2002, page 4

To write data into the EEPROM the DSP has to generate the data bit first; with a clock delay of 2
cycles the rising edge is the strobe pulse for the EEPROM to store the data. When reading the
EEPROM the falling clock edge causes the EEPROM to send out data. With the rising clock edge
the DSP can read the valid data bit. The passive state for the clock line is selectable to be high or
low.

Aim of Lab 7B:

The Aim of the Lab 7B is to store the data byte derived from the 8 input switches (GPIO
B15...B8) in EEPROM address 0x40 when button GPIO-D1 (yellow) is pushed. When button
GPIO-D6(red) is pushed the data byte from EEPROM address 0x40 should be read back and
shown at GPIO B7...B0O (8 LED’s). The program should sample the two command buttons D1
and D6 every 200 ms, forced by CPU Timer0.

DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

Lab 7B: EEPROM M95080

¢ Objective:
+ Based on hardware of Zwickau Adapter Board

+ Store the value of 8 input switches (GPIO —
B15...B8) into EEPROM — Address 0x40 when
command input button GPIO-D1 is pressed (low
active).

+ Read EEPROM-Address 0x40 and show its
content on 8 LED’s (GPIO-B7...B0) when
command input button GPIO-D6 is pressed (low
active).

+ GPIO - DS is EEPROM’s chip select (/CS) at the
Zwickau Adapter Board

M95080 Status Register

The M95080 Status Register controls write accesses to the internal memory.

SPI Example : EEPROM M95080
¢ M9I95080 Status Register:

7 6 5 4 3 2 1 0
SRWD 0 0 0 BP1 BP0 | WEL | WIP
Block protect select

Write in progress
00 = no protection

01 = 0x300 — 0x3FF protected
10 = 0x200 — 0x3FF protected
11 = 0x000 — 0x3FF protected

0 = no write cycle
1 = write in progress

Write Enable Latch

Status Register Write Protect 0 = write disabled

—1=no write access to SR 1 = write enabled
0 = normal operation

DSP28 - Serial Peripheral Interface 7-27

Lab 7B: SPI - EEPROM M95080

It also flags the current status of the EEPROM. Bit 0 (“WIP’) flags whether an internal write
cycle is in progress or not. Internal write cycles are started at the end of a command sequence and
last quite long (maximum 10ms). To avoid the interruption of a write cycle in progress any other
write access should be delayed as long as WIP=1.

Bit 1(“Write Enable Latch™) is a control bit that must be set to 1 for every write access to the
EEPROM. After a successful write cycle this bit is cleared by the EEPROM.

Bits 3 and 2(“Block Protect Select”) are used to define the area of memory that should be
protected against any write access. We will not use any protection in our lab, so just set the two

bits to ‘00°.

Bit 7 (“Status Register Write Protect”) allows us to disable any write access into the Status
Register. For our Lab we will leave this bit cleared all the time (normal operation).

M95080 Instruction Set

To communicate with the M95080 we have to use the following table of instructions. An
instruction is the first part of the serial sequence of data between the DSP and the EEPROM.

SPI Example : EEPROM M95080
¢ M95080 Instruction Set:

Instruction Description Code
WREN Write Enable 0000 0110
WRDI Write Disable 0000 0100

E R?g’gittztrus 0000 0101
WDSR Wgtjgissttagfs 0000 0001
READ Read Data 0000 0011
WRITE Write Data 0000 0010

Before we can start our Lab procedure we have to discuss these instructions a little bit more in
detail.

The WREN command must be applied to the EEPROM to the Write Enable Latch (WEL)
prior to each WRITE and WRSR instruction. The command is an 8-clock SPI- sequence shown
on the next slide:

DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

¢ Timing

Figure 7. Write

Diagram WREN:

Enable (WREN) Sequence

SPI Example : EEPROM M95080

0 1 2 3 4 5 6 7

[— Instruction ——m

o\ /\

I

T

High Impedance

AlOZ221E

© ST Microelectronics ; Datasheet (8028.pdf) — November 2002; Page 8

-21

The RDSR instruction allows the Status Register to be read. The Status Register may be read
any time. It is recommended to use this instruction to check the "Write In Progress" (WIP) bit
before sending a new instruction to the EEPROM. This is also possible to read the Status

Register continuously.

¢ Timing Diagram RDSR:

Figure 9. Read Status Register (RDSR) Sequence

SPI Example : EEPROM M95080

5\

[

"

[#— Instruction ———m

0 1 2 3 4 5 6 7 8 910111213 14 15

TAVA

Status Register Out

Status Register Cut

High Impedance
I 3 £ €3 € O3 4

MER

000000000

SR

4

..

AlD20ME

© ST Microelectronics ; Datasheet (8028.pdf) — November 2002; Page 10

-22

DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

The READ instruction is used to read data out of the EEPROM. The address range of the
M95080 is from 0 to 1023. The address is given as a full 16 bit address; bits A15 to A10 are don’t
cares. As shown with the next figure, an internal address counter is incremented with each READ
instruction, if chip select (/S) continues to be driven low:

SPI Example : EEPROM M95080
¢ Timing Diagram READ:

Figure 11. Read from Memory Array (READ) Sequence

T T\ i

0 1 2 3 4 5 6 7 8 910 20 21 22 23 24 25 26 27 28 29 30 31

MU U
Instruction 16-Bit Address —-l
D _XI -- 2Xo X1 %o _

T
MSB Dala Out 1 Data Out 2

High Impedance { e 9 9 a 9 o o

MSE

|

AlDTTE2D

© ST Microelectronics ; Datasheet (8028.pdf) — November 2002; Page 13

SPI Example : EEPROM M95080
¢ Timing Diagram WRITE:

Figure 12. Byte Write (WRITE) Sequence

T\ /[

[— Instruction 16-Bit Address

g A £085000000000600

High Impedance

AlD17950

© ST Microelectronics ; Datasheet (8028.pdf) — November 2002; Page 14

7-30 DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

The WRITE instruction is used to write data into the EEPROM. The instruction is terminated
by driving Chip Select (/S) high. At this point the internal self timed write cycle actually starts, at
the end of which the "Write In Progress "(WIP) bit of the Status Register is reset to 0.

Procedure Lab7B

Open Files, Create Project File

1. Create a new project, called Lab7B.th in E:\\C281x\Labs.

2. Open the file Lab4.c from E:\C281x\Labs\Lab4 and save it as Lab7B.c in
E:\C281x\Labs\Lab7B.

3. Add the source code file to your project:
e Lab7B.c

4. From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c
o DSP281x_Defaultlsr.c

e DSP281x_CpuTimers.c

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:

Project - Build Options

DSP28 - Serial Peripheral Interface 7-31

Lab 7B: SPI - EEPROM M95080

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab7B.c to edit: double click on “Lab7B.c” inside the project window. First we
have to cancel the parts of the code that we do not need any longer. We will not use
the main variables “LED[8]” and “i” for this exercise:

At beginning of main, delete the lines:

unsigned int I;
unsigned int LED[8]= {0x0001,0x0002,0x0004,0x0008,
0x0010,0x0020,0x0040,0x0080};

8. Next, inside the “while(1)”-loop of main reduce the code to just the following lines
(we will add some more code later):

while(1)

{
while(CpuTimerO0.InterruptCount < 3); // wait for Timer 0
CpuTimer0.InterruptCount = 0;
EALLOW;
SysCtrIRegs.WDKEY = 0xAA; // and service watchdog #2
EDIS;

}

9. Before we continue to add the SPI modifications lets test if the project in its
preliminary stage runs as expected. Recall, with the start code of Lab4 we initialized
the CPU core timer 0 to generate an interrupt request every 50ms. The interrupt
service routine “cpu_timer(_isr()” increments a global
variable”CpuTimer0.InterruptCount” with every hit. If everything works as expected
the DSP should hit the line

CpuTimerO.InterruptCount = 0;
in the while(1) — loop (procedure step 8) every 3*50ms = 150 ms.

7-32 DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

Build and Load

10. Click the “Rebuild All” button or perform:

Project > Build

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

11. Load the output file down to the DSP Click:

File > Load Program and choose the desired output file.

Test
12. Reset the DSP by clicking on:
Debug > Reset CPU followed by
Debug = Restart and

Debug > Go main.

13. In the “while(1)”-loop of main set a breakpoint at line:
CpuTimerO.InterruptCount = 0;

Run

14. Verify, that the breakpoint is hit periodically when you start the DSP by:
Debug 2> Run (F5).

Remove the breakpoint when you are done.

Add the SPI initialization code

15. So far we verified that the CPU Core Timer0 generates a period of 50 ms and that our
main-loop waits for 3 periods of Timer(0 before it moves to the next instruction. Now
we need to add the code for the SPI to control the EEPROM M95080. First function
that is called is “InitSystem()”. Again we have to enable the SPI clock unit. Inside
“InitSystem()” set:

SysCtrIRegs.PCLKCR.bit. SPIENCLK=1;

16. The next function that is called in main is “Gpio_select()”. Inside this function we
have to modify the multiplex register to use the four SPI-signals:

GpioMuxRegs.GPFMUX.all = OxF;

DSP28 - Serial Peripheral Interface 7-33

Lab 7B: SPI - EEPROM M95080

Bits 3...0 control the setup for SPISTEA, SPICLKA, SPISOMIA and SPISIMOA.
We also prepare GPIO-signal DO and D5 to be digital outputs. DO will be used as
chip-select for the TLV5617A and D5 for the EEPROM M95080 (used in Lab7B).
To do this, setup GPDDIR register:

GpioMuxRegs.GPDDIR.all=0;

GpioMuxRegs.GPDDIR.bit. GPIODO = 1; ///CS for DAC TLV5617A

GpioMuxRegs.GPDDIR.bit. GPIODS5 = 1; // /CS for EEPROM

As an initial state we should switch off both /CS-signals as well as the LED’s at
B7...B0:

GpioDataRegs.GPBDAT.all = 0x0000; // Switch off LED's (B7...B0)
GpioDataRegs.GPDDAT.bit. GPIODO0 = 1; ///CS for DAC off
GpioDataRegs.GPDDAT.bit. GPIOD5 = 1; // /CS for EEPROM off

17. In main, just before we enter the “while(1)”-loop add a function call to function
“SPI_Init()”. Also add a function prototype at the start of your code.

At the end of your code, add the definition of function “SPI_Init()”.
Inside this function, include the following steps:
e SPICCR:
o Clock polarity =1: data output at falling edge of clock
o 16 bit per data frame
e SPICTL:
o No SPI interrupts for this exercise
o Master on
o Talk enabled
o Clock phase = 0: no phase shift
e SPIBRR:
o BRR =LSPCLK/SPI Baudrate — 1

o Example: assuming LSPCLK = 37.5MHz and SPIBRR = 124 the
SPI-Baud rate is 300 kBPS.

7-34 DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

Create EEPROM access functions

18. Now we have to develop the code to access the SPI — EEPROM. A good method
would be to write four specific functions to:

¢ Read the EEPROM Status Register:
o int SPI_ EEPROM Read Status(void)
e Set the Write Enable Latch:
o void SPI EEPROM_Write Enable(void)
e Write 8 bit into the EEPROM:
o void SPI EEPROM_Write(int address, int data)
e Read 8 bit out of the EEPROM:
o int SPI EEPROM Read(int address)

19. Function “SPI_EEPROM_Read_Status”

e At the beginning of the function activate the chip select (D5) signal for the
EEPROM:

GpioDataRegs.GPDDAT.bit. GPIODS5 = 0;

e Next, load the code for “Read Status Register” into the SPI-Transmit buffer
“SPITXBUF”. Take care of the correct alignment when loading this 8 bit code
into “SPITXBUF”.

e Before we can continue we will have to wait for the end of the SPI transmission.
Because we did disable all SPI interrupts we can’t use an interrupt driven
synchronization, all we can do now is to ‘poll’ the SPI INT flag:

while(SpiaRegs.SPISTS.bit.INT_FLAG = = 0);

e Now we can read the status out of SPIRXBUF and return it to the calling
function.

e At the end of the function we have to deactivate the EEPROM’s chip select (D5).

20. Function “SPI_EEPROM_Write_Enable ”

e This function is used to set the Write Enable Latch of the EEPROM and must be
called before every write access.

e At the beginning of the function activate the chip select (D5) signal for the
EEPROM.

DSP28 - Serial Peripheral Interface 7-35

Lab 7B: SPI - EEPROM M95080

Next, load the code for “Write Enable” into the SPI-Transmit buffer

“SPITXBUF”. Take care of the correct alignment when loading this 8 bit code

into “SPITXBUF”.

‘Poll’ the SPT INT flag to wait for the end of SPI transmission.

To reset the SPI INT flag we have to execute a “dummy”-read from SPIRXBUF:
i = SpiaRegs.SPIRXBUF;

Switch off the EEPROM’s chip select (D5).

21. Function “SPI_ EEPROM_Write”

This function is used to write a character of 8 bit into the EEPROM. The input
parameters are (1) the EEPROM — Address (16 bit integer) and (2) the data (16-
bit integer — only the 8 least significant bits (LSB’s) are used)

At the beginning of the function, activate the chip select (D5) signal for the
EEPROM.

Next, load the code for “Write” and the upper half of the address parameter into
the SPI-Transmit buffer “SPITXBUF”.

‘Poll’ the SPI INT flag to wait for the end of SPI transmission.

To reset the SPI INT flag do a “dummy”-read from SPIRXBUF.

Next, load the lower half of the address parameter and the lower half of the data
parameter into the SPI-Transmit buffer “SPITXBUF”.

‘Poll’ the SPI INT flag to wait for the end of SPI transmission.

To reset the SPI INT flag once more, do a “dummy”-read from SPIRXBUF.
Switch off the EEPROM’s chip select (D5).

22. Function “SPI_EEPROM_Read”

This function returns a 16-bit integer (only lower 8 bits are used) to the calling
function. The input parameter is the EEPROM address to be read (16-bit integer).
At the beginning of the function, activate the chip select (D5) signal for the
EEPROM.

Next, load the code for “Read” and the upper half of the address parameter into
the SPI-Transmit buffer “SPITXBUF”.

‘Poll’ the SPI INT flag to wait for the end of SPI transmission.

Reset the SPI INT flag by a “dummy”-read from SPIRXBUF.

Next, load the lower half of the address parameter into the SPI-Transmit buffer
“SPITXBUF” (take care of correct alignment).

‘Poll’ the SPI INT flag to wait for the end of SPI transmission.

Read SPIRXBUF and return its value to the calling function

Switch off the EEPROM’s chip select (D5).

Finalize the main loop

23. Finally we have to add some function calls to our main loop to use the EEPROM.
The objective of this lab exercise is to store the status of the 8 input switches (GPIO

DSP28 - Serial Peripheral Interface

Lab 7B: SPI - EEPROM M95080

B15-B8) into EEPROM address 0x40 when a first command button (GPIO D1) is
pushed(D1 = 0). If a second command button (GPIO D6) is pushed(D6 = 0) the
program should read EEPROM address 0x40 and load the value onto 8 LED’s (GPIO
B7-B0).

e To write into address 0x40:
e (all function “SPI_EEPROM_Write Enable”

e Verify that flag “WEL” is set (= 1) by calling function
“SPI_ EEPROM Read Status”

e Call function “SPI_EEPROM_Write”

e Wait for the end of write by polling flag “WIP”. It will be cleared at the very
end of an internal EEPROM write sequence. Use function
“SPI_EEPROM_Read Status” to poll “WIP” periodically.

e To read from address 0x40:

e (Call function “SPI EEPROM Read()” and transfer the return value onto
GPIO B7-B0 (8 LED’s).

Build, Load and Run

24. Click the “Rebuild All” button or perform:

Project > Build

File > Load Program
Debug = Reset CPU
Debug = Restart
Debug 2 Go main
Debug 2 Run (F5)

25. Modify the input switches and push GPIO-D1. Next, push GPIO-D6. The LED’s
should mirror the last state of the input switches.

26. Close Code Composer Studio and switch off the eZdsp. After a few seconds re-
power the board and start Code Composer Studio. Download the project into the
DSP, run it and push the read button D6 first. Now the LED’s should display the last
value that has been stored inside the EEPROM before the power has been switched
off. (An EEPORM is a non volatile memory that keeps the information also when
power supply has been switched off).

END of LAB 7B

DSP28 - Serial Peripheral Interface 7-37

Lab 7B: SPI - EEPROM M95080

This page was intentionally left blank.

7-38 DSP28 - Serial Peripheral Interface

C28x Serial Communication Interface

Introduction

The Serial Communication Interface (SCI) module is a serial I/O port that permits asynchronous
communication between the C28x and other peripheral devices. It is usually known as a UART
(Universal Asynchronous Receiver Transmitter) and is used according to the RS232 standard. To
allow for efficient CPU usage, the SCI transmit and receive registers are both FIFO-buffered to
prevent data collisions. In addition, the C28x SCI has a full duplex interface, which provides for
simultaneous data transmit and receive. Parity checking and data formatting can also be done by
the SCI port hardware, further reducing the software overhead.

SCI Pin Connections

(Full Duplex Shown)

TX FIFO_0 TX FIFO_0
TX FIFO_15 TX FIFO_15
Transmitter-data Transmitter-data
buffer register buffer register
Transmitter SCIT XD SCI'EXD Transmitter
shift register g - shift register
Receiver SCIRXD SCIRXD Receiver
shift register - g shift register
Receiver-data Receiver-data
buffer register buffer register
RX FIFO_0 RX FIFO_0
RX FIFO_15 RX FIFO_15
SCI Device #1 SCI Device #2

DSP28 - Serial Communication Interface

Module Topics

Module Topics

C28x Serial Communication Interface 8-1
TREPOGUCTION ...ttt ettt ettt ettt e et e e s e e taeeeaeeese e e 8-1
MOAUILE TOPICS ...t ettt ettt et e et e et e bt e e st e abeenteeesbeenbeeesbeenseeenseeees 8-2
SCIDAIA FOTMQAL........c..oocuiaieeie ettt ettt ettt et e et et e et e e st e e st e e abeestseenbeeeateetaeenseenenas 8-3
SCI Multi Processor Wake Up MOEScc..cccooecueeceiiieeiiesie e ettt 8-4
Y O 024 R 2 Y USSP §8-6

SCI Communications Control Register (SCICCR).......cocueviriiiiieiiiiiiieieeeeee et 8-7
SCI Control Register L{SCICTLL) ...couiiiiriieieiiieieeiteteeese ettt ettt st ettt e sbe e 8-7
SCI Baud Rate REGISIET ...cveeiiivieiieiieieeieiteetisttete et esie et esteseaesteesbessaesaeseesseesaesteessesseensesseessesseensessens 8-8
SCI Control Register 2 — SCICTL2......cocuiiiiiiiieieeiieieetere ettt ettt st sttt st et 8-9
SCI Receiver Status Register — SCIRXSTccviiiiiieriieieieeieeeesit et sttere et eve e steesseesaesseesnesseense e 8-10
SCI FIFO MOAE REZISETc.eeitieuieiieieeiieste ettt eteetteteeetestesetesteestesseessesseensesseesteensesseensesseensesseensenen 8-11
Lab 8: Basic SCI — TrANSTISSION...........ccoveeueeeeiiseie e etesit ettt ettt ete st e stesate st asseesaesseeneesseenseneean §8-13
ODJECLIVE .vveuviieiesiieieeteete et e st et e st ete et e teeste s bt esbeesbessaesseaseessesssesseensassaanseassanseassesseensanseensanseensenseensens 8-13
PLOCEAUIE ...ttt ettt ettt ettt eb et s b et eenneae 8-14
Open Files, Create Project FIle.......cociiiiiiiiiiiiieeceeeeeeeetee et s 8-14
Project BUild OPtIONSc.cecuiieieiieierieeiesiteieetteieetesteesteeteeseseeesteesaessaessesseessesssesseessesseensessesnsessesnsens 8-14
MOAIfY SOUICE COAC....ccuviruiiiieiiiiiieieeteteete ettt ettt ettt sttt et e bt et e sbeenbesbtesbeesbebeenbesseentens 8-15
Add the SCI initialiZation COE......cuuivuiiiiiiiiieitieieee ettt ete et b e reesbeesaesaeesaesaeesseneas 8-15
Finish the mMain 00Dcccveeieiiiiiiieieeeeees ettt sttt et e st e e st e sbeesaenbeensesseentens 8-16
Build, Load and RUN............oooiiiiiiiie ettt eetv e et e e e ere e e etreeeetaeeeenes 8-16
Lab 8A: Interrupt SCI — TrANSMESSIONcc..cecueiiieeiieeeeeieeeie ettt eite et site et esaseeeseesbeeseaeenseasaeens 8-17
PLOCEAUIE ...ttt ettt ettt et b ettt b e et eennene 8-17
Open Files, Create Project File.........cocoiiiiiiiiiiiiiiiiicceeecetcteceeee e e 8-17
Project BUild OPHIONS ...c..cecuiiiieriiiieieeienieee ittt ettt ettt sttt et sb e et sbe e be b ebesbe et s 8-18
MOAIfY SOUICE COAC....couuiruiiiieiiiiiieieeteeette sttt ettt ettt sttt et e bt et e s bt enbesbtesbeesbebeenbesseentens 8-18
BUild Qnd LOAAocvviiieiiieiieieceecte ettt ettt ettt ettt sb e et e e e este et e teesbeerbeeraebeeteenbeereenteas 8-20
TSt & RUN .ttt ettt et e et e e sat e et e esteesateenseesnbeeseesnseenseeenne 8-21
OPHONAL EXETCISEveuveeneiiieiiiiieiteeteeitete ettt ettt ettt ettt ettt e bt e e sa e e e satesbeenbesbeebeseenbesbeentens 8-21
Lab 8B: SCI — FIFO TFANSTUISSIONc..ooeeeeiuieiieeeiieeeeie et eeite et e et eeae e ese et e et eeaeesaseeseeeaseeease s 8-22
PLOCEAUIEcuiiiiiiiiiice ettt ettt ettt et b e bbbt eennene 8-22
Open Files, Create Project FIle.......cocoviiiiiiiiiiieeeeeeeseeeestee ettt s 8-22
Project BUild OPHIONS ...c.ceuiiiiiiiiieiieienitee sttt ettt ettt sttt st sttt st et e b besbe et s 8-23
MOAIfY SOUICE COA@.....cuviruieiiieiieiieiieiete ettt ettt ettt e te st e eabesea e beestesseestesseensessnesseensasesnsesseensens 8-23
BUild, LoAd and TESt ...ccoiuviiiieiieieeeeeeeeee ettt ettt e et e et e ettt e e ete e e senaeeseaeeesanseeesnaeeesenaeeeannes 8-24
Lab 8C: SCI — Receive & TFANSMIL..............cc.coceueiiieeaieeeiie ettt ettt e sbeesaseeaaeeseenaae s 8-25
PLOCEAUIE ...ttt ettt ettt et b e bbbt s b et aenaeae 8-25
Open Files, Create Project FIle.......cociviiiiiiiniiiiieeeeeseeeete ettt 8-25
Project BUild OPHIONSc.cecviiiiiieierieeiesteieetteteetesteeste et esestaesteesaessaessesseessesseesseessessesnsassesssessesnsens 8-26
MOAIfY SOUICE COAC....ccuviruiiiieiiiiiieieetett ettt ettt ettt et st e et e bt et e s bt et e sbtesbeesbebeenbesbeentens 8-26
BUild, LoAd and TESt ...ccoiuviiiieiieieeeieeceeee ettt ettt et e e ete e e et eeeteeesenaeesenaeeessnseeesnseeesesaeesannes 8-28
OPHONAL EXCICISE ...vvivieurieeieiieieitieieetesteettesteestesetesseestesseessesssesseassassaessesssessesssesseessesseessensesssesseensens 8-28

DSP28 - Serial Communication Interface

SCI Data Format

SCI Data Format

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame, which specifies the destination port of the data as
determined by the user’s protocol.

The start bit is a low bit at the beginning of each frame, which marks the start of a frame. The SCI
uses a NRZ (Non-Return-to-Zero) format, which means that in an inactive state the SCIRX and
SCITX lines will be held high. Peripherals are expected to pull the SCIRX and SCITX lines to a
high level when they are not receiving or transmitting on their respective lines.

SCI-A Programmable Data Format

NRZ (nonreturn to zero) format

Start| LSB| 2 | 3 | 4 | 5 6 | 7 |msp|Addr
Data

_ A

Maijority

\ Vote /
SCICLK

(Internal) '

T T
Parity| Stop 1 Stop 2

This bit present only in Address-bit mode

! 1 2 3 4 5 6 7 g8 1 2 3 4 5 6 7 8 1 2
scre |} g T
i Start Bit LSB of Data

' Falling Edge Detected Note: 8 SCICLK periods per data bit

DSP28 - Serial Communication Interface 8-3

SCI Multi Processor Wake Up Modes

SCI Multi Processor Wake Up Modes

Multiprocessor Wake-Up Modes

¢ Allows numerous processors to be hooked up to
the bus, but transmission occurs between only
two of them

¢ Idle-line or Address-bit modes

¢ Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT except
when an address frame is received

2. All transmissions begin with an address frame

3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address

5. Process following data frames only if address matches

Although a SCI data transfer is usually a point-to-point communication, the C28x SCI interface
allows two operation modes to communicate between a master and more than one slave.

Idle-Line Wake-Up Mode

¢ Idle time separates blocks of frames

¢ Receiver wakes up with falling edge after SCIRXD was
high for 10 or more bit periods

¢ Two transmit address methods
+ deliberate software delay of 10 or more bits

+ set TXWAKE bit to automatically leave exactly 11
idle bits

Idle periods

of less than Block of Frames
10 bits N

SCIRXD/ "™3" i Data | P |sT| Addr |sp|sT[Data |sP|ST| LastData | SP IST! Addr ISP}

SCITXD -
V V V V
Idle Address frame 1st data frame Idle
Period follows 10 bit Period
10 bits 10 bits

or greater idle

or greater or greater

8-4 DSP28 - Serial Communication Interface

SCI Multi Processor Wake Up Modes

* o

Sggg/ i LastDatai0f sP |ST[addr | 1]s|ST[Data [0]SP] ST[LastData] 0] P} ST Addr i 1!

Address-Bit Wake-Up Mode

All frames contain an extra address bit
Receiver wakes up when address bit detected

Automatic setting of Addr/Data bit in frame by setting

TXWAKE = 1 prior to writing address to SCITXBUF

Block of Frames

>/_/ First frame within st data frame

- ! dditional
Idle Period block is Address. i(ﬁg ﬁitsll;:éljed

length of no ADDR/DATA beyond stop bits
significance bit set to 1

* o

L 2R 4

SCI Summary

Asynchronous communications format
65,000+ different programmable baud rates

Two wake-up multiprocessor modes
+ Idle-line wake-up & Address-bit wake-up

Programmable data word format
+ 1 to 8 bit data word length

+ 1 or 2 stop bits
+ even/odd/no parity

Error Detection Flags
+ Parity error; Framing error; Overrun error; Break detection

FIFO-buffered transmit and receive
Individual interrupts for transmit and receive

DSP28 - Serial Communication Interface

SCI Register Set

SCI Register Set

The next slide summarizes all SCI control registers for SCI channel A. Note that there is a second

SCI channel B available in the C28x.

SCI-A Registers

Address | Register Name

0x007050 | SCICCR SCI-A commun. control register
0x007051 | SCICTL1 SCI-A control register 1

0x007052 | SCIHBAUD | SCI-A baud register, high byte
0x007053 | SCILBAUD | SCI-A baud register, low byte
0x007054 | SCICTL2 SCI-A control register 2 register
0x007055 | SCIRXST SCI-A receive status register
0x007056 | SCIRXEMU | SCI-A receive emulation data buffer
0x007057 | SCIRXBUF | SCI-A receive data buffer register
0x007059 | SCITXBUF | SCI-A transmit data buffer register
0x00705A | SCIFFTX SCI-A FIFO transmit register
0x00705B | SCIFFRX SCI-A FIFO receive register
0x00705C | SCIFFCT SCI-A FIFO control register

0x0070SF

SCIPRI

SCI-A priority control register

SCI-A Communication Control Register

Communications Control Register (SCICCR) — 0x007050

7

6 5

3 2 1 0

STOP
BITS

EVEN/ODD
PARITY

ENABLE

PARITY |LOOP BACK| ADDR/IDLE] SCI SCI SCI
ENABLE

MODE CHAR2 CHARI1 CHARO

0 =1 Stop bit
1 =2 Stop bits

0=0dd
1=Even

0 = Disabled
1 = Enabled

0 =Idle-line mode # of data bits = (binary + 1)
1= Addr-bit mode e.g. 110b gives 7 data bits

0 = Disabled
1 = Enabled

[SCI-B Communications Control Register (SCICCR) — 0x007750] 8-9

DSP28 - Serial Communication Interface

SCI Register Set

SCI Communications Control Register (SCICCR)

The previous slide explains the setup for the SCI data frame structure. If Multi Processor Wakeup
Mode is not used, bit 3 should be cleared. This avoids the generation of an additional address/data
selection bit at the end of the data frame (see slide 8-3). Some hosts or other devices are not able
to handle this additional bit.

The other bit fields of SCICCR can be initialized, as you like. For our lab exercises in this chapter
we will use:

e 8 data bit per character
e no parity
e 1 Stop bit

¢ loop back disabled

SCI Control Register 1(SCICTL1)

SCI-A Control Register 1
Control Register 1 (SCICTL1) — 0x007051

7 6 5 4 3 2 1 0

RX ERR SwW
INT ENA RESET

reserved reserved TXWAKE SLEEP TXENA RXENA

0 = receiver disabled
1 =receiver enabled

0 = transmitter disabled
1 = transmitter enabled

0 = sleep mode disabled
1 = sleep mode enabled

Transmitter wakeup method select
1 = wakeup mode depends on SCICCR.3
0 = no wakeup mode

Write 0 = Reset SCI
Write 1 = release from Reset

0 = Receive Error Interrupt disabled
1 =Receive Error Interrupt enabled

[SCI-B Control Register 1 (SCICTL1) — 0x007751] 8-10

When configuring the SCICCR, the SCI port should first be held in an inactive state. This is
done using the SW RESET bit of the SCI Control Register 1 (SCICTLI1.5). Writing a 0 to this bit
initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

For our Lab exercises we will not use wakeup or sleep features (SCICTL1.3 = 0 and SCICTL1.2
=0).

DSP28 - Serial Communication Interface 8-7

SCI Register Set

Depending on the direction of the communication we will have to enable the transmitter
(SCICTL1.1 =1) or the receiver (SCICTL1.0 = 1) or both.

For a real project we would have to think about potential communication errors. The receiver
error could then be allowed to generate a receiver error interrupt request (SCICTL1.6 = 1). Our

first labs will not use this feature.

SCI Baud Rate Register

SCI-A Baud Rate

SCI baud rate =

LSPCLK

(BRR+1) x 8

LSPCLK

16

9

BRR =1 to 65535

b

BRR =0

7

[3

5

4

3

2

1

Baud-Select MSbyte Register (SCIHBAUD) — 0x007052

0

B&US';I)S BAUD14 | BAUDI3 | BAUD12 | BAUDI11 | BAUD10 | BAUDY | BAUDS
Baud-Select LSbyte Register (SCILBAUD) — 0x007053
7 6 5 4 3 2 1 0

BAUD7 | BAUD6 | BAUD5 | BAUD4 | BAUD3 | BAUD2 | BAUDI B(tgllz))o

[SCI-B Baud-Select MSbyte Register (SCIHBAUD) — 0x007752]
[SCI-B Baud-Select LSbyte Register (SCILBAUD) — 0x007753]

-1

The baud rate for the SCI is derived from the low speed pre-scaler (LSPCLK).

Assuming a SYSCLK frequency of 150MHz and a low speed pre-scaler initialized to “divide by

4 we can calculate the set up for BRR to initialize, let’s say a baud rate of 9600 baud:

9.600Hz =

~ 9.600Hz *8

37.5MHz

37.5MHz

(BRR+1)*8

—1=487.2

BRR must be an integer, so we have to round the result to 487. The reverse calculation with BRR

=487 leads to the real baud rate of 9605.5 baud (error = 0,06 %).

DSP28 - Serial Communication Interface

SCI Register Set

SCI Control Register 2 — SCICTL2

SCICTL2 @ 0x007054

SCI-A Control Register 2

SCI TX READY
0 = SCITXBUF is full
1 =SCITXBUF is empty

[SCI-B Control Register 2(SCICTL2) — 0x007754]

0 = TXBUF or shift register are loaded with data
1 = Transmit buffer and shift register both empty

SCI TXINT ENA

15-8 7 6 5-2 1 0
reserved [LXEDY El\”[r:’(TY reened nl\};ffgl:(A INTT il(NA
SCI RX/BK INT ENA

0 = Disable RXRDY/BRKDT interrupt
1 =Enable RXRDY/BRKDT interrupt
SCI TX EMPTY

0 = Disable TXRDY interrupt
1 =Enable TXRDY interrupt

8-

12

Bit 1 and 0 enable or disable the SCI- transmit and receive interrupts. If interrupts are not used,
we can disable this feature by clearing bits 1 and 0. In this case we have to apply a polling
scheme to the transmitter status flags (SCICTL2.7 and SCICTL2.6). The flag SCITXEMPTY
waits until the whole data frame has left the SCI output, whereas flag SCITXREADY indicates
the situation that we can reload the next character into SCITXBUF before the previous character

was physically sent.

The status flags for the receiver part can be found in the SCI receiver status register (see next

slide).

For the first basic lab exercise we will not use SCI interrupts. This means we have to rely on a
polling scheme. Later we will include SCI interrupts in our experiments.

DSP28 - Serial Communication Interface

SCI Register Set

SCI Receiver Status Register — SCIRXST

SCI-A Receiver Status Register

SCIRXST @ 0x007055
7 6 5 4 3 2 1 0
RX RXRDY BRKDT FE OE PE RXWAKE| reserved

ERROR

1 = Receiver wakeup
condition detected

1 = Parity Error detected

1=0Overrun Error detected

1 =Framing Error detected

1 = Break condition occurred
0 = no break condition

0 = no new character in SCIRXBUF
1 = new character in SCIRXBUF

0 = No error flags set
1= Error flag(s) set

[SCI-B Receiver Status Register (SCIRXST) — 0x007755] 8-13

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient way
of timing and controlling the operation of the SCI transmitter and receiver. The interrupt flag for
the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6). TXRDY is
set when a character is transferred to TXSHF and SCITXBUF is ready to receive the next
character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX EMPTY
flag (SCICTL2.6) is set.

When a new character has been received and shifted into SCIRXBUF, the RXRDY flag is set. In
addition, the BRKDT flag is set if a break condition occurs. A break condition is where the
SCIRXD line remains continuously low for at least ten bits after a stop bit has been missed. The
CPU to control SCI operations can poll each of the above flags, or interrupts associated with the
flags can be enabled by setting the RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA
(SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTL1.6) bit is set.

DSP28 - Serial Communication Interface

SCI Register Set

SCI FIFO Mode Register
SCI-A FIFO Transmit Register

SCIFFTX @ 0x00705A
. ShCI FIFO . TX FIFO Status (read-only)
nhancements 00000 TX FIFO empt
0 = disable TX FIFO Reset 00001 TX FIFO has I word
1 = enable 0 = reset (pointer to 0) 00010 TX FIFO has 2 words
SCI Reset 1 = enable operation 00(.)11 TX F.‘IFO has 3 vz'ords

0 = reset
1 = enable operation

10000 TX FIFO has 16 words

15 14 13 12 11 10 9 8

SCIRST |SCIFFENA ;’g;lg,? TXFFST4 | TXFFST3 | TXFFST2 | TXFFST1 | TXFFSTO

7 6 5 4 3 2 1 0

TXFFINT Txg:}{NT TXFFIENA| TXFFIL4 | TXFFIL3 | TXFFIL2 | TXFFIL1 | TXFFILO

/N T “\/

TX FIFO TX FIFO TX FIFO

TX FIFO Interrupt Level
Interrupt Interrupt Interrupt
Flag (read-only) Flag Clear (on match) Interrupt when TXFFST4-0
0 = not occurred 0= no effect Enable and TXFFIL4-0 match
1 =occurred 1 =clear 0 = disable
1 = enable 8-14

The C28x SCI is equipped with an enhanced buffer mode with 16 levels for the transmitter and
receiver. We will use this enhanced mode at the end of the lab exercise series of this chapter.

SCI-A FIFO Receive Register

SCIFFRX @ 0x00705B

RX FIFO Status (read-only)
RX FIFO RX FIFO 00000 RX FIFO empty

Overflow Overflow RX FIFO Reset 00001 RX FIFO has 1 word
Flag (read-only) Flag Clear 0 = reset (pointer to 0) 00010 RX FIFO has 2 words

0 =no overflow 0 =no effect 1= ¢paple operation 00011 RX FIFO has 3 words
1 = overflow 1= clear : : :

\\ / / 10000 RX FIFO has 16 words

15 14 13 7 12 11 10 9 8\
RXFF- | RXFF- | RXFIFO
OVF |OVF CLR| RESET

RXFFST4(RXFFST3|RXFFST2|RXFFST1|RXFFST0

7 6 5 4 3 2 1 0
RXFFINT C]_B;lI{NT RXFFIEN| RXFFIL4| RXFFIL3 | RXFFIL2 | RXFFIL1|RXFFILO

[N\

RX FIFO RX FIFO RX FIFO

RX FIFO Interrupt Level
Interrupt Interrupt Interrupt
Flag (read-only) Flag Clear (on match) Interrupt when RXFFST4-0
0 = not occurred 0= no effect Enable and RXFFIL4-0 match
1 =occurred 1 = clear 0 = disable
1 = enable

DSP28 - Serial Communication Interface 8-11

SCI Register Set

Flag (read-only) Flag Clear 0 = disabled auto-baud alignment

0 = not complete 0 =no effect 1= enables auto-baud alignment
1 = complete 1 = clear

SCI-A FIFO Control Register

SCIFFCT @ 0x00705C

Auto Baud Auto Baud X
detection detection CDC calibrate ‘A’

N\,

15 14 13 12

11 10 9 8
ABD
ABD CLR CDC reserved
7 6 5 4 3 2 1 0
FFTXDLY

Time delay between every transfer from FIFO
to transmit shift register

in number of SCI baud clock cycles
(0to255)

DSP28 - Serial Communication Interface

Lab 8: Basic SCI — Transmission

Lab 8: Basic SCI — Transmission

SCI Example 1: transmit a text - string

¢ Lab 8: Basic SCI Communication

¢ Send a string from DSP to a PC’s COM-port.

¢ Connect the RS232 - Connector of the Zwickau adapter board
with a standard DB9 - cable (1:1) to a serial port of the PC
(COM1or COM2).

¢ DSP shall transmit a string from the DSP to the PC periodically.
¢ No SCl interrupt services in this lab

& After transmission of the first character we just poll the
transmission ready flag (TXEMPTY) before loading the next
character into the transmit buffer - and wait again.

¢ The Windows-Hyper Terminal program is used as the counterpart
from the PC’s-side and must be initialized properly for correct
function(Baud rate, Parity, no protocol).

Objective

The objective of this lab is to establish an SCI transmission between the C28x and a serial
port of a PC. The Zwickau adapter board converts the serial signals of the DSP into a
standard RS232 format. The DB9 female connector (X1) has to be connected with a
standard serial cable (1:1 connection) to a serial COM-port of the PC.

The DSP shall transmit a string, e.g. “The F2812-UART is fine!\n\r” periodically. No
interrupt services are used for this basic test.

As the counterpart at the PC we will use Windows® - hyper terminal program. This
program can be found under Windows - OS =¥ start =» programs =» Accessories =
Communication =» HyperTerminal. Create a new connection, select a symbol and name
it “SCI-Test.

In the “connect to” field select the COM-port of your PC, e.g. COMI.

Setup:
e data rate to 9600,
e 8 bits per character,
e no parity bit,
e Istopbit,
e 1o protocol.

DSP28 - Serial Communication Interface 8-13

Lab 8: Basic SCI — Transmission

Procedure

Open Files, Create Project File

1. Create a new project, called Lab8.pjt in E:\C281x\Labs.

2. Open the file Lab2.c from E:\C281x\Labs\Lab2 and save it as Lab8.c in
E:\C281x\Labs\Labs.

3. Add the source code file to your project:
. Lab8.c

4. From C:\tidcs\c28\dsp281x\v100\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options
5. Setup the search path to include the peripheral register header files. Click:
Project 2> Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

8-14 DSP28 - Serial Communication Interface

Lab 8: Basic SCI — Transmission

Modify Source Code

7. Open Lab8.c to edit: double click on “Lab8.c” inside the project window. First we
have to cancel the parts of the code that we do not need any longer. We will not use
the main variables “LED[8]” and “i” for this exercise:

At the beginning of main, delete the lines:

unsigned int i;
unsigned int LED[8]= {0x0001,0x0002,0x0004,0x0008,
0x0010,0x0020,0x0040,0x0080};

8. Next, empty the “while(1)”’-loop of main, we will add some more code later:
while(1)

{
}

9. Delete the function “delay loop” and its prototype declaration.

Add the SCI initialization code

10. Inside function “InitSystem()” enable the SCI-A clock unit:
SysCtrIRegs.PCLKCR.bit. SCIAENCLK=1;

11. Inside “Gpio_select()”’modify multiplex register GPFMUX to use the 2 SCI-signals:
GpioMuxRegs.GPFMUX.bit.SCIRXDA_GPIOFS5 = 1;
GpioMuxRegs.GPFMUX.bit.SCITXDA_GPIOF4 = 1;

12. At the beginning of main define a string variable with the following text in it:

"The F2812-UART is fine I\n\r"

13. In main, just before entering the “while(1)”-loop add a function call to function
“SCI _Init()”. Also add a function prototype at the start of your code.

14. At the end of your code, add the definition of function “SCI _Init()”.
Inside this function, include the following steps:
¢ SCICCR:
o 1 stop bit, no loop back, no parity, 8 bits per character
e SCICTLI:
o Enable TX, RX -output

o Disable RXERR INT, SLEEP and TXWAKE

DSP28 - Serial Communication Interface 8-15

Lab 8: Basic SCI — Transmission

SCIHBAUD / SCILBAUD:
o BRR = (LSPCLK/(SCI Baudrate *8)) — 1

o Example: assuming LSPCLK = 37.5MHz and SCI Baudrate =
9600 the SCIBRR must be set to 487.

Finish the main loop

15. Now we can finalize the while(1)-loop of main. Recall, we have to add the following:

Load the next character out of the string variable into SCITXBUF

Wait (poll) bit TXEMPTY of register SCICTL2. It will be set to 1 when the
character has been sent. The bit will be cleared automatically when the next
character is written into SCITXBUF.

Increment an array pointer to point to the next character of the string. Also
include a test if the whole string has been sent. In this case reset the pointer

to prepare the next transmission sequence.

Include a software loop before the start of the next transmission sequence of
approximately 2 seconds:

for(i=0;i<15000000;i++); // Software - delay approx. 2 sec.

Service the watchdog periodically

Build, Load and Run

16. Click the “Rebuild All” button or perform:

Project = Build

File > Load Program
Debug > Reset CPU
Debug 2 Restart
Debug 2 Go main
Debug = Run (F5)

17. In the hyper terminal window you should see the received string every 2 seconds.

If not = Debug!

END of LAB 8

DSP28 - Serial Communication Interface

Lab 8A: Interrupt SCI — Transmission

Lab 8A: Interrupt SCI — Transmission

The objective of the next lab exercise is to improve Lab 8 by including both the
SCI — Transmit interrupt service to service an empty transmit buffer and the CPU
Core Timer 0 interrupt service to trigger the transmission of the first character of
the string every 2 seconds.

Use your code from Lab8 as a starting point.

Procedure

Open Files, Create Project File
1. Create a new project, called Lab8A.p]t in E:\C281x\Labs.

2. Open the file Lab8.c from E:\C281x\Labs\Lab8 and save it as Lab8A.c in
E:\C281x\Labs\Lab8A.

3. Add the source code file to your project:
. Lab8A.c

4. From C:\tidcs\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tidcs\c28\dsp281x\vI00\DSP281x common|source add to project:
o DSP281x_PieCtrl.c
e DSP281x_PieVect.c
e DSP281x_Defaultlsr.c
e DSP281x_CpuTimers.c

e DSP281x_usDelay.asm

DSP28 - Serial Communication Interface 8-17

Lab 8A: Interrupt SCI — Transmission

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab8A.c to edit: double click on “Lab8A.c” inside the project window. In
main, after the function call “Gpio_select()”’add a call of function:

InitPieCtri();

and:
InitPieVectTable();

Next, re-map the Interrupt table entry for CPU Core Timer 0 Interrupt
EALLOW;
PieVectTable.TINTO = &cpu_timer0_isr;
EDIS;

Initialize the CPU Core Timer group by calling:
InitCpuTimers();

and configure CPU-Timer 0 to interrupt every 50 ms:

ConfigCpuTimer(&CpuTimer0, 150, 50000);

8-18 DSP28 - Serial Communication Interface

Lab 8A: Interrupt SCI — Transmission

Now enable the CpuTimer0 PIE interrupt line:
PieCtrIRegs.PIEIER1.bit.INTx7 = 1;
IER = 1;
Finally enable the global interrupt flag and reset start the CPU Core Timer 0:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global real-time interrupt DBGM
CpuTimerORegs.TCR.bit.TSS = 0;

8. Add a CPU Core Timer0 Interrupt service routine “cpu_timer(Q_isr()” at the very end
of your source code. You can use the same code that we used in Lab7B.c for this
function. Do not forget to add a function prototype at the beginning of your code.

9. Next, we have to modify the SCI initialization function “SCI Init()”. Not a big
change, the only modification is that for this project we have to enable the SCI-

Transmit Interrupt:

SciaRegs.SCICTL2.bit.TXINTENA = 1;

10. The SCI Transmit Interrupt must be also enabled inside the PIE and the address of the
interrupt service routine must be written into the PIE vector table. Before the global
interrupt enable line “EINT” add the following code:

EALLOW;

PieVectTable.TXAINT = &SCI_TX_isr;
EDIS;

PieCtrIRegs.PIEIER9.bit.INTx2 = 1;
IER | = 0x100;

11. If the SCI-TX interrupt is enabled we have to provide an interrupt service routine
“SCI_TX isr()”. At the top of your code add a function prototype and at the very end
of the code add the definition of this function. What should be done inside this
function? Answer:

o Load the next character of the string into SCITXBUF, if the string pointer
has not already reached the last character of the string and increment this

pointer.

e If the string pointer points beyond the last character of the string, do NOT
load anything into SCITXBUF. Transmission of the string is finished.

DSP28 - Serial Communication Interface 8-19

Lab 8A: Interrupt SCI — Transmission

e In every single call of this function acknowledge it’s call by resetting the
PIEACK-register:

PieCtrIRegs.PIEACK.all = 0x0100;

12. Because the string variable and the variable “index” are now used out of main and

13.

“SCI_TX isr” they must now be declared as global variables. Remove the definition
from main and add them as global variables at the beginning of your code, outside
any function:

char message[]= {"The F2812-UART is fine \n\r"};
int index =0; Il pointer into string

Now it is time to think about the while(1) — loop of main. Remove everything that is
inside this loop. We do not need the old code from Lab8.

Instead, let’s add new code:

First, we will get a CPU Timer0 Interrupt every 50ms. According to the setup of our
interrupt service routine “cpu_timerQ isr()” variable “CpuTimer(.InterruptCount”
will be incremented every 50ms. To trigger a SCI Transmission every 2 seconds we
just have to wait until this variable has reached 40. If the value is less than 40 we just
have to wait and do nothing, right? NO! Our watchdog is alive and we have to serve
it! If the first reset key is applied inside function “cpu_timer(_isr()” we have to apply
the second key while we wait for variable “CpuTimer0.InterruptCount” to reach 40.

This could be the portion of code:
while(CpuTimer0.InterruptCount < 40) // wait for 2000ms

EALLOW;
SysCtriIRegs.WDKEY = 0xAA; // service watchdog #2
EDIS;

}

What’s next? Well, these actions are required now:
¢ Reset variable “CpuTimer0.InterruptCount” to 0
e Reset variable “index” to 0
e Load first character out of message into SCITXBUF and

e Increment variable index afterwards.

Build and Load

14. Click the “Rebuild All” button or perform:

Project > Build

DSP28 - Serial Communication Interface

Lab 8A: Interrupt SCI — Transmission

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

15. Load the output file down to the DSP Click:

File > Load Program and choose the desired output file.

Test & Run

16. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart and
Debug - Go main

Debug 2 Run (F5)

As we’ve done in Lab8 open a Hyper Terminal Session (use 9600, n, 1 and no
protocol as parameters). Every 2 seconds you should receive the string from the DSP.

If your code does not work try to debug systematically.
e Does the CPU core timer work?
e s the CPU core timer interrupt service called periodically?
o Is the SCITX interrupt service called?

Try to watch important variables and set breakpoints as needed.

17. The result of this lab does not differ that much from lab8. All we do is to send a
string every 2 seconds to the PC. The big difference however is that the time interval
is now generated by a hardware timer instead of a software delay loop. This is a big
improvement, because the period is now very precise and the DSP is not overloaded
by such a stupid task to count a variable from x to y. For real projects we would gain
a lot of CPU time by using a hardware timer.

Optional Exercise

18. Instead of transmitting the string to the PC your task is now to transmit the current
status of the input switches (GPIO B15-B8), which is an integer, to the PC. Recall, to
use Windows Hyper Terminal to display data, you must transmit ASCII-code
characters. To convert a long integer into an ASCII-string we can use function
“Itoa”(see help).

END of LAB 8A

DSP28 - Serial Communication Interface 8-21

Lab 8B: SCI| — FIFO Transmission

Lab 8B: SCI - FIFO Transmission

The objective of this lab is to improve Lab 8A by using the transmit FIFO
capabilities of the C28x. Instead of generating a lot of SCI — transmit interrupts to
send the whole string we now will use a type of ‘burst transmit’ technique to fill
up to 16 characters into the SCI transmit FIFO. This will reduce the number of
SCl-interrupt services from 16 to 1 per string transmission!

Use your code from Lab8A as a starting point.

Procedure

Open Files, Create Project File

1.

2.

Create a new project, called Lab8B.th in E:\C281x\Labs.

Open the file Lab8A.c from E:\C281x\Labs\Lab8A and save it as Lab8B.c in
E:\C281x\Labs\Lab8B.

Add the source code file to your project:

. Lab8B.c
From C:\tides\c28\dsp281x\vI00\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c
e DSP281x_Defaultlsr.c
e DSP281x_CpuTimers.c

e DSP281x_usDelay.asm

DSP28 - Serial Communication Interface

Lab 8B: SCI| — FIFO Transmission

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab8B.c to edit: double click on “Lab8B.c” inside the project window.

Modify the SCI Initialization in function “SCI _Init()”. Add the Initialization for
register “SCIFFTX”. Include the following:

e Relinquish FIFO unit from reset
e Enable FIFO- Enhancements
e Enable TX FIFO Operation
e Clear TXFFINT-Flag
e Enable TX FIFO match
e Set FIFO interrupt level to interrupt, if FIFO is empty (0)
8. Change the content of variable “message[]” from “The F2812-UART is fine \n\r”
into “BURST-Transmit\n\r”. The length of the string is now limited to 16 characters

and using the TX-FIFO we can transmit the whole string in one single SCI interrupt
service routine.

DSP28 - Serial Communication Interface 8-23

Lab 8B: SCI| — FIFO Transmission

9.

10.

Go into function “SCI_TX isr()” and modify it. Recall that this service will be called
when the FIFO interrupt level was hit. Due to our set up of this level to 0 we can load
16 characters into the TX-FIFO:

for(i=0;i<16;i++) SciaRegs.SCITXBUF = message[i];

Note: Variable i should be a local variable inside “SCI_TX isr()”. Also, do NOT
remove the PIEACK- reset instruction at the end of this function!

Go into the while(1)-loop of main. We still will use the CPU Core Timer 0 as our
time base. It is still initialized to increment variable “CpuTimer0.InterruptCount”
every 50ms. No need to change our wait construction to wait for 40 increments
(equals to 2 seconds).

Delete the next two lines of the old code:
index =0;
SciaRegs.SCITXBUF = message[index++];

The difference between Lab8A.c and Lab8B.c is the initialization of the SCIl-unit. In
this lab we enabled the TX-FIFO interrupt to request a service when the FIFO-level
is zero. This will be true immediately after the initialization of the SCI-unit and will
cause the first TX-interrupt! The next TX-interrupt will be called only after setting
the TX FIFO INT CLR — bit to 1, clears the TX FIFO INT FLAG. If we execute this
clear instruction every 2 seconds we will allow the next TX FIFO transmission to
take place at this very moment. To do so, add the following instruction:

SciaRegs.SCIFFTX.bit. TXINTCLR = 1;

That’s it.

Build, Load and Test

11.

12.

Apply all the commands needed to translate and debug your project. Meanwhile you
should be familiar with the individual steps to do so; therefore we skip a detailed
procedure. If you are successful, you should receive the string every 2 seconds at the
hyper terminal window. If not — debug!

Again, the big improvement of this Lab8B is that we reduced the number of interrupt
services to transmit a 16-character string from 16 services to 1 service. This adds up
to a considerable amount of time that can be saved! The exercise has shown the
advantage of the C28x SCl-transmit FIFO enhancement compared to a standard
UART interface.

END of LAB 8B

DSP28 - Serial Communication Interface

Lab 8C: SCI — Receive & Transmit

Lab 8C: SCI — Receive & Transmit

The final project in this module asks you to include the SCI receiver in out lab
exercises. The objective of this lab is to receive a string “Texas” from the PC and
to answer it by transmitting “Instruments” back to the PC.

Use your code from Lab8B as a starting point.

Procedure

Open Files, Create Project File

1. Create a new project, called Lab8C.th in E:\C281x\Labs.

2. Open the file Lab8B.c from E:\C281x\Labs\Lab8B and save it as Lab8C.c in
E:\C281x\Labs\Lab8C.

3. Add the source code file to your project:
. Lab8C.c

4. From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c

From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c

e DSP281x_Defaultlsr.c

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

DSP28 - Serial Communication Interface 8-25

Lab 8C: SCI — Receive & Transmit

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project - Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Lab8C.c to edit.

First we have to remove everything that deals with CPU Core Timer0 — we do not
need a timer for this exercise.

e Remove prototype and definition of function “cpu_timer(0_isr”.

¢ In main, remove the overload instruction:

EALLOW;
PieVectTable.TINTO = &cpu_timer0_isr;
EDIS;

e Remove the function calls:

InitCpuTimers();
ConfigCpuTimer(&CpuTimer0, 150, 50000);

and the interrupt enable lines:

PieCtrIRegs.PIEIER1.bit.INTX7 = 1;
IER =1;

e Remove the start instruction for CpuTimerO:

CpuTimerORegs.TCR.bit. TSS = 0;

8-26 DSP28 - Serial Communication Interface

Lab 8C: SCI — Receive & Transmit

e In the while(1)-loop of main remove everything. Replace it by:
while(1)

{
EALLOW;

SysCtriRegs.WDKEY = 0x55; // service watchdog #1
SysCtriIRegs.WDKEY = 0xAA; // service watchdog #2
EDIS;

}

All activities will be done by interrupt service routines, nothing to do in the main
loop but to service the watchdog!

8. Change the content of variable “message[]|” into “ Instruments\n\r”.

9. Now we need to introduce a new interrupt service routine for the SCI receiver, called
“SCI_RX isr”. Declare it’s prototype at the beginning of your code:

interrupt void SCI_RX _isr(void);

10. Add an overload instruction for this function inside the PIE vector table. Add this line
directly after the overload for TXAINT:

PieVectTable.RXAINT = &SCIl_RX isr;
11. Enable the PIE interrupt for RXAINT:

PieCtrIRegs.PIEIER9.bit.INTx1 =1;
12. Modify the initialization function for the SCI: “SCI_Init()”.

e Inside register “SCICTL2” set bit “RXBKINTENA” to 1 to enable the receiver
interrupt.

e For register “SCIFFTX” do NOT enable the TX FIFO operation (bit 13) yet. It
will be enabled later, when we have something to transmit.

e Add the initialization for register “SCIFFRX”. Recall, we wait for 5 characters
“Texas”, so why not initialize the FIFO receive interrupt level to 5?7 This setup
will cause the RX interrupt when at least 5 characters have been received.

13. At the end of your source code add interrupt function “SCI_RX isr()”.
e What should be done inside? Well, this interrupt service will be requested if 5
characters have been received. First we need to verify that the 5 characters match

the string “Texas”.

e With five consecutive read instructions of register “SCIRXBUF” you can empty
the FIFO into a local variable “buffer[16]”.

DSP28 - Serial Communication Interface 8-27

Lab 8C: SCI — Receive & Transmit

e The C standard function “strncmp” can be used to compare two strings of a fixed
length. The lines:
if(strncmp(buffer, “Texas” , 5) == 0)
{
SciaRegs.SCIFFTX.bit. TXFIFORESET = 1;
SciaRegs.SCIFFTX.bit.TXINTCLR = 1;

}

will compare the first 5 characters of “buffer” with “Texas”. If they match the
two next instructions will start the SCI Transmission of “ Instruments\n\r” with
the help of the TX-interrupt service.

e At the end of interrupt service routine we need to reset the RX FIFO, clear the
RX FIFO Interrupt flag and acknowledge the PIE interrupt:

SciaRegs.SCIFFRX.bit.RXFIFORESET = 0; // reset pointer
SciaRegs.SCIFFRX.bit.RXFIFORESET = 1; // enable op.
SciaRegs.SCIFFRX.bit.RXFFINTCLR = 1; // reset RX int
PieCtriIRegs.PIEACK.all = 0x0100; // acknowledge PIE

e That’s it.

Build, Load and Test

14. Apply all the commands needed to translate and debug your project.
15. Start Windows Hyper Terminal and type in the text “Texas”. The C28x will respond
with the string “ Instruments\n\r”. If not =» debug!

Optional Exercise
16. DSP — Junkies only! = Remote Control of the C28x by a PC!

Try to combine the “Knight-Rider” exercise (Lab4) with Lab8C. Let the PC send a
string with a numerical value and use this value to control the speed of the “Knight-
Rider™!

If a new value was received by the DSP it should answer back to the PC with a text
like “control value xxx received”.

Note: The C standard function “atoi” can be used to convert an ASCII-string into a
numerical value (see Code Composer Studio Help for details).

8-28 DSP28 - Serial Communication Interface

C28x Controller Area Network

Introduction

One of the most successful stories of the developments in automotive electronics in the last
decade of the 20™ century has been the introduction of distributed electronic control units in
passenger cars. Customer demands, the dramatic decline in costs of electronic devices and the
amazing increase in the computing power of microcontrollers has led to more and more electronic
applications in a car. Consequently, there is a strong need for all those devices to communicate
with each other, to share information or to co-ordinate their interactions.

The “Controller Area Network™ was introduced and patented by Robert Bosch GmbH, Germany.
After short and heavy competition, CAN was accepted by almost all manufacturers. Nowadays, it
is the basic network system in nearly all automotive manufacturers’ shiny new cars. Latest
products use CAN accompanied by other network systems such as LIN (a low-cost serial net for
body electronics), MOST (used for in-car entertainment) or Flexray (used for safety critical
communication) to tailor the different needs for communication with dedicated net structures.

Because CAN has high and reliable data rates, built-in failure detection and cost-effective prices
for controllers, nowadays it is also widely used outside automotive electronics. It is a standard for
industrial applications such as a “Field Bus” used in process control. A large number of
distributed control systems for mechanical devices use CAN as their “backbone”.

What is “CAN”
=» what does CAN mean ?

it stands for : Controller Area Network

- itis a dedicated development of the automotive electronic
industry

- it is a digital bus system for the use between electronic
systems inside a car

. ituses a synchronous serial data transmission

= why is it important to know about CAN ?
among the car network systems it is the market leader

- it is the in car backbone network of BMW, Volkswagen ,
Daimler-Chrysler , Porsche and more manufacturers

« CAN covers some unique internal features you can’t find
elsewhere..

- there is an increasing number of CAN-applications also
outside the automotive industry

DSP28 - Controller Area Network 9-1

Module Topics

Module Topics

C28x Controller Area Network 9-1
TREPOGUCTION ...ttt ettt ettt ettt e et e e s e e taeeeaeeese e e 9-1
MOAUILE TOPICS ...t ettt ettt et e et e et e bt e e st e abeenteeesbeenbeeesbeenseeenseeees 9-2
CAN REGUIFEIEILSc..eeeeee ettt e ettt ettt e et e et e e bt e e abeeeaeeesbeeeaaeesbeensbeesstaeseeanseeenas 9-4
BASIC CAN FOAIUTES ...ttt ettt ettt et e bt e e ab e et e eabeessbeenteeeaseesnseansseenns 9-5
CAN IMPIEIMEILATION.oeove ettt ettt te et e et e sbeesbeete e b e e st ebeessesaeasbeebeesbeesaeseessenseensesseenns 9-6
CAN DQEA FFAME ..ottt ettt et et e ke et ettt ent e e aae et eenbeeenaeeseeenseeneas 9-7
CAN AULOMOLIVE CLASSES ...ooeeeveei ettt ettt te ettt ettt sb e s st e beestesseesbeetsesteesbeesaenseessesssenseeneenns 9-9
LSO StANAATAIZALION ...ttt 9-10
CAN APPLICALION LAYEF ...ttt e 9-11
CAN Bus Arbitration — CSMA/CAccoooueeeiieeie ettt va e eae e 9-12
High Speed CANcc.oouoiiiiiiiiiiiieet ettt 9-14
CAN Error MANGZEMENL.................ccueeuiiiiiiiiiieiieeeetet ettt et 9-15
C28X CAN MOGULe ...ttt ettt e eabe et eeabaesteeenseenes 9-18
C28X Programming INEETIACEcccoeeiuiiiiiiiieiiee ettt ettt 9-19

CAN REZISTET AP .eviivieiieiieiiieieeteeste et ettt e bt estestaestesseessesssesseessassaensesssassesssesseassesseensasseensenseensens 9-20
Mailbox Enable - CANME Mailbox Direction - CANMD.........cccoeveriininiiniiieneeieceiesieeene 9-20
Transmit Request Set & Reset - CANTRS / CANTRR......ccooiiiiiiiieiieiee et 9-21
Transmit ACKNOWIEAZE - CANTAcoiiiieiieietee ettt et sttt ettt e saeenbesseenseennas 9-21
Receive Message Pending - CANRMPccoiiiiiiiieieeeee et 9-22
Remote Frame Pending - CANREP.......cccoooiiiiiieeceeeee ettt e n 9-22
Global Acceptance Mask - CANGAMcoccoiiriiriiienieiestee ettt sttt ettt et e st saee b s 9-23
Master Control RegiSter - CANMCcc.oovieiiiieiiiieseeeeee ettt et e steeaesteesaesebesseesessaesessneseeas 9-24
CAN Bit = TIMENG ..ottt ettt ettt et et e et ettt e st e e abe et e e st e saseenseesaseenteassneanes 9-25
Bit-Timing Configuration - CANBTICcccoecuiiieiiiiierieieeteie ettt sttt st be e e s 9-26
CAN EFFOF REGISIOF ...ttt 9-28
Error and Status - CANES ...ttt st 9-28
Transmit & Receive Error Counter - CANTEC / CANRECccoooiiiiiieiieecieteeeeeee e 9-29
CAN INEerrUupt REGISION ..ottt 9-30
Global Interrupt Mask - CANGIMccoiiieiiiiiieiieieeteeie ettt sieetesteeae e ebesreesseesaesseessesseesseseeas 9-30
Global Interrupt 0 Flag — CANGIFOcccooiiiiieiiieieeieieeere ettt sttt snee e e 9-31
Global Interrupt 1 Flag — CANGIFLooiiiiieiiieiee ettt 9-31
Mailbox Interrupt Mask - CANMIM.........cccieiiiieriiiieiieieeeeteette sttt eese e esesteessesevesseeseeseessesssesseas 9-32
Overwrite Protection Control - CANOPCcccccviiiiriiiniiiiiinineneet ettt 9-32
Transmit /O Control - CANTIOCc.ooiiiiiiiiiiiie ettt et st s 9-33
Receive I/O Control - CANRIOC.........ooiiiiiieiieiteteseeteeteete ettt sttt s e e tesseebesnnesee s 9-33
ALGrn / Time OUE REZISTOFcc.cooueiuieieiiieeie ettt ettt ettt ettt ettt et sttt st et et entesae e enes 9-34
Local Network Time - CANLNTcooiiiiiiiet ettt ettt ne s e seesseseesnens 9-34
Time Out Control - CANTIOC ..ottt ettt st eee e saenene 9-35
Local Acceptance Mask - LAMIccveiiiiieiiiiiecieeiesie ettt ettt sae e e ebeetaesbeessesseessesseenseneeas 9-35
Message Object Time Stamp - MOTSN....ccuiiiiiieiecierieeiese ettt se e see s 9-36
Message Object Time Out - MOTOMNovieiiiiieiiiierieeieeeete ettt ettt sttt sebesbeeaesseesesneeseees 9-36

DSP28 - Controller Area Network

Module Topics

MATIDOX MEINOTY ...ttt 9-37
Message Identifier - CANMIDcooiiiiieieteeet ettt ettt se e e seessesaenens 9-37
Message Control Field - CANMCTEcc.oooiiiiiiiiiiieeeteeeee ettt sttt s 9-37
Message Data Field Low - CANMDL........oooiiiiiiiiieieceiiee ettt naennen 9-38
Message Data Field High - CANMDH.........ccooiiiiiieiiieieceeieceeeetee ettt sse b ae e 9-38

LD EXEFCISE 9 ...ttt 9-39
PLETACE ...ttt et st 9-39
ODJECLIVE .vveuviieieitieieeteesteete st et e st ete et e s teesaesteesseestessaesseaseessesssasseansansaanseassanseassesseensanseensansennsenseensens 9-40
PLOCEAUIE.....cuiiiieiiiiciietieee ettt ettt ettt et eb e ea et b e s b enaenneas 9-40
Open Files, Create Project FIle ..ottt 9-40
Project BUild OPHIONScecuiiieiieieriieiesiiete sttt etesteetesteestesteesteessesseessesseessesseesseensesseensensesnsesseensens 9-41
MOdify SOUICE COAC......cuuiruiiiiriiiiiieieeteteetet ettt sttt et s e st et bt e st et enbeeabesbe et 9-42
Build, Load and RUIN..........oooiiiiiiiieeceeeeee et ettt ettt e e e ent e e eete e e eeaaeeeeaaesseraeesennes 9-43
MOdify SOUICE COAE COMNL.eiiiiiiiieieeiieie ettt ettt ettt et st e sttt sbe e beestesbeestesbesbeentens 9-43
Add the CAN initialiZation COEceitiieiriiiiiieieeie et 9-43
Prepare Transmit MailbOX #5ooiiiiieiiiriieiereeie ettt sttt st sbeeae b enseeneeee s 9-45
Add the Data Byte and TTanSIMITc.ooveieieiriieeieieeiiee ettt et eseesesnesteeneseeseeneas 9-45
Build, Load and RUIN..........ooooiiiiiiicceie ettt eta e e e eat e s eeteeesenaeeeeaaeesereeesennes 9-46

LD EXCFCISE 1()......ccuooiieeieiieiii ittt ettt ettt ettt e e e bt e sbe e et e sbeesbeebeanseeseensebeenbeeseenbens 9-47
PIETACE ..ttt e a e bbbt et h e b e bbbttt nbe et 9-47
ODJECLIVE .vveviieieitieieeteeste et e st et e st eteetesteestesteesbeessessaenseaseessesssasseessassanseassasseassessaensanseensansesnsenseensens 9-48
PLOCEAUIEcuiiiiiiiiiiieeec ettt ettt ettt e b ettt s b et enneae 9-48
Open Files, Create Project FIle......oooiiieiiiiieiiiiesieeesieeesie ettt sae st besteesae e saesneenne s 9-48
Project BUild OPHIONScecuiiieiieieriieiesiieie sttt etestte e st estesttesteessesseesbesseessesseesseensesseensansesnsesseensens 9-49
MOdIfY SOUICE COAC.....cuviruiiiieiiiiiieieetett ettt ettt ettt st e et et e et e s bt et e sbtesbeesbebeenbesseenteas 9-49
Build, Load and RUIN.......c...ooiiiiiiiecceeeeee ettt ete e e ena e e esteeesenaesesneesseraeesennes 9-50
MOdify SOUICE COAE COMNL.eiiiiiiiieieeiieie ettt ettt et st e sttt sbe e beeseesbeeatesbesseente s 9-50
Add the CAN initialiZation COAEeouiriiriiriiriieiiiie ettt ettt 9-51
Prepare ReCeiVEr MailDOX #1oouieieiieieieeiesieeie ettt sttt sttt e st st esbeesaesseenseeseente s 9-52
Add a polling loop for a message in MaIIbOX 1cc.cecvevuiiiiiiiiniiiinieieeeeee e 9-53
Build, Load and RUN QGAINc.cceeieriieieriieieiteie ettt ettt e teetesteebesseessesssesseessensesnsesseensens 9-53

WRATE'S MOXE? ...ttt ettt 9-55

DSP28 - Controller Area Network 9-3

CAN Requirements

CAN Requirements

Why a car network like CAN?

=>» what are typical requirements of an in car network?

low cost solution

good and high performance with few overhead transmission
high volume production in excellent quality

high reliability and electromagnetic compatibility (EMC)
data security due to a fail-safe data transmission protocol
short message length, only a few bytes per message

an ‘open system’

=» what are customer demands ?

reduce pollution
reduce fuel consumption
increase engine performance
higher safety standards , active & passive systems
add more & more comfort into car
* lots of electronic control units (ECU) necessary !!!
* lots of data communication between ECU’s. 9.

ECU’s of a car

The number of microcontrollers inside a car :

break control ABS (1 + 4)

keyless entry system(1)

active wheel drive control (4)

engine control (2)

airbag sensor(6++)

seat occupation sensors(4)

automatic gearbox(1)

electronic park brake(1)

diagnostic computer(1)

driver display unit(1)

air conditioning system(1)

adaptive cruise control(1)

radio / CD-player(2)

collision warning radar(2)
rain/ice/snow sensor systems (1 each)
dynamic drive control(4)

active damping system (4)

driver information system(1)

GPS navigation system(3) 9-

4

DSP28 - Controller Area Network

Basic CAN Features

Basic CAN Features

Features of CAN

— developed by Robert Bosch GmbH, Stuttgart in 1987

— licensed to most of the semiconductor manufacturers

— meanwhile included in most of the microcontroller-families

— today the most popular serial bus for automotive applications

— competitors are : VAN (France) , J1850 (USA) and PALMNET (Japan)
— alot of applications in automation & control (low level field bus)

Features :

multi master bus access

random access with collision avoidance

short message length , at max. 8 Bytes per message
data rates 100KBPS to IMBPS

short bus length , depending on data rate
self-synchronised bit coding technology

optimised EMC-behaviour

build in fault tolerance

physical transmission layers : RS485, ISO-high-
speed(differential voltage), ISO-low-speed (single voltage), fibre-
optic, galvanic isolated

9-5

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions — it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

The bus access procedure is a multi-master principle, all nodes are allowed to use CAN as a
master node. One of the basic differences to Ethernet is the adoption of non-destructive bus
arbitration in case of collisions, called “Carrier Sense Multiple Access with Collision
Avoidance“(CSMA/CA). This procedure ensures that in case of an access conflict, the message
with higher priority will not be delayed by this collision.

The physical length of the CAN is limited, depending on the baud rate. The data frame consists of
a few bytes only (maximum 8), which increases the ability of the net to respond to new transmit
requests. On the other hand, this feature makes CAN unsuitable for very high data throughputs,
for example, for real time video processing.

There are several physical implementations of CAN, such as differential twisted pair (automotive
class: CAN high speed), single line (automotive class: CAN low speed) or fibre optic CAN, for
use in harsh environments.

DSP28 - Controller Area Network 9-5

CAN Implementation

CAN Implementation

Implementation / Classification of CAN

The Implementation of CAN in Silicon
== Don’t get confused !
Communication is identical for all implementations of CAN.

However, there are two principal hardware implementations
and two additional versions of data formats :

CAN-Implementation
1
{ }
BASIC-CAN Full-CAN

There are two versions of how the CAN-module is implemented in silicon, called “BASIC” and
“Full” — CAN. Almost all new processors with a built-in CAN module offer both modes of
operation. BASIC-CAN as the only mode is normally used in cost sensitive applications.

BASIC-CAN and FULL-CAN

- Close loop between MCU-core and CAN
— only one transmit buffer
BASIC-CAN — only two receive bflffer .
— only one filter for incoming messages
— Software routines are needed to select
between incoming messages

— provide a message server
— extensive acceptance filtering on incoming
messages
Full-CAN — user configurable mailbo‘xes .
— mailbox memory area, size of mailbox areas
depends on manufacturer
— advanced error recognition

DSP28 - Controller Area Network

CAN Data Frame

CAN Data Frame

==>

The Data Format of CAN

e CAN-Version 2.0A
Standard-CAN e messages with 11-bit-

identifiers

e CAN-Version 2.0B
Extended-CAN e messages with 29-bit-

identifiers

Suitably configured, each implementation (BASIC

FULL) can handle both standard and extended data formats.

or

9-8

The two versions of the data frame format allow the reception and transmission of standard
frames and extended frames in a mixed physical set up, provided the silicon is able to handle both
types simultaneously (CAN version 2.0A and 2.0B respectively).

The CAN Data Frame (cont.)

L T 1 1 [T [T 1T 1

data
ro 0...8 byte
1 bit

RTR
1bit

CRC
15 bits

EOF + IFS
10 bits

IDE

1 bit DLC

4 bits

ACK
Identifier 2 bits

11 bits

DATA-Frame CAN 2.0A (11-bit-identifier)

data

r0
0...8 byte
1 bit U

RTR
1bit

CRC
15 bits

SRR
1bit

EOF + IFS
10 bits

r
[ID}= 1bit

1bit

DLC
4 bits

ACK

Identifier 2 bits

11 bits Identifier

18bit

DATA-Frame CAN 2.0B (29-bit-identifier)

DSP28 - Controller Area Network

CAN Data Frame

The CAN Data Frame

each data frame consists of four segments :
(1) arbitration-field :
¢ denote the priority of the message
logical address of the message (identifier)
Standard frame , CAN 2.0A : 11 bit-identifier
o Extended frame (CAN 2.0B) : 29 bit-identifier
(2) data field :
e up to 8 bytes per message ,
e a (0 byte message is also permitted
(3) CRC field:
e cyclic redundancy check ; contains a checksum
generated by a CRC-polynomial
(4) end of frame field:
e contains acknowledgement , error-messages, end of
message

The CAN Data Frame (cont.)

start bit (1 bit - dominant): flag for the begin of a message; after idle-time falling-
edge to synchronise all transmitters
identifier (11 bit) : mark the name of the message and its priority ;the lower the value

the higher the priority

RTR (1 bit) : remote transmission request ; if RTR=1 (recessive) no valid data’s
inside the frame - it is a request for receivers to send their messages

IDE (1 bit) : Identifier Extension ; if IDE=1 then extended CAN-frame

r0 (1 bit) :reserved

CDL (4 bit) : data length code, code-length 9 to 15 are not permitted !

data (0..8 byte) : the data’s of the message

CRC (15 bit) : cyclic redundancy code ; only to detect errors, no correction ;
hamming-distance 6 (up to 6 single bit errors)

ACK (2 bit) : acknowledge ; each listener, which receive a message without errors
(including CRC!) has to transmit an acknowledge-bit in this time-slot !!!

EOF (7 bit =1, recessive) : end of frame ; intentional violation of the bit-stuff-
rule ; normally after five recessive bits one stuff-bit follows automatically

IFS (3 bit =1 recessive) : inter frame space ; time space to copy a received

message from bus-handler into buffer
Extended Frame only :

SRR (1 bit = recessive) : substitute remote request ; substitution of the RTR-bit in
standard frames
rl (1 bit): reserved

DSP28 - Controller Area Network

CAN Automotive Classes

CAN Automotive Classes

—\ Class A:
—\ Class B:
—\ Class C:
= Class D:

The Automotive Classification of CAN

There are four classes of CAN-systems in use :

chassis electronics, e.g. mirror adjust, light
& bulb control

10 KBPS ; 1 data transmission line , chassis
used for ground

distribution of information, e.g. central
driver-display; 40 KBPS

real-time information exchange

in and between control-loops e.g. engine-
control(ignition, injection), brake-systems
(ABS, ASR); dynamic drive control,
damping ; steering-control ; 1 MBPS
network with large number of data’s (>
10KB/frame) , e.g. radio, telephone,
navigation-systems

9-12

The four automotive CAN classes are used to specify different groups of electronic control units
in a car. There are also different specifications for Electromagnetic Compatibility (EMC)
compliances and tailored versions of physical transceivers available for the four classes in use.
Class A and B are quite often specified as “Low Speed CAN” with a data rate of 100 kbps. Class

C usually is implemented as “High Speed CAN”, commonly with a baud rate of 500 kbps.

For more details on automotive electronics, look out for additional classes in your university. A
highly recommended textbook about CAN in automotive applications is:

“CAN System Engineering”

Wolfhard Lawrenz
SpringerN.Y. 1997
ISBN: 0-387-94939-9

DSP28 - Controller Area Network

ISO Standardization

ISO Standardization

The Standardisation of CAN

¢ The CAN is an open system

e The European ISO has drafted equivalent standards

e The CAN-Standards follow the ISO-OSI seven layer model
for open system interconnections

e In automotive communication networks only layer 1, 2 and 7
are implemented

e Layer 7 is not standardised

The ISO-Standards :

CAN: ISO 11519-2: layer 2, layer 1 (top)
CAN: ISO 11898 : layer 1 (bottom)
VAN : ISO 11519-3: layer 2,layer 1
J1850 : ISO 11519-4: layer 2, layer 1

ISO Reference Model

Open Systems Interconnection (OSI):

Layer 1 : Interface to the transmission lines
o differential two-wire-line, twisted pair

Layer 7 with/without shield
Application Layer o IC's as integrated transceiver
Layer 6 ¢ Optional fibre optical lines (passive
void coupled star, carbon)
Presentation Layer p ’
Optional Coding : PWM, NRZ
Layer ¢ K i
Seii{f Laye r5 void Manchester Code
Layer 4 void

Layer 2 : Data Link Layer

Transport Layer P
P y ¢ message format and transmission

Layer 3 void protocol
Network Layer o CSMA/CA access protocol
Layer 2
Data LInk Layer Layer 7 : Application Layer
Layer 1 ¢ a few different standards for industry,
Physical Layer no for automotive

¢ but a must : interfaces for
communication, network management
and real-time operating systems

9-10 DSP28 - Controller Area Network

CAN Application Layer

CAN Application Layer

CAN Layer 7

1. CAN Application Layer (CAL):
e European CAN user group ”CAN in Automation (CiA)”
e originated by Philips Medical Systems 1993
¢ CiA DS-201 to DS-207
e standardised communication objects, -services and -protocols (CAN-
based Message Specification)
e Services and protocols for dynamic attachment of identifiers (DBT)
¢ Services and protocols for initialise, configure and obtain the net
(NMT)
e Services and protocols for parametric set-up of layer 2 &1 (LMT)
e Automation, medicine, traffic-industry
2. CAN Kingdom
¢ Swedish , Kvaser ;
e toolbox
o”’modules serves the net , not net serves for the modules”
e off-road-vehicles ; industrial control , hydraulics
3. OSEK/VDX
eEuropean automotive industry , supplier standard
einclude services of a standardised real-time-operating system

CAN Layer 7(cont.)
4. CANopen :

+ European Community funded project “ESPRIT”
¢ 1995 : CANopen profile :CiA DS-301
* 1996 : CANopen device profile for 1/0 : CiA DS-401
¢ 1997 : CANopen drive profile
e industrial control , numeric control in Europe
5. DeviceNet :
¢ Allen-Bradley, now OVDA-group
¢ device profiles for drives, sensors and resolvers
e master-slave communication as well as peer to peer
e industrial control , mostly USA
6. Smart Distributed Systems (SDS)
e Honeywell , device profiles
¢ only 4 communication functions , less hardware resources
e industrial control , PC-based control
e US-food industry
e Motorola 68HCO0S with SDS on silicon available now
7. other profile systems
©J1939 US truck and bus industry
eLLBS Agricultural bus system, Germany, DIN)
eM3S : European manufacturers of wheelchairs

DSP28 - Controller Area Network 9-11

CAN Bus Arbitration — CSMA/CA

CAN Bus Arbitration —- CSMA/CA

Bus Access Procedures
The “Ethernet” : CSMA / CD

Send Message

listen to bus

bus

time delay

A

empty ?

yes

transmit &
receive

no

@ —

fabort transmit

Note : This Procedure is NOT used
for CAN !

Why ?

CSMA /CD:
Carrier
Sense
Multiple
Access with
Collision
Detection

CAN Access Procedure: CSMA/CA

CSMA/ CA = Carrier Sense Multiple Access with Collision

id6é

— access-control with non
destructive bit-wide

arbitration

— if there is a collision , ”the
winner takes the bus”
— the message with higher

priority is not delayed !

Avoidance
start id10 id8 id7

LT e kil
node A

i | |] |
B

R | 11
bus line I | 1 |

— real-time capability for high
prioritised messages

— the lower the identifier, the
higher the priority

DSP28 - Controller Area Network

CAN Bus Arbitration — CSMA/CA

CSMA/CA (cont.)
CSMA / CA =

"bit - wide arbitration during transmission with simultaneous receiving
and comparing of the transmitted message"

means :
« if there is a collision within the arbitration-field, only the node
with the lower priority cancels its transmission.
* The node with the highest priority continues with the
transmission of the message.

node 1 node 2 node 3
high : reccessive node 1 node 2 node 3 bus
high high high high
low : dominant high low high low
low low high low

As you can see from the previous slide the arbitration procedure at a physical level is quite sim-
ple: it is a “wired-AND” principle. Only if all 3 node voltages (node 1, node2 or node3) are equal
to 1 (recessive), the bus voltage stays at V. (recessive). If only one node voltage is switched to 0
(dominant), the bus voltage is forced to the dominant state (0).

The beauty of CAN is that the message with highest priority is not delayed at all in case of a col-
lision. For the message with highest priority, we can determine the worst-case response time for a
data transmission. For messages with other priorities, to calculate the worst-case response time is
a little bit more complex task. It could be done by applying a so-called “time dilatation formula

for non-interruptible systems™:

R"-C,
n+l i i
R =C,+ B, + [—W xC,

Jehp (i)

HARTER, P.K: “Response Times in level structured systems” Techn. Re-
port, Univ. of Colorado, 1991

In detail, the hardware structure of a CAN-transceiver is more complex. Due to the principle of
CAN-transmissions as a “broadcast” type of data communication, all CAN-modules are forced to
“listen” to the bus all the time. This also includes the arbitration phase of a data frame. It is very
likely that a CAN-module might lose the arbitration procedure. In this case, it is necessary for this
particular module to switch into receive mode immediately. This requires every transceiver to
provide the actual bus voltage status permanently to the CAN-module.

DSP28 - Controller Area Network 9-13

High Speed CAN

High Speed CAN

CAN Physical Layers
CAN - High - Speed (ISO 11898) :
node 1 — node 30
I CAN_H T
120 120
Ohm ohm
CAN_L

3,5V

2,5V /

1,5V
CAN_L

recessive dominant recessicve

time
CAN high-speed , nominal bus levels

To generate the voltage levels for the differential voltage transmission according to CAN High
Speed we need an additional transceiver device, e.g. the SN6SHVD23x.

CAN High speed Node

DSP with on-chip
CAN module

CAN Transceiver
SN65HVD23X

| ey
— |

CAN_L
— =

CAN BUS

DSP28 - Controller Area Network

CAN Error Management

CAN Error Management

CAN Error & Exception Management

error
handling
I I
error error error
detection managing limitation

How does it work ?

- most of errors should be detected and self-corrected by the CAN-Chip
itself
- automatic notification to all other nodes, that an error has been seen :

Error-Frame = deliberate violation of code-law’s)
(6-bit dominant = passive error frame)
(12-bit dominant = active error frame)
- all nodes have to cancel the last message they have received
- transmission is repeated automatically by the bus - handler

CAN Error Recognition

* Bit-Error
the transmitted bit doesn’t read back with the same digital level (except
arbitration and acknowledge- slot)

* Bit-Stuff-Error
more than 5 continuous bits read back with the same digital level (except
‘end of frame’-part of the message)

* CRC-Error
the received CRC-sum doesn’t match with the calculated sum

* Format-Error
Violation of the data-format of the message , e.g.: CRC-delimiter is not
recessive or violation of the ‘end -of-frame’-field

* Acknowledgement-Error
transmitter receives no dominant bit during the acknowledgement slot,
i.e. the message was not received by any node.

DSP28 - Controller Area Network 9-15

CAN Error Management

CAN Error Sequence

error
handling

rtor aror aror This is the violation of the stuff-bit-rule by
: i Ul transmission of at least 6 dominant bits.
The Error-Frame causes all other nodes to
recognise an Error Status of the bus.
_\
Error Management Sequence :
. error is detected
. error-frame will be transmitted by all nodes, which have detected
this error

. The last message received will be cancelled by all nodes

. Internal hardware error-counters will be increased

. The original message will be transmitted again.

After detection of an error by a node every
other node receives a particular frame , the
Error -Frame :

CAN Error Status

error
handling

S — — £ — —

error error error

detection managing limitation

Error Active : normal mode, messages will be received and transmitted. In
case of error an active error frame will be transmitted

Error Passive : after detection of a fixed number of errors , the node reaches
this state. messages will be received and transmitted, in case of error the node

sends a passive error frame.

Bus Off : the node is separated from CAN , neither transmission nor receive of
messages is allowed, node is not able to transmit error frame’s .
leaving this state is only possible by reset !

* Purpose: avoid persistent disturbances
of the CAN by switching off defective
nodes

* three Error States :

error error bus
active passive off

DSP28 - Controller Area Network

CAN Error Management

State - Diagram :

REC <127
and error active
TEC <=127

REC >127 or

127<TEC<255
TEC > 255

‘reset’ or "init
node*

CAN Error Counter

* transitions will be carried out automatically
by the CAN-chip
* states are managed by 2 Error Counters :
Receive Error Counter (REC)
Transmit Error Counter (TEC)
* Possible situations :
a) a transmitter recognises an error:
TEC:=TEC + 8
b) a receiver sees an error : REC:=REC +1
¢) a receiver sees an error, after transmitting an
error frame: REC:=REC + 8
d) if an ‘error active’-node find’s a bit-stuff-
error during transmission of an error frame:
TEC:=TEC+ 1
e) successful transmission:
TEC:=TEC -1
f) successful receive :
REC:=REC -1

DSP28 - Controller Area Network

C28x CAN Module

C28x CAN Module

C28x CAN Features
¢ Fully CAN protocol compliant, version 2.0B

¢ Supports data rates up to 1 Mbps

¢ Thirty-two mailboxes

+ Configurable as receive or transmit

+ Configurable with standard or extended identifier
+ Programmable receive mask

+ Supports data and remote frame

+ Composed of 0 to 8 bytes of data

+ Uses 32-bit time stamp on messages

+ Programmable interrupt scheme (two levels)

+ Programmable alarm time-out

¢ Programmable wake-up on bus activity
¢ Self-test mode

The DSP CAN module is a full CAN Controller. It contains a message handler for transmission, a
reception management and frame storage. The specification is CAN 2.0B Active — that is, the
module can send and accept standard (11-bit identifier) and extended frames (29-bit identifier).

CAN Block Diagram
Addressl_l

T eCANOINT TeCANl INT

Data

Y

{}
iy

Mailbox RAM
(512 Bytes)

32-Message Mailbox
of 4 x 32-Bit Words

(—

Memory Management

Unit

eCAN Memory
(512 Bytes)

—

)

CPU Interface,
Receive Control Unit
Timer Management Unit

Register and Message
Object Control

i

Receive Buffer

Transmit Buffer

Control Buffer

Status Bu

ffer

A

A 4

SN65SHVD23x
3.3-V CAN Transceiver

4]

CAN Bus

DSP28 - Controller Area Network

C28x Programming Interface

C28x Programming Interface

CAN Memory
Data Space
0x00 0000
Control and
Status Register
6040 Local
Acceptance
Masks
L 6080 Message
0x00 6000 Object
Time Stamps
CAN Message
0x00 61FF 60C0 sag
Object
Time Out
6100 | Mailbox 0
6108 | Mailbox 1
T T Mailbox 31
.
9-29

The CAN controller module contains 32 mailboxes for objects of 0- to 8-byte data lengths:
e configurable transmit/receive mailboxes
e configurable with standard or extended identifier

The CAN module mailboxes are divided into several parts:
e MID - contains the identifier of the mailbox
e MCF (Message Control Field) — contains the length of the message (to transmit
or receive) and the RTR bit (Remote Transmission Request — used to send re-
mote frames)
e MDL and MDH - contains the data

The CAN module contains registers, which are divided into five groups. These registers are lo-
cated in data memory from 0x006000 to 0x0061FF. The five register groups are:

Control & Status Registers

Local Acceptance Masks

Message Object Time Stamps

Message Object Timeout

Mailboxes

It is the responsibility of the programmer to go through all those registers and set every single bit
according to the designated operating mode of the CAN module. It is also a challenge for a stu-
dent to exercise the skills required to debug. So let’s start!

First, we will discuss the different CAN registers. If this chapter becomes too tedious, ask your
teacher for some practical examples how to use the various options. Be patient!

DSP28 - Controller Area Network 9-19

C28x Programming Interface

CAN Register Map

6000
6002
6004
6006
6008
600A
600C
600E
6010
6012
6014
6016
6018
601A
601C
601E

CAN Control & Status Register

31 0 31 0
CANME 6020 CANGIM
CANMD 6022 CANGIF1
CANTRS 6024 CANMIM
CANTRR 6026 CANMIL
CANTA 6028 CANOPC
CANAA 602A CANTIOC
CANRMP 602C CANRIOC
CANRML 602E CANLNT
CANRFP 6030 CANTOC
CANGAM 6032 CANTOS
CANMC 6034 reserved
CANBTC 6036 reserved
CANES 6038 reserved
CANTEC 603A reserved
CANREC 603C reserved
CANGIFO 603E reserved

9-30

Mailbox Enable - CANME

Mailbox Direction - CANMD

CAN Mailbox Enable Register (CANME) — 0x006000

31

16

CANME[31:16]

15

CANME][15:0]

CAN Mailbox Direction Register (CANMD) — 0x006002

31

Mailbox Enable Bits

0 = corresponding mailbox is disabled

1 = The corresponding mailbox is enabled. A mailbox must
writing to the contents of any mailbox identifier field.

be disabled before

16

CANMD|[31:16]

15

CANMDI15:0]

Mailbox Direction Bits

1 = corresponding mailbox is defined as a receive mailbox.

0 = corresponding mailbox is defined as a transmit mailbox.

DSP28 - Controller Area Network

C28x Programming Interface

Transmit Request Set & Reset - CANTRS / CANTRR

CAN Transmission Request Set Register (CANTRS) — 0x006004

31 16

CANTRS|31:16]

CANTRS[15:0]

Mailbox Transmission Request Set Bits (TRS)
0 = no operation. NOTE: Bit will be cleared by CAN-Module logic after successful transmission.
1= Start of tra of corresponding mailbox. Set to 1 by user software;

OR by CAN -logic in case of a Remote Transmit Request.

CAN Transmission Request Reset Register (CANTRR) — 0x006006
6

31 1

CANTRR][31:16]

15 0

CANTRR[15:0]

Mailbox Transmission Reset Request Bits (TRR)
0 = no operation.
1 = setting TRRn cancels a transmission request, if not currently being processed.

Transmit Acknowledge - CANTA

CAN Transmission Acknowledge Register (CANTA) — 0x006008

31 16

CANTA[31:16]

15 0

CANTA([15:0]

Mailbox Transmission Acknowledge Bits (TA)

0 = the message is not sent.

1 = if the message of mailbox n is sent successfully, the bit n of this register is set.
Note: To reset a TA bit by software: write a ‘1’ into it!!

CAN Abort Acknowledge Request Register (CANAA) — 0x00600A
6

31 1

CANAA[31:16]

15 0

CANAA[15:0]

Mailbox Abort Acknowledge Bits (AA)

0 = The transmission is not aborted.

1 = The transmission of mailbox n is aborted.

Note: To reset a AA bit by software: write a ‘1’ into it!!

DSP28 - Controller Area Network

C28x Programming Interface

Receive Message Pending - CANRMP

31

CAN Receive Message Pending Register (CANRMP) — 0x00600C

16

CANRMP(31:16]

15

CANRMP[15:0]

31

Mailbox Receive Message Pending Bits (RMP)

0 = the mailbox does not contain a message.

1 = the mailbox contains a valid message.

Note: To reset a RMP bit by software: write a ‘1’ into it!!

CAN Receive Message Lost Register (CANRML) — 0x00600E

16

CANRML([31:16]

15

CANRML([15:0]

Mailbox Receive Message Lost Bits (RML)
0 = no message was lost.

Note: To reset a RML bit by software: write a ‘1’ into it!!

1 = an old unread message has been overwritten by a new one in that mailbox.

Remote Frame Pending - CANRFP

31

CAN Remote Frame Pending Register (CANRFP) — 0x006010

CANRFP[31:16]

15

CANRFP([15:0]

Mailbox Remote Frame Pending Bits (RFP)
0 = no remote frame request was received.
1 = a remote frame request was received by the CAN module.

Note: To reset a RFP bit by software: write a ‘1’ into the corresponding TRR bit!!

DSP28 - Controller Area Network

C28x Programming Interface

Global Acceptance Mask - CANGAM

CAN Global Acceptance Mask Register (CANGAM) — 0x006012

31 30-29 28 16
AMI reserved CANGAM|28:16]
15 0

CANGAM[15:0]

Note : This Register is used in SCC mode only for mailboxes 6 to 15, if the AME bit (MID.30)
of the corresponding mailbox is set. It is a “don’t care” for HECC — Mode!

Acceptance Mask Identifier Bit (AMI)
0 = the identifier extension bit in the mailbox determines which messages shall be received.
Filtering is not applicable.
1 = standard and extended frames can be received. In case of an extended frame all 29 bits of the identifier
and all 29 bits of the GAM are used for the filter. In case of a standard frame only bits 28-18 of the identifier
and the GAM are used for the filter.
Note: The IDE bit of a receive mailbox is a “don’t care” and is overwritten by the IDE bit
of the transmitted message.

Global Acceptance Mask (GAM)

0 = bit position must match the corresponding bit in register CANMIDn.

1 = bit position of the incoming identifier is a “don’t’ care”.

Note: To reset a RFP bit by software: write a ‘1’ into the corresponding TRR bit!!

DSP28 - Controller Area Network 9-23

C28x Programming Interface

Master Control Register - CANMC

31

CAN Master Control Register (CANMC) — 0x006014

16

reserved

15

14 13 12 11 10

MBCC

TCC | SCB | CCR | PDR | DBO (WUBA| CDR | ABO | STM | SRES MBNR

Change Configuration Request (CCR)

0 = software requests normal operation

1 = software requests write access to CANBTC, CANGAM, LAM|[0] and LAM[3].
A request is granted by the CAN module with flag CCE (CANES) =1.
NOTE: SCC Mode only !

SCC Compatibility bit (SCB)
0=SCC mode

1 = high end CAN (HECC) mode

Timestamp counter MSB clear (TCC)
0 = no operation
1 = timestamp counter MSB is reset to 0

Mailbox Timestamp counter clear (MBCC)
0 = no operation
1 = timestamp counter is reset to 0 after a successful transmission or reception of mailbox 16.

CAN Master Control Register (CANMC) — 0x006014 (cont.)

NOTE:

Power Down Mode Request (PDR)
0 = normal operation
1 =power down mode is requested.

upon wakeup from power down!

bit is automatically cleared

Auto bus on (ABO)
0 = “bus off’ state is permanent.
1 = “bus off” state is left into “bus on”
after 128*11 recessive bits have been received.

Wake up on bus activity (WUBA)

0 = Module leaves power down only
after writing a 0 to PDR

1 = Module leaves power down on
any bus activity

Software Reset(SRES)
0 = no effect
1=CAN Module reset

15 14 13 12 11 10 \9 8 7 6 5 4 0
MBCC| TCC | SCB | CCR | PDR | DBO (WUBA| CDR | ABO | STM | SRES MBNR
Mailbox Number(MBNR)
Number , used for CDR

Data Byte Order (DBO) in Mailbox Registers
MDH][31:0] and MDL[31:0]

0 = MDH[31:0] : Byte 4,5,6,7 ; MDL[31:0] : Byte 0,1,2,3
1=MDH[31:0] : Byte 7,6,5,4 ; MDL[31:0] : Byte 3,2,1,0

Change data field request (CDR)
0 = normal operation

1 = software requests access to the data field in 2MBNR”. 1 =Module generates its own ACK
NOTE: software must clear this bit after access is done.

Self Test Mode (STM)
0 = normal mode

9-38

DSP28 - Controller Area Network

CAN Bit - Timing

CAN Bit - Timing

CAN Bit-Timing Configuration

¢ CAN protocol specification splits the nominal bit
time into four different time segments:

SYNC_SEG

¢ Used to synchronize nodes
& Length : always 1 Time Quantum (TQ)

PROP SEG

4 Compensation time for the physical delay times within the net

& Twice the sum of the signal’s propagation time on the bus line, the input
comparator delay and the output driver delay.

4 Programmable from 1 to 8 TQ

« PHASE_SEG1
4 Compensation for positive edge phase shift
¢ Programmable from 1 to 8 TQ

& PHASE_SEG2

¢ Compensation time for negative edge phase shift
& Programmable from 2 to 8 TQ

9-39
CAN Bit-Timing Configuration
< CAN Nominal Bit Time >
SYNCSEG o
sjw |<—>
| tseg1 3 tseg2
[[1 1
el [[1 0 T [11 1
))
Transmit Point Sample Point
¢ tsegl : PROP_SEG + PHASE SEGI1
¢ tseg2 : PHASE SEG2
¢ TQ : SYNCSEG
¢ CAN Nominal Bit Time = TQ + tsegl + tseg2
9-40

DSP28 - Controller Area Network 9-25

CAN Bit - Timing

CAN Bit-Timing Configuration

¢ According to the CAN — Standard the following bit timing rules
must be fulfilled:

& tsegl > tseg2

¢ 3/BRP tsegl 16TQ

¢ 3/BRP tseg2 8TQ

¢ 1TQ sjw MIN][4*TQ, tseg2]

¢ BRP > 5 (if three sample mode is used)

Bit-Timing Configuration - CANBTC

CAN Bit-Timing Configuration Register (CANBTC) — 0x006016

31 24 23 16

reserved BRP.7| BRP.6 |BRP.5 BRP.4| BRP.3 | BRP.2 | BRP.1 | BRP.0

Baud Rate Prescaler (BRP)
Defines the Time Quantum (TQ):

_ BRP+1
TQ= SYSCLK

Note: with an external clock of 30MHz and a PLL * 5:
SYSCLK = 150MHz

9-26 DSP28 - Controller Area Network

CAN Bit - Timing

CAN Bit-Timing Configuration Register (CANBTC) — 0x006016

15 1 10 9 8 7 6 3 2 0

reserved SBG SIwW SAM TSEG1 TSEG2

Time Segment 1(tsegl)

Synchronisation Jump Width (SJW)

Sjw :TQ*(SJW+1)) tsegI:TQ*(TSEGl +1)]

Time Segment 2(tseg2)

Synchronisation Edge Select (SBG)

0 = re synchronisation with falling edge only
1 = re-sync. with rising & falling edge tsegz == TQ * (TSEGZ + 1))

Sample Points (SAM)
0 = one sample at sample point
1 =3 samples at sample point — majority vote

9-43
CAN Bit-Timing Examples
¢ Bit Configuration for SYSCLK = 150 MHz
¢ Sample Point at 80% of Bit Time :
CAN- BRP TSEG1 TSEG2
Baudrate
1 MBPS 9 10 2
500 KBPS 19 10 2
250 KBPS 39 10 2
125 KBPS 79 10 2
100 KBPS 99 10 2
50 KBPS 199 10 2
¢ Example 50 KBPS:
TQ = (199+1)/150 MHz = 1.334 ns
tsegl =1.334 ns (10 + 1) =14.674 ns > tcan = 20.010 ns
tseg2 =1.334 ns (2 +1) =4.002 ns o.a4

DSP28 - Controller Area Network

CAN Error Register

CAN Error Register

Error and Status - CANES

CAN Error and Status Register (CANES) — 0x006018

31 4 23 2 21 20 19 18 17 16

reserved FE BE | SA1 |CRCE| SE |ACKE| BO EP EW

Form Error (FE)
0 = normal operation
1 = one of the fixed form bit fields of a message was wrong.

Bit Error (BE) Acknowledgement Error (ACKE)
0 = no bit error detected 0 = normal operation
1 = a received bit does not match a transmitted bit 1 = CAN module has not received an ACK.

(outside of the arbitration field).

Bus Off State (BO)
Stuck at dominant Error (SA1) 0 = normal operation

0=The CAN module detected a recessive bit 1=CANTEC has reached the limit of 256. Module
1 =The CAN module never detected a recessive bit. has been switched of the bus.

Cyclic Redundancy Check Error (CRCE) Error Passive State (EP)
0 = normal operation 0= CAN is in Error Active Mode
1 =a wrong CRC was received. 1=CAN is in Error Passive Mode
Stuff Bit Error (SE) Warning Status (EW)
0 = normal operation 0 = values of both error counters are less than 96
1 = a stuff bit error has occurred. 1 = one error counter has reached 96
9-45
CAN Error and Status Register (CANES) — 0x006018
15 6 5 4 3 2 1 0
reserved SMA | CCE | PDA | Res. | RM ™

Power Down Mode Acknowledge (PDA)
0 = normal operation
1 =CAN module has entered power down mode.

Change Configuration Enable (CCE)

0 = CPU is denied write access into
configuration registers.

1 =CPU has write access into
configuration registers. Receive Mode (RM)

0 = CAN protocol kernel is not receiving a message.

1 = CAN protocol kernel is receiving a message.

Suspend Mode Acknowledge (SMA)
0 = normal operation

1= CAN module has entered suspend mode. Transmit Mode (TM) . "
Note: Suspend mode is activated by the debugger 0 = CAN protocol kernel is not transmitting a message.
when the DSP is not in run mode. 1 = CAN protocol kernel is transmitting a message.

9-46

9-28 DSP28 - Controller Area Network

CAN Error Register

Transmit & Receive Error Counter - CANTEC / CANREC

CAN Transmit Error Counter Register (CANTEC) — 0x00601A

31 16

reserved

15 0

reserved TEC

Transmit Error Counter (TEC)
Value TEC is incremented or decremented according to the CAN protocol specification

CAN Receive Error Counter Register (CANREC) — 0x00601C

31 16

reserved

15 0
reserved REC

Receive Error Counter (REC)
Value REC is incremented or decremented according to the CAN protocol specification

DSP28 - Controller Area Network 9-29

CAN Interrupt Register

CAN Interrupt Register

Global Interrupt Mask - CANGIM

CAN Global Interrupt Mask Register (CANGIM) — 0x006020
31 18 17 16
reserved IMTOM|TCOM
15 14 13 12 11 10 9 8 3 2 1 0
Res. | AAM (WDIM |WUIM [RMLIM| BOIM | EPIM |WLIM reserved GIL | I1EN | IOEN
Interrupt Mask Bits: Global Interrupt Level (GIL)
_ .) For Interrupts TCOF,WDIF,WUIF,BOIF and WLIF
MTOM = Mailbox Timeout Mask 0= mapped into HECC_INT_REQ[0] line — GIF0
TCOM = Timestamp Counter Overflow Mask 1=mapped into HECC_INT_REQ][1] line — GIF1
AAM = Abort Acknowledge Interrupt Mask
WDIM = Write Denied Interrupt Mask
WUIM = Wake-up Interrupt Mask Interrupt 1 Enable (HEN). .
RMLIM = Receive message lost Interrupt Mask 0=HECC_INT_REQ[1] l¥ne Is disabled
BOIM = Bus Off Interrupt Mask 1= HECC_INT_REQ[]] line is enabled
EPIM = Error Passive Interrupt Mask
WLIM = Warning level Interrupt Mask Interrupt 0 Enable (I0EN)
. 0=HECC_INT_REQ|0] line is disabled
Interrupt Mask Bits 1=HECC_INT_REQ|0] line is enabled
0 = Interrupt disabled
1 = Interrupt enabled
9-48

DSP28 - Controller Area Network

CAN Interrupt Register

Global Interrupt 0 Flag — CANGIFO

CAN Global Interrupt Flag 0 Register (CANGIF0) — 0x00601E

31 18 17 16
reserved MTOF0(TCOF0

15 14 13 12 11 10 9 8 7-5 4 3 2 1 0
GMIFO|AAIFO WDIFO|WUIFO|RMLIFO BOIF0| EPIFO [WLIF0| Res. |MIV0.4|MIV0.3 |MIV0.2 | MIV0.1 [MIV0.0

Interrupt Flag Bits:

MTOF0 = Mailbox Timeout Flag

TCOF0 = Timestamp Counter Overflow Flag

GMIF(= Global Mailbox Interrupt Flag

AAIF0 = Abort Acknowledge Interrupt Flag

‘WDIF0 = Write Denied Interrupt Flag Mailbox Interrupt Vector (MIV0)
WUIFO0 = Wake-up Interrupt Flag Indicates the number of the message object that set the
RMLIF0 = Receive message lost Interrupt Flag global mailbox interrupt flag (GMIF0)
BOIF0 = Bus Off Interrupt Flag

EPIFO0 = Error Passive Interrupt Flag

WLIF0 = Warning level Interrupt Flag

Interrupt Flag Bits

0 = Interrupt has not occurred

1 =Interrupt has occurred

9-49
Global Interrupt 1 Flag — CANGIF1
CAN Global Interrupt Flag 1 Register (CANGIF1) — 0x006022
31 18 17 16
reserved MTOF1| TCOF1
15 14 13 12 11 10 9 8 7-5 4 3 2 1 0
GMIF1{AAIF1|WDIF1|WUIF1{RMLIF1|BOIF1| EPIF1 [WLIF1| Res. |MIV1.4|MIV13|MIV1.2| MIV1.1 | MIV1.0

Interrupt Flag Bits:

MTOF1 = Mailbox Timeout Flag

TCOF1 = Timestamp Counter Overflow Flag

GMIF1 = Global Mailbox Interrupt Flag

AAIF1 = Abort Acknowledge Interrupt Flag

WDIF1 = Write Denied Interrupt Flag Mailbox Interrupt Vector (MIV1)
WUIF1 = Wake-up Interrupt Flag Indicates the number of the message object that set the
RMLIF1 = Receive message lost Interrupt Flag global mailbox interrupt flag (GMIF1)
BOIF1 = Bus Off Interrupt Flag

EPIF1 = Error Passive Interrupt Flag

WLIF1 = Warning level Interrupt Flag

Interrupt Flag Bits

0 = Interrupt has not occurred

1 =Interrupt has occurred

DSP28 - Controller Area Network 9-31

CAN Interrupt Register

Mailbox Interrupt Mask - CANMIM

CAN Mailbox Interrupt Mask Register (CANMIM) — 0x006024

31 16

CANMIM|31:16]

15 0

CANMIM|15:0]

Mailbox Interrupt Mask Bits (MIM)

0 = mailbox interrupt is disabled.

1 =mailbox interrupt is enabled. An Interrupt is generated if a
ge has been tr itted fully or if a message has

been received without an error.

CAN Mailbox Interrupt Level Register (CANMIL) — 0x006026

31 16

CANMIL(31:16]

15 0

CANMIL(15:0]

Mailbox Interrupt Level Bits (MIL)
0 = mailbox interrupt is generated on HECC_INT_REQ]0] line.
1 = mailbox interrupt is generated on HECC_INT_REQ[1] line.

Overwrite Protection Control - CANOPC

CAN Overwrite Protection Control Register (CANOPC) — 0x006028

31 16

CANOPC[31:16]

15 0

CANOPC[15:0]

Overwrite Protection Control Bits (MIM)

0 = the old message in mailbox n may be overwritten by a new one.
This will be notified by the receive message lost bit RML[n].

1 = an old message in mailbox n is protected against being overwritten
by a new one.
Thus, the next mailboxes are checked for a matching ID.
If no other mailbox is found, the new message is lost.

9-32 DSP28 - Controller Area Network

CAN Interrupt Register

Transmit I/O Control - CANTIOC

CAN I/O Control Register (CANTIOC) — 0x00602A

0 = CANTX pin is a normal I/O pin.
1=CANTX is used for CAN transmit functions.

31 16
reserved
15 3 2 1 0
reserved TXFUNC | TXDIR | TXOUT TXIN
TXFUNC

TXDIR
0 = CANTX pin is an input pin if configured as a normal I/O pin.
1= CANTX pin is an output pin if configured as a normal 1/O pin.

TXOUT
Output value for CANTX pin, if configured as normal output pin

TXIN
0 = Logic 0 present on pin CANTX.
1= Logic 1 present on pin CANTX.

9-53
Receive 1/O Control - CANRIOC
CAN I/O Control Register (CANRIOC) — 0x00602C
31 16
reserved
15 3 2 1 0
reserved RXFUNC | RXDIR | RXOUT | RXIN
RXFUNC
0 = CANRX pin is a normal I/O pin.
1=CANRX is used for CAN receive functions.
RXDIR
0 = CANRX pin is an input pin if configured as a normal I/O pin.
1 = CANRX pin is an output pin if configured as a normal 1/O pin.
RXOUT
Output value for CANRX pin, if configured as normal output pin
RXIN
0 = Logic 0 present on pin CANRX.
1= Logic 1 present on pin CANRX.
9-54

DSP28 - Controller Area Network

Alarm / Time Out Register

Alarm / Time Out Register

Local Network Time - CANLNT

CAN Local Network Time Register (CANLNT) — 0x00602E

31 16

LNT[31:16]

15 0

LNT[15:0]

¢ LNT is a Free Running Counter, Clocked from the bit clock
of the CAN module.

¢ LNT is written into the time stamp register (MOTS) of the
corresponding mailbox when a received message has been
stored or a message has been transmitted.

¢ LNT is cleared when mailbox #16 is transmitted or received.
Thus mailbox #16 can be used for a global network time
synchronization.

9-34 DSP28 - Controller Area Network

Alarm / Time Out Register

Time Out Control - CANTIOC

CAN Time Out Control Register (CANTOC) — 0x006030

31 0

TOC[31:0]

Time Out Control Bits (TOC)

0 = Time Out function is disabled for mailbox n.

1 =Time Out function is enabled for mailbox n.
If the corresponding MOTO register is greater
than LNT a time out event will be generated

CAN Time Qut Status Register (CANTOS) — 0x006032

31 0
TOS[31:0]

Time Out Status Flags (TOS)

0 =No Time Out occurred for mailbox n.

1 =The value in LNT is greater or equal to the value
in the corresponding MOTO register

Local Acceptance Mask - LAMn

CAN Local Acceptance Mask Register
0x00 6040 - 0x00 607F

0 =IDE bit of mailbox determines which message shall be received

1 = extended or standard frames can be received.
extended: all 29 bit of LAM are used for filter against all 29 bit of mailbox .
standard: only first eleven bits of mailbox and LAM [28-18] are used.

31 30-29 28 16

LAMI reserved LAMn[28:16]

15 0

LAMn([15:0]

LAMn|28-0]: Masking of identifier bits of incoming messages
1=don’t care (accept 1 or 0 for this bit position) of incoming identifier.
0 =received identifier bit must match the corresponding message identifier bit (MID).

Note: There are two operating modes of the CAN module : “HECC” and “SCC”.
In “SCC” (default after reset) LAMO is used for mailboxes 0 to 2, LAM3 is used for mailboxes 3 to 5
and the global acceptance mask (CANGAM) is used for mailboxes 6 to 15.

In “HECC” (CANMC:13 = 1) each mailbox has its own mask register LAMO0 to LAM31.

DSP28 - Controller Area Network 9-35

Alarm / Time Out Register

Message Object Time Stamp - MOTSn

31

CAN Message Object Time Stamp

0x00 6080 - 0x00 60BF

16

MOTSn[31:16]

15

MOTSn([15:0]

A free running counter (register CANLNT) is used to get an indication
of the time of reception or transmission of a message.

CANLNT is a 32 bit timer that is driven from the bit clock of the CAN bus line.
The content of CANLNT is written into MOTSn when a received message
is stored or a message has been transmitted.

Message Object Time Out - MOTOn

31

CAN Message Object Time-Out

0x00 60C0 - 0x00 60FF

16

MOTOn[31:16]

15

MOTOn([15:0]

A free running counter (register CANLNT) is used to get an indication
of the time of reception or transmission of a message.

CANLNT is a 32 bit timer that is driven from the bit clock of the CAN bus line.
If the value in CANLNT is equal or greater than the value in MOTORn, the

appropriate bit in register CANTOS will be set , assuming this feature
was allowed in CANTOC.

DSP28 - Controller Area Network

Mailbox Memory

Mailbox Memory
Message Identifier - CANMID

CAN Mailbox Memory

0x00 6100 - 0x00 61FF
Message Identifier Register (MID) Mailbox n
31 30 29 28 16 15

IDn[15:0]

IDE AME AAM IDn[28:16]

Message Identifier
Standard Frames : IDn|[28:18] are used
Extended Frames : IDn|28:0] are used

Auto Answer Mode Bit (transmitter only)

0 = mailbox does not reply to remote requests.

1 =if a matching Remote Request is received, the contents of this mailbox will be sent.
Acceptance Mask Enable Bit (receiver only)

0 =no Acceptance Mask used. All identifier bits must match to receive the message

1 =the corresponding Acceptance Mask is used)

Identifier Extension Bit
0 = Standard Identifier (11 Bits)
1 = Extended Identifier (29 Bits)

MIDO[15:0] = address 0x00 6100
MIDO0[31:16] = address 0x00 6101

Message Control Field - CANMCF

CAN Mailbox Memory

0x00 6100 - 0x00 61FF
Message Control Field Register (MCF) Mailbox n

31 16 15 13 12 8 7 5 4 3 0

reserved

reserved TPL reserved RTR DLC

Transmit Priority Level
Priority compared to the other 31 mailboxes. Dat.a Length Code
Highest number has highest priority. Valid numbers are 0 to 8.

Remote Transmission Request
0 =no RTR requested.
1 = for receiver mailboxes:
if TRS bit is set, a remote frame is transmitted and the corresponding

data frame will be received in the same mailbox.
1 = for transmit mailboxes:

if TRS bit is set, a remote frame is transmitted but the corresponding
data frame has to be received in another mailbox.
MCFO0[15:0] = address 0x00 6102
MCFO[31:16] = address 0x00 6103

DSP28 - Controller Area Network

Mailbox Memory

Message Data Field Low - CANMDL
CAN Mailbox Memory

0x00 6100 - 0x00 61FF

Message Data Low (MDL) Register with DBO = (0 Mailbox n

31 24 23 16 15 8 7 0

Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

Message Data Low (MDL) Register with DBO = 1 Mailbox n

31 24 23 16 15 8 7 0

Data Byte 3 Data Byte 2 Data Byte 1 Data Byte 0

MDLO[15:0] = address 0x00 6104
MDLO[31:16] = address 0x00 6105

9-62
Message Data Field High - CANMDH
CAN Mailbox Memory
0x00 6100 - 0x00 61FF
Message Data High (MDH) Register with DBO = 0 Mailbox n
31 24 23 16 15 8 7 0
Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7
Message Data High (MDH) Register with DBO = 1 Mailbox n
31 24 23 16 15 8 7 0
Data Byte 7 Data Byte 6 Data Byte 5 Data Byte 4
MDLO[15:0] = address 0x00 6106
MDLO[31:16] = address 0x00 6107
9-63

9-38 DSP28 - Controller Area Network

Lab Exercise 9

Lab Exercise 9

CAN Example : transmit a frame

¢ Lab 9: Transmit a CAN message
+ CAN baud rate : 100 KBPS (CAN low speed)
+ Transmit a one byte message every second
+ Message Identifier 0x 1000 0000 (extended frame)
+ Use Mailbox #5 as transmit mailbox

+ Message content: status of the input switches (
GPIO B15-B8)

+ CAN transceiver SN 65 HVD 230 (Zwickau Adapter
Board) :

+ Set jumper JP5 and JP6 to 1-2

+ Set jumper JP4 to 2-3 (enables on board line
terminator of 120 Ohm)

+ DB9 (male) to connect the Adapter Board to CAN
+ Pin2:CAN_L ; Pin7:CAN_H; Pin3:GND

Preface

After this extensive description of all CAN registers of the C28x, it is time to carry out an
exercise. Again, it is a good idea to start with some simple experiments to get our hard-
ware to work. Later, we can try to refine the projects by setting up enhanced operation
modes such as “Remote Transmission Request”, “Auto Answer Mode”, “Pipelined Mail-
boxes” or “Wakeup Mode”. We will also refrain from using the powerful error recogni-
tion and error management, which of course would be an essential part of a real project.
To keep it simple, we will also use a polling method instead of an interrupt driven com-
munication between the core of the DSP and the CAN mailbox server. Once you have a
working example, it is much simpler to improve the code in this project by adding more
enhanced operating modes to it.

The CAN requires a transceiver circuit between the digital signals of the C28x and the bus
lines to adjust the physical voltages. The Zwickau Adapter Board is equipped with two
different types of CAN transceivers, a Texas Instruments SN6SHVD230 for high speed
ISO 11898 applications and a Phillips TIA1054, quite often used in the CAN for body
electronics of a car. With the help of two jumpers (JP5, JP6), we can select the transceiver
in use. For Lab 9 we will use the SN65HVD230.

The physical CAN lines for ISO 11898 require a correct line termination at the ends of the
transmission lines by 120 Ohm terminator resistors. If the C28x is placed at one of the end
positions in your CAN network, you can use the on board 120 Ohm terminator by setting
jumper JP4 to position 2-3. If the physical structure of the CAN in your laboratory does

DSP28 - Controller Area Network 9-39

Lab Exercise 9

not require the C28x to terminate the net, set JP4 to 1-2. Ask your teacher which set up is
the correct one.

To test your code, you will need a partner team with a second C28x doing Lab 10. This
lab is an experiment to receive a CAN message and display its data at GPIO B7-B0 (8
LED’s on the Zwickau Adapter Board). If your laboratory does not provide any CAN in-
frastructure, it is quite simple to connect the two boards. Use two female DB9 connectors,
a twisted pair cable to connect pins 2-2 (CAN L), 7-7 (CAN_H) and eventually 3-3
(GND) and plug them into the DB9 connectors of the Zwickau Adapter Board.

Before you start the hard wiring, ask your teacher or a laboratory
technician what exactly you are supposed to do to connect the
boards!

Objective

The objective of Lab 9 is to transmit a one byte data frame every second via CAN.

The actual data byte should be taken from input lines GPIO-B15 to BS. In case of the
Zwickau Adapter Board, these 8 lines are connected to 8 digital input switches.

The baud rate for the CAN should be set to 100 kbps.

The exercise should use extended identifier 0x1000 0000 for the transmit message.
You can also use any other number as identifier, but please make sure that your part-
ner team (Lab 10) knows about your change. If your classroom uses several eZdsp’s
at the same time, it could be an option to set-up pairs of teams sharing the CAN by
using different identifiers. It is also possible that due to the structure of the labora-
tory set-up at your university, not all identifier combinations might be available to
you. You surely don’t want to start the ignition of a motor control unit that is also
connected to the CAN for some other experiments. Before you use any other ID’s =»
ask your teacher!

Use Mailbox #5 as your transmit mailbox

Once you have started a CAN transmission wait for completion by polling the status
bit. Doing so we can refrain from using CAN interrupts for this first CAN exercise.

Use CPU core timer 0 to generate the one second interval

Procedure

Open Files, Create Project File

1. Create a new project, called Lab9.pjt in E:\C281x\Labs.

DSP28 - Controller Area Network

Lab Exercise 9

2. A good point to start with is the source code of Lab4, which produces a hardware
based time period using CPU core timer 0. Open the file Lab4.c from
E:\C281x\Labs\Lab4 and save it as Lab9.c in E:\C281x\Labs\Lab9.

3. Add the source code file to your project:
° Lab9.c

4. From C:\tides\c28\dsp281x\W100\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_common\source add:
. DSP281x_PieCtrl.c
e DSP281x_PieVect.c
. DSP281x_Defaultlsr.c
e DSP281x_CpuTimers.c
From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812_EzDSP_RAM_Ink.cmd
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options
5. Setup the search path to include the peripheral register header files. Click:
Project 2> Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-i) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

DSP28 - Controller Area Network 9-41

Lab Exercise 9

Close the Build Options Menu by Clicking <OK>.

Modify Source Code
7. Before we can start editing our own code we have to modify a portion of the Texas
Instruments Header file “DSP281x_ECan.h”, Version 1.0. This file has a bug
inside the structures “CANMDL BYTES” and “CANMDH _BYTES”. The order of
bytes is not correct.
Search and edit struct CANMDL BYTES and CANMDH_BYTES:
struct CANMDL_BYTES { // bits description
Uint16 BYTE3:8; //31:24
Uint16 BYTE2:8; //23:16
Uint16 BYTE1:8; //15:8
Uint16 BYTEO0:8; //7:0
b
struct CANMDH_BYTES { /[bits description
Uint16 BYTE7:8; //63:56
Uint16 BYTEG6:8; //55:48
Uint16 BYTES:8; //47:40

Uint16 BYTE4:8; //39:32

|5

8. Open Lab9.c to edit. First, we have to adjust the while(1) loop of main to perform the
next CAN transmission every 1 second. Recall that we initialized the CPU core timer
0 to interrupt every 50ms and to increment variable “CpuTimer0.InterruptCount”
with every interrupt service. To generate a pause period of 1 second, we just have to
wait until “CpuTimer0.InterruptCount” has reached 20. BUT, while we wait, we have
to deal with the watchdog! One second without any watchdog service will be far too
long; the watchdog will trigger a reset! Modify the code accordingly!

9-42 DSP28 - Controller Area Network

Lab Exercise 9

Build, Load and Run

9. Before we continue to modify our source code, let us try to compile the project and
run a test. If everything goes as expected, the DSP should perform the LED Knight-
Rider from Lab4, now with a pause interval of one second between the steps.

Click the “Rebuild All” button or perform:

Project > Build

File > Load Program
Debug > Reset CPU
Debug =» Restart
Debug - Go main
Debug 2 Run(F5)

Modify Source Code Cont.

10. Congratulations! Now the tougher part is waiting for you. You will have to add code
to initialize the CAN module. Let’s do it again using a step-by-step approach.

First, delete the variables “i" and “LED[8]” of main. Next, add a new structure
“ECanaShadow” as a local variable in main:

struct ECAN_REGS ECanaShadow;

This structure will be used as a local copy of the original CAN registers. A
manipulation of individual bits is done inside the copy. At the end of the access, the
whole copy is reloaded into the original CAN structures. This operation is necessary
because of the inner structure of the CAN unit; some registers are only accessible by
32-bit accesses and by copying the whole structure, we make sure to generate 32 bit
accesses only.

11. In function “InitSystem()” enable the clock unit for the CAN module.

12. Next, inside function “Gpio_select() enable the peripheral function of CANTxA and
CANRXA:

GpioMuxRegs.GPFMUX.bit. CANTXA_GPIOF6 = 1;
GpioMuxRegs.GPFMUX.bit. CANRXA_GPIOF7 = 1;

Add the CAN initialization code

13. Add a new function “InitCan()” at the end of your source code to initialize the CAN
module. Inside “InitCan()”” add the following steps:

e In Register “ECanaRegs.CANTIOC” and “ECanaRegs.CANRIOC” configure
the two pins “TXFUNC” and “RXFUNC”for CAN.

DSP28 - Controller Area Network 9-43

Lab Exercise 9

Enable the HECC mode of the CAN module (Register “ECanaRegs. CANMC”).

To set-up the baud rate for the CAN transmission, we need to get access to the
bit timing registers. This access is requested by setting bit “CCR” of register
“ECanaRegs.CANMC to 1.

Before we can continue with the initialisation, we have to wait until the CAN
module has granted this request. In this case the flag “CCE” of register
“ECanaRegs.CANES” will be set to 1 by the CAN module. Install a wait
construct into your code.

Now we are allowed to set-up the bit timing parameters “BRP”, “TSEG1” and
“TSEG2” of register “ECanaRegs.CANBTC”. Use the 100 kbps set-up from the
following table:

CAN Bit-Timing Examples
¢ Bit Configuration for SYSCLK = 150 MHz
¢ Sample Point at 80% of Bit Time :

CAN- BRP TSEG1 TSEG2

Baudrate

1 MBPS 9 10 2
500 KBPS 19 10 2
250 KBPS 39 10 2
125 KBPS 79 10 2
100 KBPS 99 10 2

50 KBPS 199 10 2

¢ Example 50 KBPS:

TQ=(199+1)/150 MHz = 1.334 ns
tsegl =1.334 ns (10 + 1) =14.674 ns = tean =20.010 ns
tseg2 =1.334 ns (2 + 1) =4.002 ns

After the access to register “ECanaRegs.CANBTC”, we have to re-enable the
CAN modules access to this register. This is done by clearing bit “Change
Configuration Request (CCR)” of register “ECanaRegs. CANMC”. Again we
have to apply a wait loop until this command is acknowledged by the CAN
module (Flag “CCE” of register “ECanaRegs.CANES” will be cleared by the
CAN module as acknowledgement).

Finally, we have to disable all mailboxes to exclude them from data
communication and to allow write accesses into the message identifier registers
of the mailbox of our choice. To disable all mailboxes we have to write a ‘0’
into all bit fields of register “ECanaRegs. CANME”.

DSP28 - Controller Area Network

Lab Exercise 9

14. In main, just before the CpuCoreTimerO is started, add the function call of
“InitCan()”.

15. At the beginning of your code, add a function prototype for “InitCan()”

Prepare Transmit Mailbox #5

16. In main, after the function call to “InitCan()”, add code to prepare the transmit
mailbox. In this exercise, we will use mailbox #5, an extended identifier of
0x10000000 and a data length code of 1. Add the following steps:

Write the identifier into register “EcanaMboxes. MBOX5.MSGID”.

To transmit with extended identifiers set bit “IDE” of register
“EcanaMboxes.MBOX5.MSGID” to 1.

Configure Mailbox #5 as a transmit mailbox. This is done by setting bit MD5 of
register “ECanaRegs.CANMD” to 0. Caution! Due to the internal structure of the
CAN-unit, we can’t execute single bit accesses to the original CAN registers. A
good principle is to copy the whole register into a shadow register, manipulate
the shadow and copy the modified 32 bit shadow back into its origin:

ECanaShadow.CANMBD.all = ECanaRegs.CANMBD.all;
ECanaShadow.CANMD.bit. MD5 = 0;
ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;

Enable Mailbox #5:
ECanaShadow.CANME.all = ECanaRegs.CANME.all;
ECanaShadow.CANME.bit ME5 = 1;
ECanaRegs.CANME.all = ECanaShadow.CANME.all;

Set-up the Data Length Code Field (DLC) in Message Control Register
“ECanaMboxes.MBOX5.MSGCTRL” to 1.

Add the Data Byte and Transmit

17. Now we are almost done. The only thing that’s missing is the periodical loading of
the data byte into the mailbox and the transmit request command. This must be done
inside the while(1)-loop of main. Locate the code where we wait until variable
“CpuTimer0.InterruptCount” has reached 20. Here add:

Load the current status of the 8 input switches at GPIO-Port B (Bits 15 to 8) into
register “ECanaMboxes.MBOX5.MDL.byte. BYTEO”

Request a transmission of mailbox #5. Init register “ECanaShadow.CANTRS”.
Set bit TRS5=1 and all other 31 bits to 0. Next, load the whole register into
“ECanaRegs.CANTRS”

DSP28 - Controller Area Network 9-45

Lab Exercise 9

e Wait until the CAN unit has acknowledged the transmit request. The flag
“ECanaRegs. CANTA.bit. TA5” will be set to 1 if your request has been
acknowledged.

e C(lear bit “ECanaRegs.CANTA.bit. TA5”. Again the access must be made as a 32
bit access:

ECanaShadow.CANTA.all = 0;
ECanaShadow.CANTA.bit.TA5 = 1;

ECanaRegs.CANTA.all = ECanaShadow.CANTA.all;

Build, Load and Run

18. Click the “Rebuild All” button or perform:

Project > Build

File > Load Program
Debug > Reset CPU
Debug =» Restart
Debug 2 Go main
Debug 2 Run(F5)

19. Providing you have found a partner team with another C28x connected to your
laboratory CAN system and waiting for a one-byte data frame with identifier
0x10000000 you can do a real network test. Modify the status of your input switches.
The current status should be transmitted every second via CAN.

If your teacher can provide a CAN analyser you should be able to trace your data
frames at the CAN. Your partner team should be able to receive your frames and use
the information to update their LED’s.

If you end up in a fight between the two teams about whose code might be wrong,
ask your teacher to provide a working receiver node. Recommendation for teachers:
Store a working receiver code version in the internal Flash of one node and start this
node out of flash memory.

END of LAB 9

9-46 DSP28 - Controller Area Network

Lab Exercise 10

Lab Exercise 10

CAN Example : receive a frame

¢ Lab 10: Receive a CAN message
+ CAN baud rate : 100 KBPS (can low speed)

+ Receive a one byte message and show it on GPIO-
Port B7...B0 (8 LED’s)

+ Message Identifier 0x 1000 0000 (extended frame)
+ Use Mailbox #1 as receive mailbox

+ CAN Transceiver SN 65 HVD 230 (Zwickau
Adapter Board) :

+ Set jumper JP5 and JP6 to 1-2

+ Set jumper JP4 to 2-3 (enables on board line
terminator of 120 Ohm)

+ DB9 (male) to connect the Adapter Board to CAN
« Pin2:CAN_L ; Pin7:CAN_H; Pin3:GND

Preface

This laboratory experiment is the second part of a CAN-Lab. Again we have to set up the
physical CAN-layer according to the layout of your laboratory.

The CAN requires a transceiver circuit between the digital signals of the C28x and the bus
lines to adjust the physical voltages. The Zwickau Adapter Board is equipped with two
different types of CAN transceivers, a Texas Instruments SN6SHVD230 for high speed
ISO 11898 applications and a Phillips TIA1054, quite often used in the CAN for body
electronics of a car. With the help of two jumpers (JP5, JP6), you can select the trans-
ceiver in use. For Lab 10 we will use the SN65HVD230.

The physical CAN lines for ISO 11898 require a correct line termination at the ends of the
transmission lines by 120 Ohm terminator resistors. If the C28x is placed at one of the end
positions in your CAN network, you can use the on-board terminator of 120 Ohms by set-
ting jumper JP4 to position 2-3. If the physical structure of the CAN in your laboratory
does not require the C28x to terminate the net, set JP4 to 1-2. Ask your teacher which set-
up is the correct one.

To test your code you will need a partner team with a second C28x doing Lab 9, e.g. send-
ing a one byte message with identifier 0x10 000 000 every second.

Before you start the hard wiring, ask your teacher or a laboratory
technician what exactly you are supposed to do to connect the
boards!

DSP28 - Controller Area Network 9-47

Lab Exercise 10

Objective

The objective of Lab 10 is to receive a one byte data frame every time it is transmit-
ted via CAN, and update the status of the 8 output lines GPIO-B7...B0 (8 LED’s)
with the data information..

The baud rate for the CAN should be set to 100 KBPS.

The exercise should use extended identifier 0x1000 0000 for the receive filter of
mailbox 1. You can also use any other number as identifier, but please make sure that
your partner team (Lab 9) knows about your change. If you classroom uses several
eZdsp’s at the same time, it could be an option to set up pairs of teams sharing the
CAN by using different identifiers. It is also possible, that due to the structure of the
laboratory set-up of your university, not all identifier combinations might be avail-
able to you. You surely don’t want to start the ignition of a motor control unit that is
also connected to the CAN for some other experiments. Before you use any other
ID’s = ask your teacher!

Use Mailbox #1 as your receiver mailbox

Once you have initialized the CAN module wait for a reception of mailbox #1 by
polling the status bit. Doing so we can refrain from using CAN interrupts for this first
CAN exercise.

Procedure

Open Files, Create Project File

1.

2.

Create a new project, called LablOp]t in E:\C281x\Labs.

A good point to start with is the source code of Lab4, which produces a hardware
based time period using CPU core timer 0. Open the file Lab4.c from
E:\C281x\Labs\Lab4 and save it as Lab10.c in E:\C281x\Labs\Lab10.

Add the source code file to your project:

e Lab10.c
From C:\tides\c28\dsp28 1x\vI00\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

o F2812_EzDSP_RAM_Ink.cmd

DSP28 - Controller Area Network

Lab Exercise 10

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project > Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Before we can start editing our own code we have to modify a portion of the Texas
Instruments Header file “DSP281x_ECan.h”, Version 1.0. This file has a bug
inside the structures “CANMDL BYTES” and “CANMDH_BYTES”. The order of
bytes is not correct.

Search and edit struct CANMDL BYTES and CANMDH_BYTES:
struct CANMDL_BYTES { // bits description

Uint16 BYTE3:8; //31:24

Uint16 BYTE2:8; //23:16

Uint16 BYTE1:8; //15:8

Uint16 BYTEO0:8; //7:0

b
struct CANMDH_BYTES { // bits description

Uint16 BYTE7:8; //63:56

Uint16 BYTEG6:8; //55:48

DSP28 - Controller Area Network 9-49

Lab Exercise 10

Uint16 BYTES:8; //47:40

Uint16 BYTE4:8; //39:32

b

Open Lab10.c to edit.

Remove the function prototype and the definition of function “cpu_timer0_isr().”
We do not use the CPU core timer in this lab exercise.

In “main()”, remove the local variables “i” and “LED[8]”.

Between the start of “main” and the “while(1)-loop of “main()”, remove all function
calls apart from “InitSystem()” and “Gpio_select()”.

Inside the while(1)-loop remove all old lines, just keep the service instructions for the
watchdog:

EALLOW;
SysCtrIRegs.WDKEY = 0x55;
SysCtriIRegs.WDKEY = 0x55;
EDIS;

Build, Load and Run

9.

Before we continue to modify our source code lets try to compile the project in this
stage to find any syntax errors.

Click the “Rebuild All” button or perform:

Project > Build

File > Load Program
Debug > Reset CPU
Debug = Restart
Debug - Go main
Debug 2 Run(F5)

If everything went like expected you should end up with 0 errors, 0 warnings and 0
remarks.

Modify Source Code Cont.

10. Congratulations! Now let’s install the CAN — receiver part.

First, add a new structure “ECanaShadow” as a local variable in main:

struct ECAN_REGS ECanaShadow;

DSP28 - Controller Area Network

Lab Exercise 10

This structure will be used as a local copy of the original CAN registers. A
manipulation of individual bits is done inside the copy. At the end of the access the
whole copy is reloaded into the original CAN structures. This principle of operation
is necessary because of the inner structure of the CAN unit; some registers are only
accessible by 32-bit accesses and by copying the whole structure, we make sure to
generate 32-bit accesses only.

11. In function “InitSystem()” enable the clock unit for the CAN module.

12. Next, inside function “Gpio_select()”, enable the peripheral function of CANTXA
and CANRxA:

GpioMuxRegs.GPFMUX.bit. CANTXA_GPIOF6 = 1;
GpioMuxRegs.GPFMUX.bit. CANRXA_GPIOF7 = 1;

Add the CAN initialization code

13. Add a new function “InitCan()” at the end of your source code to initialize the CAN
module. Inside “InitCan()”, add the following steps:

In Register “ECanaRegs. CANTIOC” and “ECanaRegs.CANRIOC” configure
the two pins “TXFUNC” and “RXFUNC”for CAN.

Enable the HECC mode of the CAN module (Register “ECanaRegs. CANMC”).

To set-up the baud rate for the CAN transmission we need to get access to the bit
timing registers. This access is requested by setting bit “CCR” of register
“ECanaRegs. CANMC to 1.

Before we can continue with the initialization we have to wait until the CAN
module has granted this request. In this case, the flag “CCE” of register
“ECanaRegs.CANES” will be set to 1 by the CAN module. Install a wait
construct into your code.

Now we are allowed to set-up the bit timing parameters “BRP”, “TSEG1” and
“TSEG2” of register “ECanaRegs. CANBTC”. Use the 100 kbps set-up from the
following table:

DSP28 - Controller Area Network 9-51

Lab Exercise 10

CAN Bit-Timing Examples
¢ Bit Configuration for SYSCLK = 150 MHz
¢ Sample Point at 80% of Bit Time :

CAN- BRP TSEG1 TSEG2

Baudrate

1 MBPS 9 10 2
500 KBPS 19 10 2
250 KBPS 39 10 2
125 KBPS 79 10 2
100 KBPS 929 10 2

50 KBPS 199 10 2

¢ Example 50 KBPS:

TQ=(199+1)/150 MHz = 1.334 ns
tsegl =1.334 ns (10 + 1) =14.674 ns > tean = 20.010 ns
tseg2 =1.334 ns (2 +1) =4.002 ns

After the access to register “ECanaRegs. CANBTC” we have to re-enable the
CAN modules access to this register. This is done by clearing bit “Change
Configuration Request (CCR)” of register “ECanaRegs. CANMC”. Again, we
have to apply a wait loop until this command is acknowledged by the CAN
module (Flag “CCE” of register “ECanaRegs.CANES” will be cleared by the
CAN module as acknowledgement).

Finally, we have to disable all mailboxes to exclude them from data
communication and to allow write accesses into the message identifier registers
of the mailbox of our choice. To disable all mailboxes we have to write a ‘0’
into all bit fields of register “ECanaRegs. CANME”.

14. In main, just before we enter the while(1)-loop, add the function call to “InitCan()”.

15. At the beginning of your code, add a function prototype for “InitCan()”

Prepare Receiver Mailbox #1

16. In main, after the function call of “InitCan()” add code to prepare the receiver
mailbox. In this exercise, we will use mailbox #1, an extended identifier of
0x10000000 and a data length code of 1. Add the following steps:

Write the identifier into register “EcanaMboxes. MBOX1.MSGID”.

To transmit with extended identifiers set bit “IDE” of register
“EcanaMboxes.MBOX1.MSGID” to 1.

Configure Mailbox #1 as a receive mailbox. This is done by setting bit MD1 of
register “ECanaRegs.CANMD” to 1. Caution! Due to the internal structure of the
CAN-unit, we can’t execute single bit accesses to the original CAN registers. A

DSP28 - Controller Area Network

Lab Exercise 10

good principle is to copy the whole register into a shadow register, manipulate
the shadow and copy the modified 32 bit shadow back into its origin:

ECanaShadow.CANMD.all = ECanaRegs.CANMD.all;
ECanaShadow.CANMD.bit. MD1 = 1;
ECanaRegs.CANMD.all = ECanaShadow.CANMD.all;

¢ Enable Mailbox #1:
ECanaShadow.CANME.all = ECanaRegs.CANME.all;
ECanaShadow.CANME.bit ME1 =1;
ECanaRegs.CANME.all = ECanaShadow.CANME.all;

Add a polling loop for a message in mailbox 1

17. Now we are almost done. The only thing that’s missing is the final modification of
the while(1)-loop of main. All we have to add is a polling loop to wait for a received
message in mailbox #1. The register “ECanaRegs. CANRMP” — Bit field “RMP1”
will be set to 1 if a valid message has been received. All we have to do is to wait for
this event to happen in a sort of “do-while” loop.

NOTE1: It is highly recommended to copy ECanaRegs.CANRMP into the local
variable “ECanaShadow.CANRMP” before any logical test of bit RMP1 is made.

NOTE2: Do not forget to include the watchdog-service code lines into your wait
construct!

18. If Bit RMP1 was set to 1 by the CAN — Mailbox we can take the data byte 0 out of
the mailbox and load it onto the GPIO-B7...B0 (8 LED’)s:

GpioDataRegs.GPBDAT.all = ECanaMboxes.MBOX1.MDL.byte.BYTEOQ;
19. Finally, we have to reset bit RMP1. This is done by writing a ‘1’ into it:
ECanaShadow.CANRMP.bit. RMP1 = 1;

ECanaRegs.CANRMP.all = ECanaShadow.CANRMP.all;

Build, Load and Run again

20. Click the “Rebuild All” button or perform:

Project > Build

File > Load Program
Debug > Reset CPU
Debug 2 Restart
Debug 2 Go main
Debug = Run(F5)

DSP28 - Controller Area Network 9-53

Lab Exercise 10

21. Providing you have found a partner team with another C28x connected to your
laboratory CAN system and transmitting a one-byte data frame with identifier
0x10000000 you can do a real network test. Ask your partner team to modify their
input switches and transmit it every second via CAN.

If your teacher can provide a CAN analyzer you can also generate a transmit message
out of this CAN analyzer.

If you end up in a fight between the two teams about whose code might be wrong,
ask your teacher to provide a working transmitter node.

Recommendation for teachers: Store a working transmitter code version in the
internal Flash of one node and start this node out of flash memory.

END of LAB 10

DSP28 - Controller Area Network

What'’s next?

What’s next?

Congratulations! You’ve successfully finished your first two lab exercises using Controller Area
Network. As mentioned earlier in this chapter these two labs were chosen as a sort of “getting
started” with CAN. To learn more about CAN it is necessary to book additional classes at your
university.

To experiment a little bit more with CAN, choose one of the following optional exercises:

Lab 10A :

Combine Lab9 (CAN — Transmit) and Lab10 (CAN-Receive) into a bi-directional solution. The
task for your node is to transmit the status of the input switches (B15...B8) to CAN every second
(or optional: every time the status has changed) with a one-byte frame and identifier 0x10 000
000. Simultaneously, your node is requested to receive CAN messages with identifier Ox11 000
000. Byte 1 of the received frame should be displayed at the GPIO-Port pins B7...B0, which in
case of the Zwickau Adapter board are connected to 8 LED’s.

Lab 10B:

Try to improve Lab9 and Lab10A by using the C28x Interrupt System for the receiver part of the
exercises. Instead of polling the “CANRMP-Bit field” to wait for an incoming message your task
is to use a mailbox interrupt request to read out the mailbox when necessary.

Lab 10C:

We did not consider any possible error situations on the CAN side so far. That’s not a good
solution for a practical project. Try to improve your previous CAN experiments by including the
service of potential CAN error situations. Recall, the CAN error status register flags all possible
error situations. A good solution would be to allow CAN error interrupts to request their
individual service routines in case of a CAN failure. What should be done in the case of an error
request? Answer: Try to use the PWM — loudspeaker at output line TIPWM to generate a sound.
By using different frequencies, you can signal the type of failure.

Another option could be to monitor the status of the two CAN — error counters and show their
current values with the help of the 8 LED’s at GPIO-B7...B0.

If your laboratory is equipped with a CAN failure generator like “CANstress” (Vector Informatik
GmbH, Germany) you can generate reproducible disturbance of the physical layer, you can
destroy certain messages and manipulate certain bit fields with bit resolution. Ask your laboratory
technician whether you are allowed to use this type of equipment to invoke CAN errors.

Lab 10D:

An enhanced experiment is to request a remote transmission from another CAN-node. An
operating mode, that is quite often used is the so-called “automatic answer mode”. A transmit
mailbox, that receives a remote transmission request (“RTR”) answers automatically by
transmitting a predefined frame. Try to establish this operating mode for the transmitter node

DSP28 - Controller Area Network 9-55

What'’s next?

(Lab9 or Lab10B). Wait for a RTR and send the current status of the input switches back to the
requesting node. The node that has requested the remote transmission should be initialized to wait
for the requested answer and display byte 1 of the received data frame at the 8 LED’s (GPIO
B7...B0).

There are a lot more options for RTR operations available. Again, look out for additional CAN
classes at your university!

9-56 DSP28 - Controller Area Network

C28x Flash Programming

Introduction

So far we have used the C28x internal volatile memory (HO — SARAM) to store the code of our
examples. Before we could execute the code we used Code Composer Studio to load it into HO-
SARAM (“File” = “Load Program”). This is fine for projects in a development and debug phase
with frequent changes to parts and components of the software. However, when it comes to
production versions with a standalone embedded control unit based on the C28x, we no longer
have the option to download our control code using Code Composer Studio. Imagine a control
unit for an automotive braking system, where you have to download the control code first when
you hit the brake pedal (“Do you really want to brake? ...”).

For standalone embedded control applications, we need to store our control code in NON-Volatile
memory. This way it will be available immediately after power-up of the system. The question is,
what type of non-volatile memory is available? There are several physically different memories
of this type: Read Only Memory (ROM), Electrically Programmable Read Only Memory
(EPROM), Electrically Programmable and Erasable Read Only Memory (EEPROM) and Flash-
Memory. In case of the F2812, we can add any of the memory to the control unit using the
external interface (XINTF).

The F2812 is also equipped with an internal Flash memory area of 128Kx16. This is quite a large
amount of memory and more than sufficient for our lab exercises!

Before we can go to modify one of our existing lab solutions to start out of Flash we have to go
through a short explanation of how to use this memory. This module also covers the boot
sequence of the C28x - what happens when we power on the C28x?

Chapter 10 also covers the password feature of the C28x code security module. This module is
used to embed dedicated portions of the C28x memory in a secure section with a 128bit-
password. If the user does not know the correct combination that was programmed into the
password section any access to the secured areas will be denied! This is a security measure to
prevent reverse-engineering.

At the end of this lesson we will do a lab exercise to load one of our existing solutions into the
internal Flash memory.

CAUTION: Please do not upset your teacher by programming the password area! Be careful, if
you program the password by accident the device will be locked for ever! If you decide to make
your mark in your university by locking the device with your own password, be sure to have
already passed all exams.

DSP28 - Flash Programming 10-1

Module Topics

Module Topics

C28x Flash Programming 10-1
THIPOAUCTION ..o ettt ettt ettt et et e e bt ettt e e bt et e et e sbeenaeeneas 10-1
MOAULE TOPICS ...t ettt et et e et e et e e st e eab e e bbeeabeeeabeeeaeenaseenseeenseenasean 10-2
C28X SIAPI-UD SCGUEIICES ...ttt ettt et e et e et e e sbeeeseeessaestbeenbeesaaeenseenes 10-3
C28x FLASI MEMOFY SECIOFS ..ottt ettt et e bt e et e e e esaeesbeensaesaeaenseanes 10-4
Flash Speed INILIAIIZATIONc.cccoeueeueeieeiieieeie ettt ettt ettt ste ettt esbe s baeseesaesseessesseensesneas 10-5
Flash CONfiQUIraAtion REZISIETSc.cccueeeiieeeiieieeeeieeieete ettt ettt e s te e steebeetaesseesaesseessesssensesneas 10-7
Flash Programming PrOCEAUIEc.ccvecveiiiciiiieieeiesie ettt ete et sve s sasesseessesssenseeneas 10-8
COS FLASI PIUG-TT ...ttt ettt ettt ettt et ettt e e st ensenaeenaeneeenes 10-10
COdE SECUFTLY MOGE ...ttt ettt et sttt e bt e e eaeentesaeenseeneenes 10-11
LAD EXCFCISE I 1.ttt ettt ettt ettt ettt 10-15

ODBJECLIVE ..eeutiiteteeiteet ettt sttt ettt ea e b e st s bt et e h et et s bt et e ebb e bt e st e s bt et e sbtenbe e st enbesaeenbesbeentesaee 10-15
PLOCEAUIEceieiieeie ettt sttt ettt et e e ettt be et eeenne e 10-16
Open Files, Create Project FIle.......cooiiiiiiiiiieec et 10-16
Project BUild OPHIONS ...cc.ecviiiieiieieiieeiesieetesiteteete e etesteesesteesaessaesseesaesseessesseessesssessesssesesssensenses 10-17
Add Additional SoUrce Code FIlesccccoiiiririiininiienceerereeteeeeteeetet et 10-17
Modify Source Code to Speed up Flash Mmemorycoceevviiiiniiiiiiiniiinee e 10-18
BUILA PIOJECL ...ttt ettt ettt st e sttt e saeesbe e st enbessbe bt ense s st esesneensesseensennns 10-19
Verify Linker Results — The map - File.......ccooiiiiiiiiiiiiiiiieeceeeeec e 10-20
Use CCS Flash Program TOOL.......ccueciirieriiiieiieieseeieseeie sttt e et esaesaaeaesveensessnennas 10-21
Shut dOWn CCS & REStart €ZASP ..ecvveveeeieriieiiiiieieeieeeeie ettt ettt snsesbeeneas 10-22

10-2

DSP28 - Flash Programming

C28x Start-up Sequences

C28x Start-up Sequences

There are 6 different options to start the C28x out of power-on. The options are hard-coded by 4
GPIO-Inputs of Port F (F4, F12, F3 and F2). The 4 pins are sampled during power-on. Depending
on the status one of the following options is selected:

F4 F12 F3 F2

1 X X X : FLASH address 0x3F 7FF6 (see slide 10-2)
0 0 1 0 : HO — SARAM address 0x3F 8000

0 0 0 1 : OTP address 0x3D 7800

0 1 X X : boot load from SPI

0 0 1 1 : boot load from SCI-A

0 0 0 0 : boot load from parallel GPIO — Port B

To switch from HO-SARAM mode to Flash mode we have to change F4 from 0 to 1. At the eZdsp
this is done using jumper JP7 (1-2 = Flash; 2-3 = HO-SARAM). Please note that the C28x must
also run in Microcomputer-Mode (JP1 = 2-3). The following slide shows the sequence that takes
place if we start from Flash.

BIOS Startup Sequence from Flash Memory

,,,,,,,,, C — start routine
0x3D 8000 c_int00| Boot.asm
x FLASH (128K) -
“rts2800_ml.lib”
— OX3F7FF6 [LB .
- C.int00 —— °
Passwords (8) C5>
0x3F 8000 | 10 SARAM @K |\
\,
Cs) AN ‘user” code sections
AN main ()
0x3F FO00 | Boot ROM (4K) N {
Boot Code AN
0x3F FC00 N\ S
{(SCAN GPIO} |y eturn;
\
BROM vector (32) \\

0x3F FFCO 0x3F FC00 ——

RESET

DSP28 - Flash Programming 10-3

C28x Flash Memory Sectors

RESET-address is always 0x3F FFCO. This is part of TI’s internal BOOT-ROM.

BOOT-ROM executes a jump to address Ox3F FCO00 (Boot Code). Here basic
initialization tasks are performed and the type of the boot sequence is selected.

If GPIO-F4 = =1, a jump to address 0x3F 7FF6 is performed. This is the Flash-Entry-
Point. It is only a 2 word memory space and this space is not filled yet. One of our tasks
to use the Flash is to add a jump instruction into this two-word-space. If we use a project
based on C language we have to jump to the C-start-up function “c_int00”, which is part
of the runtime library “rts2800 ml.lib”.

CAUTION: Do never exceed the two word memory space for this step. Addresses
0x3F 7FF8 to 0x3F 7FFF are reserved for the password area!!

Function “c_int00” performs initialization routines for the C-environment and global
variables. For this module we will have to place this function into a specific Flash
section.

At the very end “c_int00” branches to a function called “main”, which also must be
loaded into a flash section.

C28x Flash Memory Sectors

TMS320F2812 Flash Memory Map

Address Range
0x3D 8000 — 0x3D 9FFF

0x3D A000 - 0x3D BFFF
0x3D C000 - 0x3D FFFF
0x3E 0000 - 0x3E 3FFF
0x3E 4000 - 0x3E 7FFF
0x3E 8000 — 0x3E BFFF
0x3E C000 — 0x3E FFFF
0x3F 0000 — 0x3F 3FFF
0x3F 4000 — 0x3F 5FFF

Data & Program Space
Sector J; 8K x 16

Sector | ; 8K x 16

Sector H: 16K x 16
Sector G ; 16K x 16
Sector F ; 16K x 16
Sector E ; 16K x 16
Sector D; 16K x 16
Sector C ; 16K x 16
Sector B ; 8K x16

0x3F 6000 — 0x3F 7F7F

Sector A ; (8K-128) x16

0x3F 7F80 — 0x3F 7FF5

Program to 0x0000 when using

Code Security Mode !

0x3F 7FF6 — 0x3F 7FF7

Flash Entry Point ; 2 x 16

0x3F 7FF8 — 0x3F 7FFF

Security Password ; 8 x 16

The 128k x 16 Flash is divided into 10 portions called “sectors”. Each sector can be programmed
independently from the others. Please note that the highest 128 addresses of sector A (0x3F7F80
to 0x3F 7FFF) are not available for general purpose. Lab 11 will use sections A and D.

10 -4

DSP28 - Flash Programming

Flash Speed Initialization

Flash Speed Initialization

To derive the highest possible speed for the execution of our code we have to initialize the
number of wait states that is added when the Flash area is accessed. When we start the C28x out
of RESET the number of wait states defaults to 16. For our tiny lab exercises this is of no
significance, but when you think about real projects, where computing power is so important, it
would be a shame not to make best use of these wait states. So let’s assume that our lab examples
are ‘real’ projects and that we want to use the maximum frequency for the Flash. So why not
initialize the wait states to zero? According to the data-sheet of the C28x there is a limit for the
minimum number of wait states. For silicon revision C this limit is set to 5 for a 150MHz C28x.

Basic Flash Operation
¢ Flash is arranged in pages of 128 addresses

¢ Wait states are specified for consecutive accesses within a page,
and random accesses across pages

¢ OTP has random access only

¢ Must specify the number of SYSCLKOUT wait-states
¢ Reset defaults are maximum values !

¢ Flash configuration code must not run from Flash memory !

FBANKWAIT 15 12 11 8 7 4 3 0
@ 0x00 0A86 reserved PAGEWAIT reserved RANDWAIT
FOTPWAIT 15 4 3 0
@ 0x00 0A87 reserved OTPWAIT

*** Refer to the F281x datasheet for detailed numbers ***
For 150 MHz, PAGEWAIT = 5, RANDWAIT =5, OTPWAIT =8
For 135 MHz, PAGEWAIT = 4, RANDWAIT =4, OTPWAIT =8

There are two bit fields of register “FBANKWAIT” that are used to specify the number of wait
states — PAGEWAIT and RANDWAIT. Consecutive page accesses are done within an area of
128 addresses whereas a sequence of random accesses is performed in any order of addresses. So
how fast is the C28x running out of Flash or, in computer language: How many millions of
instructions (MIPS) is the C28x doing?

Answer:

The C28x executes one instruction (a 16 bit word) in 1 cycle. Adding the 5 wait states we end up
with

1 instruction / 6 cycles * 150MHz = 25 MHz.

DSP28 - Flash Programming 10-5

Flash Speed Initialization

For a one-cycle instruction machine like the C28x, the 25 MHz translate into 25MIPS. This is
pretty slow compared to the original system frequency of 150 MHz! Is this all we can expect
from Texas Instruments? No! The hardware solution is called “pipeline”, see next slide!

Instead of reading only one 16 bit instruction out of Flash code memory TI has implemented a 64
bit access — reading up to 4 instructions in 1+5 cycles. This leads to the final estimation for the

speed of internal Flash:

4 instructions / 6 cycles * 150 MHz = 100 MHz.

Using the Flash Pipeline the real Flash speed is 100 MIPS!

To use the Flash pipelining code fetch method we have to set bit “ENPIPE” to 1. By default after
RESET, this feature is disabled.

«<— 16—

Speeding Up Code Execution in Flash:

Flash Pipelining (for code fetch only)

16 or 32
k——— 64— gispatched
64 E’——. C28x Core
decoder unit
Aligned 2-level deep
64-bit fetch buffer
fetch
Flash Pipeline Enable
0 = disable (default)
1 = enable
FOPT @ 0x00 0A80
15 1 0
reserved ENPIPE

10-6

DSP28 - Flash Programming

Flash Configuration Registers

Flash Configuration Registers

There are some more registers to control the timing and operation modes of the C28x internal
Flash memory. For our lab exercise and most of the ‘real’ C28x applications it is sufficient to use
the default values after RESET.

Texas Instruments provides an initialization function for the internal Flash, called “InitFlash()”.
This function is part of the Peripheral Register Header Files, Version 1.00 that we already used in
our previous labs. The source code of this function is part of file “DSP281x_SysCtrl.c”. All we

have to do to use this function in our coming lab is to add this source code file to our project.

*

Other Flash Configuration Registers

Address | Name Description

0x00 0A80 | FOPT Flash option register

0x00 0A82 | FPWR Flash power modes registers
0x00 0A83 | FSTATUS Flash status register

0x00 0A84 | FSTDBYWAIT | Flash sleep to standby wait register
0x00 0A85 | FACTIVEWAIT | Flash standby to active wait register
0x00 0A86 | FBANKWAIT Flash read access wait state register
0x00 0A87 | FOTPWAIT OTP read access wait state register

FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made

FSTATUS: Various status bits (e.g. PWR mode)

FSTDBYWAIT: Specify number of cycles to wait during wake-up
from sleep to standby

FACTIVEWAIT: Specify number of cycles to wait during wake-up
from standby to active

Defaults for these registers are often sufficient — See “TMS320F28x DSP
System Control and Interrupts Reference Guide,” SPRUO078, for more informatio:170

-6

DSP28 - Flash Programming

10-7

Flash Programming Procedure

Flash Programming Procedure

The procedure to load a portion of code into the Flash is not as simple as loading a program into
the internal RAM. Recall that Flash is non-volatile memory. Flash is based on a floating gate
technology. To store a binary 1 or O this gate must load / unload electrons. Floating gate means
this is an isolated gate with no electrical connections. Two effects are used to force electrons into
this gate: ‘Hot electron injection’ or ‘electron tunnelling” done by a charge pump on board of the

C28x.

How do we get the code into the internal Flash?

The C28x itself will take care of the Flash programming procedure. Texas Instruments provides
the code to execute the sequence of actions. The Flash Utility code can be applied in two basic

options:
1. Code Composer Studio Plug-in Tool

= Tools = F28xx On Chip Flash Programmer

2. Download both the Flash Utility code and the Flash Data via one of the 3 boot load

options SCI-A, SPI or GPIO-B.

For our lab we will use the CCS-Tool.

Please note that the Flash Utility code must be executed from a SARAM portion of the C28x.

and writes it into the Flash

Flash Programming Basics
¢ The DSP CPU itself performs the flash programming

¢ The CPU executes Flash utility code from RAM that reads the Flash data

¢ We need to get the Flash utility code and the Flash data into RAM

F28x DSP
FLASH ¢ CPU
-——- ->| Emulator |— 2> JTAG |— ———————— > o
>|RSZ32|—-> scl |--~=l 3 .
------------ SPl |-->5 & -
> 2 § Loo
———————————— > GPIO i_ --7 a

10-8

DSP28 - Flash Programming

Flash Programming Procedure

The steps “Erase” and “Program” to program the Flash are mandatory; “Verify” is an option but
is highly recommended.

Flash Programming Basics

¢ Sequence of steps for Flash programming:

Algorithm Function
1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

¢ Minimum Erase size is a sector
¢ Minimum Program size is a bit!

2 ImR/([)rtant not to lose power during erase step: If
passwords hal({)pen to be all zeros, the SM will
be permanently locked!

¢ Chance of this ha%pemng is quite small! (Erase step is
performed sector by sector)

10-8

Flash Programming Ultilities

*

Code Composer Studio Plug-in (uses JTAG) *
Serial Flash loader from TI (uses SCI boot) *

¢ Gang Programmers (use GP10 boot)
+ BP Micro programmer

*

+ Data I/0 programmer

¢ Build your own custom utility
+ Use a different ROM bootloader method than SCI
+ Embed flash programming into your application
+ Flash API algorithms provided by TI

* Available from Tl web at www.ti.com

DSP28 - Flash Programming 10-9

CCS Flash Plug-In

CCS Flash Plug-In

The Code Composer Studio Flash Plug-in is called by:
=> Tools = F28xx On Chip Flash Programmer

and opens with the following window:

Code Composer Studio Flash Plug-I

On-Chip Flash Programmer |
r Clack Configuration r Erase Sector Selection =
I IV Sectord: [3FEO00-3F7FFF) IV Sector F: (3E4000-3E7FFF)
OSCCLE [Mhz 30.000
e ¥ SectorB: (3F40003FEFFF) ¥ Sector G: (3E0000-3E3FFF)
PLLCR Yalue: m - [V Sector C: [3FO000-3F3FFF) [V Sectar H: (3DC000-3DFFFF)

[¥ SectorD: [BECOO0-EFFFF) ¥ Sectorl: (IDA000-30BFFF)
SYSCLKOUT (MHzE [150.0000 | | (&5 oo f: [3EG0003EBFFF) [Sectord: (308000-3D3FFF)

i Code Security Passward i~ Operation
Key 7 (DAETY IW Please specify the COFF fils to Program./erify:
Key & (HAEEE IW IE'EZEX\LAES\Lah'I 5D ebughlab. out B[DWSE___I
ey 5 (ORAESE IW % Erase, Program, Verity € Load Riabd Only
Keyd (DWE4} [FRFF :: Fiase D _ s Freu.uency Test
Key3(0m4E3} [FFFF - Erogram, ety Register: | GFAMuy 2
Kep2(Owg2L [FFrFF 2 maanlny P [P =]
Fey 1 [0x4E1): W Verviny " Caloulate Checksums

Flash Randam Wait State: I15 %

Key 0[0=AEQ; [FFFF | i
Flash Page Wait State: |15 T oTE B
Uniock | Lok | TP Wait State: [a =]

Flash+0TP:
Program Password
Execute Operation I Help...
Flazh Programmer Settings...

=

10-10

First verify that the OSCCLK is set to 30MHz and the PLLCR to 10 which gives a SYSCLKOUT
frequency of 150MHz. This is equivalent to the physical set up of the eZdsp2812.

NEVER use the buttons “Program Password” or “LOCK”!

Leave all 8 entries for Key 0 to Key 7 filled with “FFFF”.

On the top of the right hand side, we can exclude some of the sectors from being erased.

The lower right side is the command window. First we have to specify the name of the projects
out-file. The Plug-In extracts all the information needed to program the Flash out of this COFF-
File.

Before you start the programming procedure it is highly recommended to inspect the linker map-
file (*.map) in the “Debug”-Subfolder. This file covers a statistical view about the usage of the

different Flash sections by your project. Verify that all sections are used as expected.

Start the programming sequence by clicking on “Execute Operation”.

10-10

DSP28 - Flash Programming

Code Security Mode

Code Security Mode

Before we go into our next lab let’s discuss the Code Security feature of the C28x. As mentioned
earlier in this module, dedicated areas of memory are password protected. This is valid for
memory L0, L1, OTP and Flash.

Code Security Module (CSM)

¢ Access to the following on-chip memory is
restricted:

0x00 80001 5 SARAM (4K)

0x003000| | 4 SARAM (4K)

0x00 A000 reserved
0x3D 7C00 reserved
0x3D 8000

FLASH (128K)

¢ Data reads and writes from restricted memory are
only allowed for code running from restricted
memory

& All other data read/write accesses are blocked:

JTAG emulator/debugger, ROM bootloader, code running in external
memory or unrestricted internal memory
10- 11

Once a password is applied, a data read or write operation from/to restricted memory locations is
only allowed from code in restricted memory. All other accesses, including accesses from code
running from external or unrestricted internal memories as well as JTAG access attempts are
denied.

As mentioned earlier the password is located at address space 0x3F 7FF8 to 0x3F 7FFF and
covers a 128-bit field. The 8 key registers (KeyO to Key7) are used to allow an access to a locked
device. All you need to do is to write the correct password sequence in Key 0 -7 (address space
0x00 0AEO — 0x00 0AE7).

The password area filled with OxFFFF in all 8 words is equivalent to an unsecured device.

The password area filled with 0x0000 in all 8 words locks the device FOREVER!

DSP28 - Flash Programming 10- 11

Code Security Mode

CSM Password
0x00 80001} & SARAM (4K)
0x003000|) 4 SARAM (4K)
0x00 A000 reserved
0x3D 7800 OTP (1K) CSM Password
0x3D 7C00 reserved Locations (PWL)
0x3D 8000 FLASH (128K) 0x3F 7FF8 - 0x3F 7FFF
128-Bit Password

¢ 128-bit user defined password is stored in Flash

¢ 128-bit Key Register used to lock and unlock the device

+ Mapped in memory space 0x00 0AEQ — 0x00 0AE7
+ Register “EALLOW?” protected

10-12

CSM Registers

Key Registers — accessible by user; EALLOW protected

Address | Name Reset Value Description

0x00 0AEO | KEYO O0xFFFF Low word of 128-bit Key register
0x00 0AE1| KEY1 O0xFFFF 2nd word of 128-bit Key register
0x00 0AE2| KEY2 O0xFFFF 3rd word of 128-bit Key register
0x00 0AE3 | KEY3 0xFFFF 4t word of 128-bit Key register
0x00 0AE4 | KEY4 0xFFFF 5t word of 128-bit Key register
0x00 0AES5 | KEY5 O0xFFFF 6th word of 128-bit Key register
0x00 0AE6 | KEY6 O0xFFFF 7t word of 128-bit Key register
0x00 0AE7 | KEY7 O0xFFFF High word of 128-bit Key register
0x00 OAEF| CSMSCR | 0xFFFF CSM status and control register
PWL in memory - reserved for passwords only

Address | Name Reset Value Description

0x3F 7FF8 | PWLO user defined Low word of 128-bit password
0x3F 7FF9 | PWLA1 user defined 2nd word of 128-bit password
0x3F 7FFA| PWL2 user defined 3rd word of 128-bit password
0x3F 7FFB| PWL3 user defined 4th word of 128-bit password
0x3F 7FFC| PWL4 user defined 5th word of 128-bit password
0x3F 7FFD| PWL5 user defined 6th word of 128-bit password
0x3F 7FFE| PWL6 user defined 7th word of 128-bit password
0x3F 7FFF | PWL7 user defined High word of 128-bit password

10-13

10-12

DSP28 - Flash Programming

Code Security Mode

Locking and Unlocking the CSM

¢ The CSM is locked at power-up and reset
¢ To unlock the CSM:

+ Perform a dummy read of each password in the
Flash

+ Write the correct passwords to the key registers
¢ New Flash Devices (PWL are all 0xFFFF):

+ When all passwords are 0xFFFF — only a read of
the PWL is required to bring the device into
unlocked mode

10-14

CSM Caveats

¢ Never program all the PWL’s as 0x0000
+ Doing so will permanently lock the CSM
¢ Flash addresses 0x3F7F80 to 0x3F7FFS5, inclusive,

must be programmed to 0x0000 to securely lock the
CSM

¢ Remember that code running in unsecured RAM
cannot access data in secured memory

+ Don’t link the stack to secured RAM if you have any
code that runs from unsecured RAM

¢ Do not embed the passwords in your code!
+ Generally, the CSM is unlocked only for debug
+ Code Composer Studio can do the unlocking

10-15

DSP28 - Flash Programming 10-13

Code Security Mode

CSM Password Match Flow

Device permanently locked

CPU access is limited —
device cannot be debugged
or reprogrammed

Start

Flash device
secure after
reset or runtime

Do dummy read of PWL
0x3F 7FF8 — 0x3F 7FFF|)

|

Write password to KEY re%isters
0x00 OAEOQ — 0x00 OAE7

(EALLOW) protected

Device unlocked

Us_er can access on-
chip secure memory

Correct Yes

password?

10-16

CSM C-Code Examples

Unlocking the CSM:

volatile int *PWL = &CsmPwl.PSWDO;

volatile int i, tmp;
for (1 = 0; 1i<8; i++

asm (” EALLOW”) ;

CsmRegs .KEY0 = PASSWORDO; //Write the passwords
CsmRegs.KEY1l = PASSWORDO; //to the Key registers
CsmRegs.KEY2 = PASSWORD2;
CsmRegs.KEY3 = PASSWORD3;
CsmRegs .KEY4 = PASSWORD4;
CsmRegs .KEY5 = PASSWORDS5;
CsmRegs .KEY6 = PASSWORDG6;
CsmRegs .KEY7 = PASSWORD7;

asm (” EDIS”);

) tmp = *PWL++;

//Pointer to PWL register file

//Dummy reads of PWL locations

//KEY regs are EALLOW protected

Locking the CSM:

asm (” EALLOW”) ;

CsmRegs .CSMSCR.bit.FORCESEC = 1;

asm (”EDIS”);

//CSMSCR reg is EALLOW protected
//Set FORCESEC bit

10-17

10 - 14

DSP28 - Flash Programming

Lab Exercise 11

Lab Exercise 11

Lab 11: Load an application into Flash

+ Use Solution for Lab4 to begin with
+ Modify the project to use internal Flash for code

+ Add “DSP281x_CodeStartBranch.asm” to branch
from Flash entry point (0x3F 7FF6) to C - library
function “_c_int00”

+ Add TI - code to set up the speed of Flash

+ Add a function to move the speed-up code from
Flash to SARAM Adjust Linker Command File

+ Use CCS plug-in tool to perform the Flash
download

+ Disconnect emulator, set eZdsp into MC-mode
(JP1) and re-power the board!

+ Code should be executed out of Flash
+ For details see procedure in textbook!

10-18

Objective

The objective of this laboratory exercise is to practice with the C28x internal Flash Memory. Let
us assume your task is to prepare one of your previous laboratory solutions to run as a stand alone
solution direct from Flash memory after power on of the C28x. You can select any of your
existing solutions but to keep it easier for your supervisor to assist you during the debug phase let
us take the ‘knight rider’ (Lab 4) as the starting point.

What do we have to modify?

In Lab 4 the code was loaded by CCS via the JTAG-Emulator into HO-SARAM after a successful
build operation. The linker command file “F2812 EzDSP RAM Ink.cmd” took care of the
correct connection of the code sections to physical memory addresses of HOSARAM. Obviously,
we will have to modify this part. Instead of editing the command file we will use another one
(“F2812.cmd”), also provided by TI’s header file package.

Furthermore we will have to fill in the Flash entry point address with a connection to the C
environment start function (“c_int00”). Out of RESET the Flash memory itself operates with the
maximum number of wait states — our code should reduce this wait states to gain the highest
possible speed for Flash operations. Unfortunately we can’t call this speed up function when it is
still located in Flash — we will have to copy this function temporarily into any code SARAM
before we can call it.

DSP28 - Flash Programming 10- 15

Lab Exercise 11

Finally we will use Code Composer Studio’s Flash Programming plug in tool to load our code
into Flash.

Please recall the explanations about the Code Security Module in this
lesson, be aware of the password feature all the time in this lab session

and do NOT program the password area!

A couple of things to take into account in this lab session, as usual let us use a procedure to

prepare the project.

Procedure

Open Files, Create Project File

1.

2.

Create a new project, called Labl1 l.pjt in E:\C281x\Labs.

Open the file Lab4.c from E:\C281x\Labs\Lab4 and save it as Labl1.c in

E:\C281x\Labs\Labl11.

Add the source code file to your project:

. Lab11.c
From C:\tides\c28\dsp281x\v100\DSP281x_headers\source add:

e DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_common\source add:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c
. DSP281x_Defaultlsr.c
e DSP281x_CpuTimers.c
From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:
e F2812_Headers_nonBIOS.cmd
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:
e F2812.cmd
From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

10-16

DSP28 - Flash Programming

Lab Exercise 11

Project Build Options
5. Setup the search path to include the peripheral register header files. Click:
Project - Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Add Additional Source Code Files

7. To add the machine code for the Flash entry point at address 0x3F 7FF6 we have to
add an assembly instruction “LB _c_int00” and to link this instruction exactly to the
given physical address. Instead of writing our own assembly code we can make use
of another of TI’s predefined functions (“code start”) which is part of the source
code file “DSP218x_CodeStartBranch.asm”.

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add:

e DSP281x_CodeStartBranch.asm

If you open the file “F2812.cmd” you will see that label “code start” is linked to
“BEGIN” which is defined at address 0x3F 7FF6 in code memory page 0.

8. The function to speed up the internal Flash (“InitFlash()”) is also available from TI as
part of the source code file “DSP281x_SysCtrl.c”.

From C:\tidcs\c28\dsp281x\v100\DSP281x_common\source add:

o DSP281x_SysCtrl.c

DSP28 - Flash Programming 10-17

Lab Exercise 11

Modify Source Code to Speed up Flash memory

9. Open Labll.c to edit.

In main, after the function call “InitSystem()” we have to add code to speed up the
Flash memory.

This will be done by function “InitFlash”. But, as already mentioned, this code must
run out of SARAM. When we finally run the program out of Flash and the C28x
reaches this line all code is still located in Flash. That means, before we can call
“InitFlash” the C28x has to copy it into SARAM. Standard ANSI-C provides a
memory copy function “memcpy(*dest,*source, number)” for this purpose.

What do we use for “dest”, “source” and “number”?

Again, the solution can be found in file “DSP281x_SysCtrl.c”. Open it and look at
the beginning of this file. You will find a “#pragma CODE_SECTION” — line that
defines a dedicated code section “ramfuncs” and connects the function “InitFlash()”
to it. Symbol “ramfuncs” is used in file “F2812.cmd” to connect it to physical
memory “FLASHD” as load-address and to memory “RAMLO0” as execution address.
The task of the linker command file “F2812.cmd” is it to provide the physical
addresses to the rest of the project. The symbols “LOAD_START”, “LOAD_END”
and “RUN_START” are used to define these addresses symbolically as
“ RamfuncsLoadStart”, “ RamfuncsLoadEnd” and “ RamfuncsRunStart”.

Add the following line to your code:

memcpy(&RamfuncsRunStart, &RamfuncsLoadStart,
&RamfuncsLoadEnd - &RamfuncsLoadStart);

Add a call of function “InitFlash()”, now available in RAMLO:
InitFlash();

At the beginning of Lab11.c declare the symbols used as parameters for memcpy as
externals:

extern unsigned int RamfuncsLoadStart;
extern unsigned int RamfuncsLoadEnd;

extern unsigned int RamfuncsRunStart;

10-18

DSP28 - Flash Programming

Lab Exercise 11

Build project

10. Our code will be compiled to be located in Flash. In our previous lab exercises you
probably used the option to download the program after successful build” in CCS =»
Option =» Customize =» Load Program After Build. We can’t use this feature for this
exercise because the destination is Flash.

Please make sure, that this option is disabled now!

x

Debug F'r-:npertiesl Directl:nriesl Calar I E ditar F'rl:upertiesl F.eyboard Frogram Load Options |* I ’I

Iv Perfarm verification during Program Load

[Load Frogram After Build

¥ Open Dependent Prajects When Loading Projects
[T Do Mot Sean Dependencies When Loading Projects
[T DoMotSet CIO Breakpaint At Load

[~ DoMot Set End OF Program Breakpoint At Load

[Clear &)l Breakpoints When Loading Mew Programs

(] I Abbrechen Ubemehmen Hilfe

11. Click the “Rebuild All” button or perform:

Project > Build

If build was successful you’ll get:
Build Complete,

0 Errors, 0 Warnings, 0 Remarks.

DSP28 - Flash Programming 10-19

Lab Exercise 11

Verify Linker Results — The map - File

12. Before we actually start the Flash programming it is always good practice to verify

13.

the used sections of the project. This is done by inspecting the linker output file
‘lab11.map’

Open file ‘labl1.map’ out of subdirectory ..\Debug

In ‘MEMORY CONFIGURATION’ column ‘used ¢ you will find the amount of
physical memory that is used by your project.

Verify that only the following four parts of PAGE 0 are used:

RAMLO 00008000 00001000 00000016 RWIX
FLASHD 003ec000 00004000 00000016 RWIX
FLASHA 003£6000 00001£80 0000056b RWIX
BEGIN 003f7ff6 00000002 00000002 RWIX

The number of addresses used in FLASHA might be different in your lab session.
Depending on how efficient your code was programmed by you, you will end up with
more or less words in this section.

Verify also that in PAGEI the memory RAMHO is not used.

In the SECTION ALLOCATION MAP you can see how the different portions of our
projects code files are distributed into the physical memory sections. For example,
the .text-entry shows all the objects that were concatenated into FLASHA.

Entry ‘codestart’ connects the object ‘CodeStartBranch.obj’ to physical address 0x3F
7FF6 and occupies two words.

10 - 20

DSP28 - Flash Programming

Lab Exercise 11

Use CCS Flash Program Tool

13. Next step is to program the machine code into the internal Flash. As mentioned in
this lesson there are different ways to accomplish this step. The easiest way is to use
the Code Composer Studio plug-in tool:

Tools > F28xx On-Chip Flash Programmer

£
— Clock Configuration————— 1~ Erasze Sector Selection =
OSCOLK (Mha) 20,000 IV Sector & [3FE000-3F7FFF) v Sector F: [3E4000-3E 7FFF)
¥ Sector B: [3F4000-3F5FFF) ¥ Sector G: [3E000D-3E3FFF)
PLLCR alue: m - ¥ Sector C: [3F0000-3F3FFF) ¥ Sector H: [30CO00-30FFFF]

W SectorD: [JECODD-3EFFFF] W Sectarl: [3DAD00-3DBFFF]
SYSCLKOUT (MHZ]: [150.0000 W SectorE: (3ES000-3EBFFF) W Sectord: [3DE000-3DIFFF)

— Code Security Pagzwaord — Operation

Please specify the COFF file to Pragramerify:

key 7 [ORAEF): IFFFF
ehc2BThzolutions\abl 18Debughlab 1. out B

Key B (DR6ESE [FFFF ! s Browse..|
Key 5 (0x4E5) [FFPF i Eraze, Program, Verfy € Load Rak Only

Eraze Onl
Key 4 [IxaE 4] |F_FFF - v " Frequency Test

P . Werif el -
Key 3(0x4E3} [FFFF . g, TR Register: | GPAMux]

P Ol] -
Key2[0x4E2) [FFFF - e Fin: Pt (0] =]
Keyp1 [0=4E7); IFFFF Verify Only " Calculate Checksums

Flazh Randam W ait State: |15]"
Key 0 [DxAED): IFFFF _ Flazh:

Flash Page "W ait State: I'I 5 vI aTp: li

Uruc I bees I OTP '/ ait State:) Flash+0TE: —

Program Pazsword
I Execute Dperation I

;

Help

Flazh Programmer Settings. .. LI

e Please make sure that OSCCLK is set to 30MHz and PLLCR to 10.

e Do NOT change the Key 7 to Key 0 entries! They should all show “FFFF”!
o Select the current COFF — out file: ..\Debug\labl1.out

e Select the operation “Erase, Program, Verify

e Hit button “Execute Operation”

DSP28 - Flash Programming 10- 21

Lab Exercise 11

If everything went as expected you should get these status messages:

*k%

**** Begin Erase/Program/Verify Operation.
Erase/Program/Verify Operation in progress...
Erase operation in progress...

Erase operation was successful.

Program operation in progress...

Program operation was successful.

Verify operation in progress...

Verify operation successful.
Erase/Program/Verify Operation succeeded
**** End Erase/Program/Verify Operation. ***

Now the code is stored in Flash!

Shut down CCS & Restart eZdsp

14. Close your CCS session.

15. Disconnect the eZdsp from power.

16. Verify that eZdsp Jumper JP1 is in position 2-3 (Microcomputer Mode).

17. Verify that eZdsp Jumper JP7 is in position 1-2 (Boot from Flash)

18. Reconnect eZdsp to power.

Your code should be executed immediately out of Flash, showing the
LED-sequence at GPIO-port B.

10 - 22

DSP28 - Flash Programming

C28x 1Q — Math Library

Introduction

One of the most important estimations in embedded control is the calculation of computing time
for a given task. Since embedded control has to cope with these tasks in a given and fixed amount
of time, we call this ‘Real Time Computing’. And, as you know, time goes very quickly.

Therefore, one of the characteristics of a processor is the ability to do mathematical calculations
in an optimal and efficient way. In recent years, the size of mathematical algorithms that have
been implemented in embedded control units has increased dramatically. Just take the number of
pages for the requirement specification of an electronic control unit for a passenger car:

e 1990: 50 pages,
e 2000: 3100 pages (Source: Volkswagen AG)

So, how does a processor operate with all these mathematical calculations? And, how does the
processor access process data?

You know that the ‘native’ numbering scheme for a digital controller uses binary numbers.
Unfortunately, all process values are either in the format of integer or real numbers. Depending
on how a processor deals with these numbers in its translation into binary numbers, we
distinguish between two basic types of processor core:

¢ Floating-point Processors
¢ Fixed-point Processors
This chapter will start with a brief comparison between the two types of processor.

Because the C28x belongs to the fixed-point type we will focus on this type more in detail. After
a brief discussion about binary numbers we will have a look into the different options to use the
fixed-point unit of the C28x. It can perform various types of mathematical operations in a very
efficient way, using only a few machine clock cycles.

The secret behind this approach is called “IQ-Math”. In case of the C28x Texas Instruments
provides a library that uses the internal hardware of the C28x in the most efficient way to operate
with 32bit fixed-point numbers. Taking into account that all process data usually do not exceed a
resolution of 16 bits, the library gives enough headroom for advanced numerical calculations.
The latest version of Texas Instruments “IQ-Math” - Library can be found with literature number
“SPRCO087” at www.ti.com.

DSP28 - IQ - Math Library 11 -1

Module Topics

Module Topics

C28x IQ — Math Library 11-1
THIPOAUCTION ..o ettt ettt ettt et et e e bt ettt e e bt et e et e sbeenaeeneas 11-1
MOAULE TOPICS ...t ettt et et e et e et e e st e eab e e bbeeabeeeabeeeaeenaseenseeenseenasean 11-2
Floating-point, Integer and FIXed-POintccccoviioiiiiiiiiieiiieeie ettt 11-3
LIEEE 754 Floating-pOint FOFMAL............c.cccccuiiuiiiiiiiiiiieeeeit ettt 11-4
INEEGEE INUMBET BASICS ..ottt ettt ettt ettt be et eete st e bsesbeesaeseessesssensesneas 11-7

Two’s COMPIEMENt TEPTESENTALIONeeuveurieeiertieiieierteeteseesteseeeteetesseeseseeesteseesteensesseessesseensesseessens 11-7
Binary MUltiplICationccccociviiiiiiiiiiiiiiiii e 11-7
BINATY FFACHIONS ...ttt ettt et b ettt ettt et ebe e e s 11-9
Multiplying Binary FTACtIONScccueriieiiriiiiiniieii ettt ettt e ettt seresteesaesseenaesnee b s 11-9
The “IQ” — FOFMQGLc.cccoiiiiiiiiiiiiiiiiiteeeeeee e ettt 11-11
SEGI EXTOISTON. ...ttt ettt ettt 11-14
Correcting the redundant Sign DItcccooeiiiiiiiiiiiiiiiiiiiiiit e 11-15
TQ — MATI — LIDFAFY ...ttt ettt ettt ettt 11-17
Standard ANSI — C 16-Bit Mathematicsccceiuerierieierieieieeieeeee et 11-18
Standard ANSI — C 32-Bit Mathematicscoceouerierieiiriinieiiieieietciteteteieeie et 11-19
32-Bit IQ — Math APPTIOACKH.........iiciieiiieeiiee ettt ste e et e s e eeaesbeessaeenaessneas 11-20
1Q — Math Library FUNCLIONSccueruieieiiieiieiieiteiesicete sttt ettt sttt st e sbe et e sseensesaeenbesbeenes 11-24
IQ- Math Application : Field Orientated Controlc..coeoverieviiniiiinienieiiieieceeneeceeseee e 11-25

11-2

DSP28 - IQ - Math Library

Floating-point, Integer and Fixed-point

Floating-point, Integer and Fixed-point

All processors can be divided into two groups, “floating-point” and “fixed-point”. The core of a
floating-point processor is a hardware unit that supports floating-point operations according to
international standard IEEE 754. Intel’s x86 — family of Pentium processors is a typical example
of this type. Floating-point processors are very efficient when operating with floating-point data
and allow a high dynamic range for numerical calculations. They are not so efficient when it
comes to control tasks (bit manipulations, input/output control, interrupt response) — and, they are
expensive.

Floating Point, Integer and Fixed Point

¢ Two basic categories of processors:
+ Floating Point
+ Integer/Fixed Point

What is the difference?
What are advantages / disadvantages ?
Real — Time Control : Fixed Point !

Discuss fixed-point math development
limitations

L K R AR 4

*

Compare/contrast floating-point and 1Q
representation

¢ Texas Instruments 1Q-Math approach

Fixed-point Processors are based on internal hardware that supports operations with integer data.
The arithmetic logic unit and, in case of digital signal processors, the hardware multiply unit,
expect data to be in one of the fixed-point types. There are limitations in the dynamic range of a
fixed-point processor, but they are inexpensive.

What happens, when we write a program for a fixed-point processor in C and we declare a
floating-point data type ‘float’ or ‘double’? A number of library functions support this data type
on a fixed-point machine. These standard ANSI-C functions consume a lot of computing power.
Recalling the time constrains in a real time project, we just can’t afford to use these data types in
most of embedded control applications.

The solution, in case of the C28x is “IQ-Math”. The 1Q-Math Library is a collection of highly
optimised and high precision mathematical functions used to seamlessly port floating-point algo-
rithms into fixed-point code. In addition, by incorporating the ready-to-use high precision func-
tions, the IQ-Math library can shorten significantly an embedded control development time.

DSP28 - IQ - Math Library 11-3

IEEE 754 Floating-point Format

Processor Types

¢ Floating Point Processors

+ Internal Hardware Unit to support Floating Point
Operations

+ Examples : Intel’s Pentium Series , Texas
Instruments C 6000 DSP

+ High dynamic range for numeric calculation
+ Rather expensive

¢ Integer / Fixed — Point Processors
+ Fixed Point Arithmetic Unit

+ Almost all embedded controllers are fixed point
machines

+ Examples: all microcontroller families, e.g.
Motorola HC68x, Infineon C166, Texas
Instruments TMS430, TMS320C5000, C2000

+ Lowest price per MIPS 11-3

IEEE 754 Floating-point Format

IEEE Standard 754 Single Precision

Floating-Point
31 30 23 22 0
| S| ccceececee | FEFFFFFFEEELEEEEEEELEES
1 bit sign 8 bit exponent 23 bit mantissa (fraction)

Case 1: ife=255andf#0, thenv=NaN

Case2: ife=255andf=0, thenv =][(-1)*infinity

Case 3:if0<e <255, then v = [(-1)s]*[2€12]*(1.f)
Case 4:ife =0 and f # 0, then v = [(-1)s]*[2(-126)]*(0.f)
Case5: ife=0andf=0, then v =[(-1)5]*0

Advantage = Exponent gives large dynamic range
Disadvantage = Precision of a number depends on its exponent

11-4 DSP28 - IQ - Math Library

IEEE 754 Floating-point Format

Floating-point definitions:
« Sign Bit (S):
= Negative: bit31 =1 /Positive: Bit31 =0
o Mantissa (M):
23
. M=1+m 2" +my 27 =1+) m, 27
i=1

= Mantissa is tailored to my = 1; mO will not be stored in memory!

I1<M<?2

« Exponent (E):
= 8 Bit signed exponent, stored with offset “+127”

o Summary:

E-OFFSET

. Z=(-1)"-M -2

Examplel:

0x 3FE0 0000 = 00111111 1110 0000 0000 0000 0000 0000 B
S=0
E=01111111 =127

M= (1).11000 =1 +0.5+025=1.75

Z =(-1)"*1,75* 2" =175

DSP28 - IQ - Math Library 11-5

IEEE 754 Floating-point Format

Example2:
0x BFB0 0000 = 1011 1111 1011 0000 0000 0000 0000 0000 B
S=1
E=01111111 =127
M=(1).011 =1+0.25+0.125=1.375
Z =(-1)'* 1,375 * 2" =_1375
Example3:
7= -25 S=1
25=125%2'
1 =E — OFFSET
E=128

M=125= (1).01 =1+0.25

Binary : 1100 0000 0010 0000 0000 0000 0000 0000 B = 0x C020 0000

Floating - Point does not solve everything!

Example: x=10.0 (0x41200000)
+ y= 0.000000238 (0x347F8CF1)

z=10.000000238 | WRONG!

You cannot represent 10.000000238 with
single-precision floating point

0x412000000 = 10.000000000
10.000000238 «= can’t represent!
0x412000001 = 10.000000950

| So z gets rounded down to 10.000000000 |

11-6

DSP28 - IQ - Math Library

Integer Number Basics

Integer Number Basics

Two’s Complement representation

The next slides summarize the basics of the two’s complement representation of signed integer
numbers.

Integer Numbering System Basics

¢ Binary Numbers
0110,= (0*8)+(1*4)+(1*2)+(0*1) = 6,,
11110, = (1*16)+(1*8)+(1*4)+(1*2)+(0*1) = 30,

¢ Two’s Complement Numbers
0110, = (0*-8)+(1*4)+(1*2)+(0*1) = 6,
11110, = (1*-16)+(1*8)+(1*4)+(1*2)+(0*1) = -2,,

Binary Multiplication

Now consider the process of multiplying two two's complement values, which is one of the most
often used operations in digital control. As with “long hand” decimal multiplication, we can per-
form binary multiplication one “place” at a time, and sum the results together at the end to obtain
the total product.

Note: The method shown at the following slide is not the method the C28x uses to multiply
numbers — it is merely a way of observing how binary numbers work in arithmetic processes.

The C28x uses 32-bit operands and an internal 64-bit product register. For the sake of clarity,
consider the example below where we shall investigate the use of 4-bit values and an 8-bit
accumulation:

DSP28 - IQ - Math Library 11-7

Integer Number Basics

Four-Bit Integer Multiplication

0100 4
x 1101 x -3
00000100
0000000
000100
11100
11110100 -12

Accumulator | 11110100 I

Data Memory b I

Is there another (superior) numbering system? .

In this example, consider the following:
e 4 multiplied by (-3) gives (-12) in decimal
e Size of the product is twice as long as the input values (4 bit * 4 bit = 8 bit)

o If this product is to be used in a next loop of a calculation, how can the result be stored
back to memory in the same length as the inputs?

= Store back upper 4 Bit of Accumulator? = -1
= Store back lower 4 Bit of Accumulator? = +4
= Store back all 8 Bit of Accumulator? => overflow of length

o Scaling of intermediate results is needed!

From this analysis, it is clear that integers do not behave well when multiplied.

Might some other type of number system behave better? Is there a number system where the
results of a multiplication have bounds?

11-8

DSP28 - IQ - Math Library

Binary Fractions

Binary Fractions

In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for inte-
gers). When we consider that the range of fractions is from -1 to ~+1, and that the only bit which
conveys negative information is the MSB, it seems that the MSB must be the “negative ones posi-
tion”. Since the binary representation is based on powers of two, it follows that the next bit would
be the “one-half” position, and that each following bit would have half the magnitude again.

Yes: Binary Fractions

1 | 0 1 1
°

-1 12 1/4 1/8

=-1+1/4 +1/8 =-5/8

Fractions have the nice property that
fraction x fraction = fraction

Multiplying Binary Fractions

When the C28x performs multiplication, the process is identical for all operands, integers or frac-
tions. Therefore, the user must determine how to interpret the results. As before, consider the 4-
bit multiply example:

The input numbers are now split into two parts — integer part (I) and fractional part (Q —
quotient). These type of fixed-point numbers are often called “IQ”-numbers, or for simplicity just
Q-numbers.

The example above shows 2 input numbers in 11Q3 - Format. When multiplied the length of the
result will add both I and Q portions (see next slide):

11Q3 * 11Q3 = 12Q6

DSP28 - IQ - Math Library 11-9

Binary Fractions

Four-Bit Multiplication

0100 1/2
x 1101 x - 3/8
00000100
0000000
000100
11100
11110100 -3/16

Accumulator 1&]..1 1 0&. 00 I

Data Memory | 1110 -1/4

If we store back the intermediate product with the four bits around the binary point we keep the
data format (I1Q3) in the same shape as the input values. No need to re-scale any intermediate
results!

Advantage: With Binary Fractions we will gain a lot of speed in closed loop
calculations.

Disadvantage: The result might not be the exact one. As you can see from the slide above we will
end up with (-4/16) stored back to Data Memory. Bits 2™* to 2 are truncated. The correct result
would have been (-3/16).

Recall that the 4-bit input operand multiplication operation is not the real size for the C28x,
which operates on 32-bit input values. In this case, the truncation will affect bits 27*? to 2°*. Given
the real size of process data with let’s say 12-bit ADC measurement values, there is plenty of
room left for truncation.

In most cases we will truncate noise only. However, in some feedback applications like IIR-
Filters the small errors can add and lead to a given degree of instability. It is designer’s
responsibility to recognize this potential source of failure when using binary fractions.

11-10

DSP28 - IQ - Math Library

The “1Q”— Format

The “I1Q” — Format

So far, we have discussed only the option to use fractional numbers with the binary point at the
MSB-side of the number. In general, we can place this point anywhere in the binary
representation. This gives us the opportunity to trade off dynamic range against resolution:

Fractional Representation

31 0
’ S IIITIIIII, ffffffffffffffffFfffffff

32 bit mantissa

20420+ 214204 20 422+ 420

“IQ” — Format

“” = INTEGER - Fraction
“Q” = QUOTIENT - Fraction

Advantage = Precision same for all numbers in an 1Q format
Disadvantage = Limited dynamic range compared to floating point

11-10

I1Q - Examples
11Q3 — Format:

3 0

S, £fff
Most negative decimal number: -1.0 =1.000 B
Most positive decimal number: + 0.875 =0.111B
Smallest negative decimal number: -1*2-3 (0.125) =1.111B
Smallest positive decimal number: 2-3 (0.125) =0.001B

Range: -1.00.875 (~ + 1.0)

Resolution: 23

11-11

DSP28 - 1Q - Math Library 11-11

The “IQ”— Format

1Q - Examples
I3Q1 — Format:

Most negative decimal number: -4.0 =100.0B

Most positive decimal number: + 3.5 =011.1B

Smallest negative decimal number: -1 * 2-1 =111.1B

Smallest positive decimal number: 2-1 =000.1 B
Range: -4.0 +3.5 (~ + 4.0)

Resolution: 21

1-12

I1Q - Examples
11Q31 — Format:

31
’S. fff £fff ffff £fff f£fff ffff ffff ffff

Most negative decimal number: -1.0
1.000 0000 0000 0000 0000 0000 0000 0000 B

Most positive decimal number: ~+ 1.0
0.111 1111 1111 1111 1111 1111 1111 1111 B

Smallest negative decimal number: -1*2-31
111111111111 1111 1111 1111 1111 1111 B

Smallest positive decimal number: 2-31
0.000 0000 0000 0000 0000 0000 0000 0001 B

Range: -1.0 (+1.0)
Resolution: 231

11-13

11-12 DSP28 - IQ - Math Library

The “1Q”— Format

1Q - Examples
I8Q24 — Format:
31 0
’ S III IIII ffff ffff ffff ffff ffff
Most negative decimal number: -128
1000 0000. 0000 0000 0000 0000 0000 0000 B
Most positive decimal number: = + 128
0111 1111. 1111 1111 1111 1111 1111 1111 B
Smallest negative decimal number: -1*2-24
1111 11111111 1111 1111 1111 1111 1111 B
Smallest positive decimal number: 2-24
0000 0000. 0000 0000 0000 0000 0000 0001 B
Range: -128 (+128)
Resolution: 224
11-14

And to come back to the failing floating-point example from the beginning of this module; 1Q-
Math can do much better:

1Q-Math can do better!

18Q24 Example: x=10.0 (0xOA000000)
+ y= 0.000000238 (0x00000004)

z =10.000000238 (Ox0A000004)

Exact Result (this example)

11-15

DSP28 - 1Q - Math Library 11-13

Sign Extension

Sign Extension

When working with signed numbers it is important to keep the sign information when expanding
an operand in its binary representation, for example from 4-bit to 8-bit, as shown in the next slide.

The C28x can operate on either unsigned binary or two’s complement operands. The so-called
“Sign Extension Mode (SXM)” identifies whether or not the sign extension process is used
automatically when a number is processed internally. It is a good programming practice to always
select the desired operating mode of SXM at the beginning of a subroutine or a module.

What is Sign Extension?

¢ When moving a value from a narrowed width location to a
wider width location, the sign bit is extended to fill the width
of the destination

L 2

Sign extension applies to signed numbers only
¢ It keeps negative numbers negative!

¢ Sign extension controlled by SXM bit in STO register; When
SXM =1, sign extension happens automatically

4 bit Example: Load a memory value into the ACC

memory (1101 | =-23+22+20=.3

l Load and sign extend
<

ACC 11111101 |=-27+26+25+24+ 23+ 22+ 20
=128 +64+32+16+8 +4 + 1
=.3

11-16

The SXM-Bit is part of STO, one of the C28x status- and control registers. It can be accessed in
assembly language only. To set or to clear it out of a C environment one can use the inline
assembly function:

asm(" SETC SXM");

asm(" CLRC SXM");

11-14 DSP28 - IQ - Math Library

Correcting the redundant sign bit

Correcting the redundant sign bit

As we have already seen, when we multiply two [1Q3-numbers we end up with an 12Q6-result.
Or, by multiplying two I11Q15 — numbers we end up with an 12Q30 — result. The second sign bit
is always redundant. To adjust the result back to the format of the inputs we would have to apply
shift operations, as shown in the next slide in a C environment. The shift operator (>> 15) will
shift the intermediate result 15 times before it is typecast back to the data format of result variable
Z.

Texas Instruments “IQ-Math”-library, which will be explained in the rest of this module, takes
care of this shift procedure internally. Again, we gain speed by using “IQ-Math”.

Correcting Redundant Sign Bit

Accumulator 1 1 1 1 O 1 0 OI
\W_/

Redundant
Sign Bit

¢ Correcting Redundant Sign Bit
+ IQmath: automatically handled (next topic)
+ Q math in “C”, shift in software:
int x,y,z;
z = ((long)x * (long)y) >> 15;

11-17

How do we code fractions in an ANSI-C environment? We do not have a dedicated data type,
called ‘fractional’. There is a new ANSI- standard under development, called “embedded C”,
which will eventually use this type.

For now we can use the following trick, see next slide:

DSP28 - 1Q - Math Library 11-15

Correcting the redundant sign bit

How is a fraction coded?

~1 — ~ 32K —— 7FFF =——

2 1 16K - 4000 -+

o4+ — o4 0000 4+
*32768

=% = -16K =~ C000 -+

-1 =t -32K - 8000 ——

Fractions Integers Hex

¢ Example: represent the fraction number 0.707

void main (void) {
int coef = 32768 * 707 / 1000;

11-18

Fractional vs. Integer

¢ Range

+ Integers have a maximum range determined
by the number of bits

+ Fractions have a maximum range of =1
¢ Precision
+ Integers have a maximum precision of 1

+ Fractional precision is determined by the
number of bits

11-19

11-16 DSP28 - IQ - Math Library

1Q — Math — Library

IQ — Math - Library

Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any

other DSP capable processor, typically we come across the following issues:

The diagram below illustrates a typical development scenario in use today:

Algorithms are typically developed using floating-point math’s
Floating-point devices are more expensive than fixed-point devices

Converting floating-point algorithms to a fixed-point device is very time consuming
Conversion process is one way and therefore backward simulation is not always possible

Takes many days/weeks
to convert (one way
process)

Fixed-Point
Algorithm
(ASM, C, C++)

Fix-Point DSP

So how do we really use all this fraction stuff?
The Fix-Point Development Dilemma

Simulation
Platform
(i.e. MatLab)

Natural development
starts with simulation in
floating-point

Floating-Point
Algorithm
(C or C++4)

Can be easily ported
to floating-point
device

Floating-Point DSP

11-20

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device. However, because of the commercial reality of cost constraints, most
likely a 16-bit or 32-bit fixed-point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would

be needed for reformatting, scaling and coding the problem. Additionally, the final implementa-
tion typically has little resemblance to the original algorithm. Debugging is not an easy task and
the code is not easy to maintain or document.

DSP28 - IQ - Math Library

11-17

1Q — Math — Library

Standard ANSI - C 16-Bit Mathematics

If the processor of your choice is a 16-bit fixed-point and you don’t want to include a lot of
library functions in your project, a typical usage of binary fractions is shown next. We assume
that the task is to solve the equation Y = MX + B. This type of equation can be found in almost
every mathematical approach for digital signal processing.

Traditional 16-bit “Q” Math Approach

y=mx+b

sg Q15 M
—{ sSsg Q30
sg Q15 | X

l Sssssssssssssg Q15 }4— seq Q15 B

Align Binary
h 4 Point For Add
e ssg Q30]
sI, 030 |
Align Binary

Point For Store

[ssssssssssssI, Q15 }—b se Q15 |Y

in C:]Y = ((i32) M * (i32) X + (i32) B << Q) >> Q;

11-21

The diagram shows the transformations, which are needed to adjust the binary point in between
the steps of this solution. We assume that the input numbers are in [1Q15-Format. After M is
multiplied by X, we have an intermediate product in 12Q30-format. Before we can add variable
B, we have to align the binary point by shifting b 15 times to the left. Of course we need to
typecast B to a 32-bit long first to keep all bits of B. The sum is still in [2Q30-format. Before we
can store back the final result into Y we have to right shift the binary point 15 times.

The last line of the slide shows the equivalent syntax in ANSI-C. “i32” stands for a 32-bit integer,
usually called ‘long’. ‘Q’ is a global constant and gives the number of fractional bits; in our
example Q is equal to 15.

The disadvantage of this Q15 — approach is its limitation to 16 bits. A lot of projects for digital
signal processing and digital control will not be able to achieve stable behavior due to the lack of
either resolution or dynamic range.

The C28x as a 32-bit processor can do better — we just have to expand the scheme to 32-bit binary
fractions!

11-18 DSP28 - IQ - Math Library

1Q — Math — Library

Standard ANSI - C 32-Bit Mathematics

The next diagram is an expansion of the previous scheme to 32-bit input values. Again, the task is
to solve equation Y = MX +B. In the following example the input numbers are in an 18Q24-
format.

Traditional 32-bit “Q” Math Approach

y=mx+Db

I8 o Q24 M

—J116 048

«— 18, 024 X

[SsSssssssssssssssssI8y Q24 }47 I8 o 024 B
@ Align Decimal

h 4 Point for Add

ssssI8, 048 |

116 048 |
Align Decimal
@ Point for Store

sssssssssssssssssIlf, Q24)—> 18 o Q24 Y

in c:] Y = ((i64) M * (i64) X + (i64) B << Q) >> Q;

Note: Requires support for 64-bit integer data type in compiler 11-22

The big problem with the translation into ANSI-C code is that we do not have a 64-bit integer
data type! Although the last line of the slide looks pretty straight forward, we can’t apply this line
to a standard C-compiler!

What now?

The rescue is the internal hardware arithmetic (Arithmetic Logic Unit and 32-bit by 32-bit
Hardware Multiply Unit) of the C28x. These units are able to deal with 64-bit intermediate results
in a very efficient way. Dedicated assembly language instructions for multiply and add operations
are available to operate on the integer part and the fractional part of the 64-bit number.

To be able to use these advanced instructions, we have to learn about the C28x assembly
language in detail. Eventually your professor offers an advanced course in C28x assembly
language programming -

OR, just use Texas Instruments “IQ-Math”-library, which is doing nothing more than using these
advanced assembly instructions!

DSP28 - 1Q - Math Library 11-19

1Q — Math — Library

32-Bit 1Q — Math Approach

The first step to solve the 64-bit dilemma is to refine the last diagram for the 32-bit solution of Y
= MX +B. As you can see from the next slide the number of shift operations is reduced to 1.
Again, the C-line includes a 64-bit ‘long’, which is not available in standard C.

32-bit IQmath Approach

y=mx+Db
I8, 024 M
[116 048
. . 18 24 X
Align Decimal . @
Point Of Multiply 7
[sssssssssssssssssIlfy Q24]
I < 18, Q24 B
I8 Q24 | I8 o Q24 Y
in C: |Y = ((i64) M * (i64) X) >> Q + B;

11-23

The “IQ”-Math approach ‘redefines’ the multiply operation to use the advantages of the internal
hardware of the C28x. As stated, the C28x is internally capable of handling 64-bit fixed-point
numbers with dedicated instruction sets. Texas Instruments provides a collection of intrinsic
functions, one of them to replace the standard multiply operation by an [Qmpy(M,X) —line.
Intrinsic means, we do not ‘call’ a function with a lot of context save and restore; instead the
machine code instructions are directly included in our source code.

As you can see from the next slide the final C-code looks much better now without the
cumbersome shift operations that we have seen in the standard C approach.

AND: The execution time of the final machine code for the whole equation Y = MX + B takes
only 7 cycles — with a 150MHz C28x this translates into 46 nanoseconds!

11-20

DSP28 - IQ - Math Library

1Q — Math — Library

IQmath Approach

Multiply Operation

] Y = ((i64) M * (i64) X) >> Q + B; \

Redefine the multiply operation as follows:
| _Iompy(M,X) == ((i64) M * (i64) X) >> Q |

This simplifies the equation as follows:
’ Y = _IQmpy(M,X) + B; ‘

C28x compiler supports “_lQmpy” intrinsic; assembly code generated:

MOVL XT, @M

IMPYL P,XT,@X

OMPYL ACC,XT,@X
LSL64 ACC:P,#(32-Q)

= low 32-bits of M*X
; ACC = high 32-bits of M*X
= ACC:P << 32-Q

(same as P = ACC:P >> Q)
ADDL ACC, @B
MOVL @Y ,ACC
; 7 Cycles

&
a

; Result = Y = _IQmpy(M*X) + B

11-24

Let’s have a closer look to the assembly instructions used in the example above.

The first instruction ‘MOVL XT,@M’ is a 32-bit load operation to fetch the value of M into a
temporary register ‘XT’.

Next, ‘XT’ is multiplied by another 32-bit number taken from variable X (‘IMPYL P,XT,@X’).
When multiplying two 32-bit numbers, the result is a 64-bit number. In the case of this
instruction, the lower 32-bit of the result are stored in a register ‘P’.

The upper 32 bits are stored with the next instruction (‘“QMPYL ACC,XT,@X’) in the ‘ACC’
register. ‘QMPYL’ is doing the same multiplication once more but keeps the upper half of the
result only. At the end, we have stored all 64 bits of the multiplication in register combination
ACC:P.

What follows is the adjustment of the binary point. The 64-bit result in ACC:P is in 116Q48-
fractional format. Shifting it 32-24 times to the left, we derive an 18Q56-format. The instruction
‘ADDL ACC,@B’ uses only the upper 32 Bits of the 64-bit, thus reducing our fractional format
from I8Q56 to 18Q24 — which is the same format as we use for B and all our variables!

The whole procedure takes only 7 cycles!

DSP28 - 1Q - Math Library 11-21

1Q — Math — Library

The next slide compares the different approaches. The 1Q-Math library also defines a new data
type ‘_iq’ to simplify the definition of fractional data. If you choose to use C++ the floating-point
equation and the C++ equation are identical! This is possible due to the overload feature of C++.
The floating-point multiply operation is overloaded with its 1Q-Math replacement — the code
looks ‘natural’.

IQmath Approach

It looks like floating-point!

float Y, M, X, B;

Floating-Point

Y=M*X + B;

e long Y, M, X, B;
Traditional

Fix-Point Q vy = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

“IQmath” G Mg Bl feg B
InC Y = IQmpy(M, X) + B;

“IQmath” G My Ll oy B

In C++

Y=M*X + B;

Taking advantage of operator overloading feature in C++,
“lIQmath” looks like floating-point math (looks natural!)

11-25

This technique opens the way to generate a unified source code that can be compiled in a
floating-point representation as well as into a fixed-point output solution. No need to translate a
floating-point simulation code into a fixed-point implementation — the same source code can
serve both worlds.

11-22

DSP28 - IQ - Math Library

1Q — Math — Library

IQmath Approach
GLOBAL_Q simplification

User selects “Global Q” value for the whole application

|

. GLOBAL_Q |
based on the required dynamic range or resolution, for example:
GLOBAL_Q Max Val Min Val Resolution
28 7.999 999 996 -8.000 000 000|0.000 000 004
24 127.999 999 94 | -128.000 000 00 |0.000 000 06
20 2047.999 999 -2048.000 000 0.000 001

#define GLOBAL Q 18 // set in “IQmathLib.h” file

_iq Y, M, X, B;
Y = _IOmpy(M,X) + B;
The user can also explicitly specify the Q value to use:
iq20 Y, M, X, B;

// all values are in Q = 18

Y = _IQ20mpy(M,X) + B; // all values are in Q = 20
11-26

IQmath Approach

Targeting Fixed-Point or Floating-Point device

Y = IOmpy(M, X) + B;
User selects target math type
(in “lQmathLib.h” file)

#if MATH TYPE == FLOAT MATH

#if MATH TYPE == IQ MATH

(float)M * (float)X + (float)B;

Y =

Compile & Run
using floating-point math on
C3x, C67x,C28x (RTS), PC,..

Compile & Run
using “IQmath” on
C28x

All “IQmath” operations have an equivalent floating-point operation
11-27

11-23

DSP28 - IQ - Math Library

1Q — Math — Library

IQ — Math Library Functions

The next two slides summarize the existing library functions of IQ-Math.

IQmath Library: math & trig functions (v1.4)

Operation Floating-Point “IQmath” in C “IQmath” in C++
type float A, B; _iq A, B; iq A, B;
constant A =1.2345 A =_1Q(1.2345) A =1Q(1.2345)
multiply A*B _IQmpy(A, B) A*B
divide A/B _IQdiv (A, B) A/B
add A+B A+B A+B
substract A-B A-B A-B
boolean >, >= <, <=, =, |5, &&, || > >= < <= = |5, &&, || >, >= <, <=, = |5, &&, ||
trig sin(A),cos(A) _IQsin(A), _IQcos(A) 1Qsin(A),IQcos(A)
functions sin(A*2pi),cos(A*2pi) | _IQsinPU(A), IQcosPU(A) | IQsinPU(A),IQcosPU(A)
atan(A),atan2(A,B) _IQatan(A), _IQatan2(A,B) | IQatan(A),IQatan2(A,B)
atan2(A,B)/2pi _IQatan2PU(A,B) IQatan2PU(A,B)
sqrt(A),1/sqrt(A) _IQsqrt(A), _IQisqrt(A) IQsqrt(A),IQisqrt(A)
sqrt(A*A + B*B) _IQmag(A,B) IQmag(A,B)
saturation if(A > Pos) A = Pos _IQsat(A,Pos,Neg) IQsat(A,Pos,Neg)
if(A <Neg) A = Neg

Accuracy of functions/operations approx ~28 to ~31 bits

11-28

IQmath Library: Conversion Functions (v1.4)

Operation Floating-Point “IQmath” in C “IQmath” in C++
iq to igN A _IQtoIQN(A) 1QtoIQN(A)
igN to iq A _IQNtoIQ(A) IQNtoIQ(A)

integer(iq) (long) A _IQint(A) 1Qint(A)

fraction(iq) A —(long) A _IQfrac(A) IQfrac(A)
iq = iq*long A * (float) B _IQmpyl32(A,B) IQmpyI32(A,B)
integer(iq*long) (long) (A * (float) B) _IQmpyI32int(A,B) 1QmpyI32int(A,B)
fraction(iq*long) | A - (long) (A * (float) B) | _IQmpyI32frac(A,B) IQmpyI32frac(A,B)
gN to iq A _QNtoIQ(A) QNtoIQ(A)
iq to gqN A _IQtoQN(A) IQtoQN(A)
string to iq atof(char) _atolQ(char) atolQ(char)
1Q to float A _IQtoF(A) IQtoF(A)
IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file
11-29

11-24

DSP28 - IQ - Math Library

1Q — Math — Library

IQ- Math Application : Field Orientated Control

The next slides are just to demonstrate the ability of “IQ-Math” to solve advanced numeric
calculations in real time. The example is taken from the area of digital motor control. We will not
go into the details of the control scheme and we will not discuss the various options to control an
electrical motor. If you are a student of an electrical engineering degree you might be familiar
with these control techniques. Eventually your university also offers additional course modules
with this topic. The field of motor and electrical drive control is quite dynamic and offers a lot of
job opportunities.

The next slide is a block diagram of a control scheme for an alternating current (AC) induction
motor. These types of motors are based on a three-phase voltage system. Modern control schemes
are introduced these days to improve the efficiency of the motor. One principle, called “Space
Vector Modulation” or “Field Orientated Control” is quite popular today. In fact this theory is
almost 70 years old now, but in the past it was impossible to realize a real time control due to the
lack of computing power. Now with a controller like the C28x, it can be implemented!

AC Induction Motor Example

One of the more complex motor control algorithms

AC INDUCTION MOTOR
MODEL

Lapa_rar
" 1 out
Fsnd_tdh

FORWARD CONTROL
il _rad,
o ipark D =il
wSlid, BN | e fipark_q f=psi_r_alia—p

feintlad

FEEDBACK CONTROL

Estimated Spoed Plot

Figure &

& Sensorless, ACI induction machine direct rotor flux control

¢ Goal: motor speed estimation & alpha-axis stator current estimation
11-30

The core control system consists of three digital PID-controllers, one for the speed control of the
motor (“PID_REG3 SPD”), one to control the torque (“PID_REG3 1Q”) and one for the flux
(“PID_REG3 ID”). Between the control loops and the motor two coordinate transforms are
performed (“PARK” and “I PARK?”).

Let’s have a look into a standard C implementation of the PARK transform, which converts a 3-D
vector to a 2-D vector. For now, it is not necessary to fully understand this transform, just have a
look into the mathematical operations involved.

DSP28 - 1Q - Math Library 11-25

1Q — Math — Library

All variables are data type “float” and the functions included are:

e Six multiply operations,

e Two trigonometric function calls,

e An addition and

e A subtraction.
This code can easily be compiled by any standard C compiler and downloaded into a simulation
or into any processor, for example the C28x. It will work, but it will not be the most efficient way

to use the C28x because it will involve floating-point library function calls that will consume a
considerable amount of computing time.

AC Induction Motor Example

Park Transform - floating-point C code

#include “math.h”

#define TWO _PI 6.28318530717959

void park_calc (PARK *v)

{
float cos_ang , sin_ang;
sin_ang = sin(TWO_PI * v->ang);
cos_ang = cos (TWO_PI * v->ang);

v->de

(v->ds * cos_ang) + (v->gs * sin_ang);

v->ge (v->gs * cos_ang) - (v->ds * sin _ang);

1-31

With the “IQ-Math” library we can improve the code for the C28x, as shown at the next slide. Of
course, we have to replace all float function calls by “IQ-Math” intrinsics.

11-26 DSP28 - IQ - Math Library

1Q — Math — Library

All variables are now of data type “ iq”, the sine and cosine function calls are replaced by their
intrinsic replacements as well as the six multiply operations.

The constant “TWO_PI” will be converted into the standard 1Q-format with the conversion
function “_1Q()”. This way the number 6.28 will be translated into the correct fixed-point scale
before it is used during compilation.

The resulting code will be compiled into a much denser and faster code for the C28x. Of course, a
little bit of coding is still needed to convert an existing floating-point code into the “IQ-Math” C-
code.

Fortunately, the structure of the two program versions is identical, which helps to keep a
development project consistent and maintainable, for both the floating-point and a fixed-point
implementations.

AC Induction Motor Example

Park Transform - converting to “IQmath” C code

#include “math.h”

#include “IQmathLib.h”

#define TWO_PI _IQ(6.28318530717959)

void park_calc (PARK *v)

{
_iq cos_ang , sin_ang;
sin_ang = _IQsin(_IQmpy(TWO_PI , v->ang));
cos_ang = _IQcos(_IQmpy(TWO_PI , v->ang));

v->de = _IQmpy(v->ds , cos_ang) + _IQmpy(v->gs , sin_ang);
v->ge = _IQmpy(v->gs , cos_ang) - _IQmpy(v->ds , sin_ang);

11-32

If we go further on and use a C++ compiler to translate the “IQ-Math” code, we can take
advantage of the overload technique of C++. The result for this PARK-transform is shown at the
next slide.

DSP28 - 1Q - Math Library 11-27

1Q — Math — Library

AC Induction Motor Example

Park Transform - converting to “IQmath” C++ code

#include “math.h”

extern “C” { #include “IQmathLib.h” }
#include “IQmathCPP.h”

#define TWo_PI IQ(6.28318530717959)
void park calc (PARK *v)
{

iq cos_ang , sin_ang;

sin_ang = IQsin(TWO_PI * v->ang);

cos_ang = IQcos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->gs * sin_ang);

v->ge (v->gs * cos_ang) - (v->ds * sin_ang);

11-33

The multiply operation looks identical in floating-point and in fixed-point implementation. It is
quite a simple and fast procedure to take any floating-point algorithm and convert it to an "IQ-
Math" algorithm.

11-28 DSP28 - IQ - Math Library

1Q — Math — Library

The complete system was coded using "IQ-Math". Based on analysis of coefficients in the
system, the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic
range of 7bits (+/-64 range) was required. Therefore, this translated to a GLOBAL Q value of
32-7 = 25(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL Q =
24 (Q24) value.

Next, the whole AC induction motor solution was investigated for stability and dynamic behavior
by changing the global Q value. With a 32-bit fixed-point data type we can modify the fractional
part between 0 bit (“Q0”) and 31 bits (“Q31”). The results are shown below. As you can see,
there is an area, in which all tests led to a stable operating mode of the motor. The two other areas
showed an increasing degree of instability, caused by either not enough dynamic range in the
integer part or not enough fractional resolution of the numbering system.

AC Induction Motor Example
Q stability range

range Stability Range

g g
Unstable

Q31 to Q27 (not enough dynamic range)

Q26 to Q19 Stable

Q18 to QO Unstable

(not enough resolution, quantization problems)

The developer must pick the right GLOBAL_Q value!

11-34

DSP28 - 1Q - Math Library 11-29

1Q — Math — Library

Where Is IQmath Applicable?

Anywhere a large dynamic range is not required

Motor Control (PID, State Estimator, Kalman,...)
Servo Control
Modems
Audio (MP3, etc.)
Imaging (JPEG, etc.)
Any application using 16/32-bit fixed-point Q math

Where it is not applicable

Graphical applications (3D rotation, etc.)

When trying to squeeze every last cycle

11-35

IQmath Approach Summary

“IQmath” + fixed-point processor with 32-bit capabilities =

¢ Seamless portability of code between fixed and floating-point
devices

+ User selects target math type in “IQmathLib.h” file
+ #if MATH_TYPE — IQ_MATH
+ #f MATH_TYPE = FLOAT_MATH
¢ One source code set for simulation vs. target device

¢ Numerical resolution adjustability based on application
requirement
+ Setin “IQmathLib.h” file
+ #define GLOBAL_Q 18
+ Explicitly specify Q value
+ _iq20 X, Y, Z;
¢ Numerical accuracy without sacrificing time and cycles

¢ Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from TI DSP website

http:/www.dspvillage.ti.com (follow C2000 DSP links) 136

11-30

DSP28 - IQ - Math Library

C28x DSP/BIOS

Introduction

Chapter 12 introduces Texas Instruments Built-In Operating System (“BIOS”) for Digital Signal
Processors - “DSP/BIOS”. This firmware will allow you to use a range of a Real Time Operating
System (“RTOS”) features in an embedded control application. It is not the intention of this
module to cover the theory of Operating Systems and the specific demands of a real time control
applications. To be able to work with all options of DSP/BIOS it will be necessary for you to
enrol in additional classes about this topic at your university. When you have completed these
classes, it is highly recommended to return to this module after you are familiar with the theory of
multi processing and real time control. With this knowledge, you can enhance the examples
shown in this chapter to their full extent.

We will now have a brief look into the essentials of DSP/BIOS. We shall start with the
introduction of core terms and definitions of a real time system:

e Whatis a RTOS?

e What is a task?

e What is the task state model?
e What is a scheduler?

Then we will discuss and use the BIOS system configuration tools to simplify the setup of a C28x
code project.

Next, we will take a closer look to some of the basic concepts of DSP/BIOS:
e Scheduler
e Hardware Interrupts (HWI)
e Software Interrupts (SWI)

e Periodic Functions (PRD)

At the end of this module we will return to the laboratory and modify one of our existing
programs to use both the DSP/BIOS configuration tool and a periodic function.

DSP28 - DSP/BIOS 12-1

Module Topics

Module Topics

C28x DSP/BIOS 12-1
TREPOGUCTION ...ttt ettt et ettt e et e et e et e eseeeaae s 12-1
MOAULE TOPICS ...t ettt et et e et e et e e st e eab e e bbeeabeeeabeeeaeenaseenseeenseenasean 12-2
Real Titme OPerating SYSIEM.............ccuuueeuiiiiiiii ettt ettt ettt ettt 12-3
A RTOS = TASK.c...ceeeeeeeee ettt ettt ettt s et ae et eee et ebeeaeeaeeaeeneenens 12-4
TASK SEALE MOAEL. ...ttt ettt te ettt sb et e ste e st e b e essenreenbeenes 12-5
The RTOS - SCREAUIETcoooveeeeeiieieeiee ettt eae ettt sbe et e sbeessesaeenbeeneas 12-7
Texas INSruments DSP/BIOSccooiiciiiiiieeeeeie ettt ettt sttt sbe et steesbesseessesaeenseeneas 12-8
DSP/BIOS CONfIGUFATION TOOL.........c.oooeieieeieeeieii ettt ettt ettt sae e 12-10
DSP/BIOS TASK GFOUDS ...ttt ettt ettt ettt e s e naeeseenseeneenseereenes 12-11

Hardware Interrupts (HWI) c...ocviiiiiieiicieieeiete ettt ettt a et ab e staesteesbeeaeesseensasreens 12-14
Software INtEITUPLS (SWI) ...eeeiiiieiieieseeeeee ettt ettt et e et e seaesteeaesseenseesnensessnan 12-16
Periodic FUNCtions (PRD).........oouiiiiiiiiieiie sttt ettt e aeeeba e taeesbeesaaeesseeesseessaasenaas 12-17
Real-Time ANGLYSTS TOOLcccocoueviiiiiiiiii ettt 12-19
DSP/BIOS AP ...ttt ettt enn 12-20
LD EXCFCIS@ 12........ooieeeeeeee ettt ettt ettt ettt et etaeenb e aaeenaen 12-21
ODJECLIVE .veeuvieieieeiteettete et et et et e e et et ette st e esteesaesbeeste st ensesseenseessanseessenseentesstesseensansesneensesseensennns 12-21
PrOCEAUIE.....cuiiieiiiiieiieee ettt ettt et et eue et e nae 12-21
Open Files, Create Project FIle.......coiiiiiiiiiiiiieeee ettt 12-21
Project BUild OPHIONS ...c.eeviiiieiieieieeiienitete sttt ettt ettt et sb et st e e et e bt e stesbeete s st esbesatenbesanenseenes 12-22
MOdifY SOUICE COAC....coueiiiiiiriiiiieieeitee ettt ettt sttt sttt sttt s bt et s bt et saeebeeaee 12-23
Edit DSP/BIOS CONTIGUIAION.c.ceitieieitieieieieriietesteetesitesteseresteessesseessesseessesssesseessessesssesseessesseenes 12-23
BUild the PrOJECT . .eueeiieiieiieii ettt ettt ettt et s e ne s et e eee e nee 12-25
TESE tHE COAR ... nuieiieieiee ettt s e bbbt bttt ebesbe et eee et e 12-25
Potential Solution for function “led TUNNET™:.........cceeriirieriiitiieeee e 12-26

12-2

DSP28 - DSP/BIOS

Real Time Operating System

Real Time Operating System

You are probably familiar with the basics of the operating system (OS) of your PC. One of the
typical features of this OS is the ability to start and work on different processes simultaneously.
You can open your word processor to edit a document and at the same time you can browse the
web in another application process or you can check your emails. The term for this type of OS is
“multi tasking”. The more processes you open the more difficult it will become for your OS to
respond in time. Sometimes one of your processes will be ‘blocked’ for a while before it
continues. It becomes more difficult for the OS if dedicated hardware interactions are involved,
like burning a CD/DVD. In these cases, your application probably gives out a meek
recommendation like: “Do not start any other application now...” to assure that its own
procedure will be completed in time.

In short, this type of OS does not guarantee any completion time for a process! Sometimes a
process is not completed at all; you are no doubt familiar with the keys “CTRL-ALT-DEL”.

Now imagine an embedded control application such as an autopilot of an airplane or a car braking
system controlled by this type of operating system.

For this type of application, we need another type of OS that will guarantee a time line for all
processes involved. We also need to know a “worst case response time” for all interactions and
event processing of the control system - a “Real Time Operating System”

Real Time Operating Systems (RTOS)
What is a RTOS?

¢ Particular class of operating systems for
digital processor systems

¢ Capable of serving multiple user tasks at one
time (“multi-task OS”)

¢ For all tasks in a running system it is
guaranteed, that random external events in
the environment of each individual task will
be serviced in a given time (“Worst Case
Response Time”).

¢ All tasks must be served simultaneously
(“multi-task OS”) AND timely (“RTOS”)

¢ RTOS are very popular in embedded control

DSP28 - DSP/BIOS 12-3

A RTOS - Task

A RTOS - Task

One of the basic terms of a RTOS is ‘task’. A task is an independent portion of the whole control
solution that is driven by its own program code. This owns a predefined set of resources and
interacts with other tasks only by means of the RTOS. A task is characterised by its own set of
state variables, its own local stack and program counter.

Real Time Operating Systems (RTOS)
What is a Task?

¢ A running or executable program object, that:
+ is controlled by a portion of machine code

+ ‘owns’ a given set of operating resources to
start/resume its course of actions

+ is characterized by a set of state variables (
registers, program counter, local stack variables,
semaphores, mailboxes)

¢ Tasks are programmed and debugged
independently from each other

¢ Accesses to peripherals or data transfers
between tasks are performed by RTOS -
system functions calls.

Tasks are designed and debugged independently from other activities of the control unit. Each
task follows the design rules of the RTOS. To estimate the workload of the computing system,
each task is characterized by the following timing information:

¢ Best case execution time (BCET) in number of CPU-cycles

e Worst case execution time (WCET) in number of CPU-cycles

e Period of task or time interval between two consecutive requests to start the task

e Amount of time for resource usage, block time

e Task “Dead Line” - latest time when the task must be finished, measured from the
point of requesting the task.

For a “hard”-RTOS, no task must fail to meet its Dead Line under any circumstances, throughout
the whole lifetime of the control system. Most embedded systems are of this type.

12-4 DSP28 - DSP/BIOS

Task State Model

Task State Model

Each task will be in one of the states given in the task state model (see slide 12-4). The RTOS
takes control of the current status and possible transitions for each individual state.

Real Time Operating Systems (RTOS)
What is a Task- State - Model?

¢ Each task can reside in one of the following
states:

For explanation of arrows 1-8 see next slide

The states are:
e Existent - The task is installed in the control system but not yet activated.

e Ready- The task is activated and ready for running. It owns all necessary
resources but the processor.

e Running - The task is currently executing

e Blocked- The task is waiting for a resource, a message, a signal or an event,
which has not yet occurred.

e Completed — The task has terminated and awaits a new activation.

e Not Existent — The task has been cancelled permanently.

DSP28 - DSP/BIOS 12-5

Task State Model

The transitions between the states of a task are explained at the next slide. It is important to
remember that some of the transitions are initiated by the RTOS-Scheduler, whereas others are
performed by the task that is currently in state “running”.

When does the task — state change?

Real Time Operating Systems (RTOS)

1. A task is created by an initialization function
2. é l;zlljsk is selected by the scheduler to use the

3. The scheduler performs a task chan%ﬁ
i‘{f‘gg‘“g to the scheduling rules of the

4. The running task js waiting for an external
event , a message from another task or for a
signal

5. The event that was blocking a task has
occurred

The task has completed its program

The task is re-activated by another task or
by an event

8. The task will never be used again (as long as
the embedded system is not switched off)

All other task state transitions are illegal.

The transitions are:

(1)

2)

)

4)

)

(6)

(7
(®)

A task is activated by another task. This is usually done by an initialization
function during startup. Alternately, a running task needs to be supported by a
new ’child’ task and therefore activates a new one.

According to the rules of the RTOS, one of the tasks in the “ready” state is
selected by the scheduler to use the processor.

The scheduler decides to swap the task in the “running® state with another task in
the “ready“ state according to the scheduling rules of the RTOS.

The “running task™ waits for an external signal, for a message or for any other
resource that is not available at this time.

The scheduler administrates all blocked tasks with their blocking events. If one
event occurs, the blocked task will be freed and merge back into the “ready”
state.

The running task has terminated.

The task is re-activated by the running task.

The task is permanently deleted from the system by the running task.

12-6

DSP28 - DSP/BIOS

The RTOS - Scheduler

The RTOS - Scheduler

One of the core modules of a RTOS is the scheduler. As the name implies, it schedules the
execution of all tasks in a control system. It uses the task state model and the rules of the RTOS
to work out how to handle multiple requests at one time. The main task of a RTOS-Scheduler is
to interleave all tasks in state “ready”, so that each individual task is able to meet its specified

dead line.

Real Time Operating Systems (RTOS)

What is a Task - Scheduler?

¢ An important part of the RTOS that schedules the
sequence of task execution phases and the change of
task states

¢ Two basic operating modes for schedulers:

+ time slice mode - computing time is assigned to tasks in a
predefined amount of processor time

+ priority mode — computing time is assigned to tasks
according to the priority of each task in the system. If a
task with higher priority gets into status ‘ready’ the
running task will be pre-empted.

+ combined versions between pre-emptive and time slice
schedulers are also possible

A scheduler is no magic trick; it follows strict rules that were defined during the system
configuration of the embedded system. Depending on the ability of the RTOS, we can choose
between different options to tailor the scheduler. In general, there are two basic operating modes
for the scheduling rules:

Time Slice Mode - CPU time is granted to the tasks in fixed amounts of time. If the

Priority Mode

slice was consumed by the task before it could finish its
operation the next “ready” task will be selected by the
scheduler. The old task is suspended and will be added back at
the end of the waiting list in state “ready”. It will resume its
operation when the next slice is granted by the scheduler.

The scheduler uses the priority of a task to perform task
switches. If there is a task in state “ready” with a higher priority
than the running task, the scheduler will swap the two tasks.
Some RTOS allow dynamic change of the priority depending
on the current situation of the control system, others use static
priorities. Common rules are “Dead Line Monotonic”, “Rate
Monotonic”, “Earliest Dead Line First” or “Least Laxity”.

DSP28 - DSP/BIOS

12-7

Texas Instruments DSP/BIOS

Texas Instruments DSP/BIOS

For the TMS320 family of Digital Signal Processors Texas Instruments offers a Built-In
Operating System (BIOS) to support the setup of embedded control systems and to help designers
to build control schemes according to the “philosophy” of Real Time Operating Systems.
DSP/BIOS allow the designer to split a control project into independent sub-modules and to
control the interaction between the “tasks” by means of the operating system. Instead of writing
your own code to initialize and administrate interrupt vector tables, service routines and internal
hardware modules, you can use standardized accesses to do so.

DSP/BIOS is available as a scalable real time kernel, it can be tailored in its size to the needs of
the developer. It features all the typical functions of a RTOS and is equipped with a pre-emptive
priority driven scheduler.

During debug a new real time analysis tool is available to verify the correct functionality of the
system solution.

Texas Instruments DSP/BIOS
What is DSP/BIOS?

¢ BIOS = “Build In Operating System”

& Texas Instruments firm ware RTOS kernel
for the TMS320 family of DSP’s

¢ A full-featured, scalable real-time kernel
+ System configuration tools
+ Preemptive multi-threading scheduler
+ Real-time analysis tools

DSP/BIOS is an integrated part of Code Composer Studio and can be included to any CCS
project as simply as adding another source code file to an existing project. Lab12 will prove this.

12-8

DSP28 - DSP/BIOS

Texas Instruments DSP/BIOS

The next slide summarizes some reasons to take into account when starting a new project.
Especially with the C28x and its powerful math units, it is worth considering the use of
DSP/BIOS.

For most car manufacturers it is mandatory to have electronic control units equipped with RTOS
functionality. If you decide to build your professional career in the automotive industry, you
won’t be able to skip this point.

Texas Instruments DSP/BIOS
Why use DSP/BIOS?

¢ Helps manage complex C28x system resources

¢ Allows to develop and test tasks in a multiple
task control environment independently

*

Reduces software project development time
Eases software maintenance & documentation
¢ Integrated with Code Composer Studio IDE

+ Requires no runtime license fees

*

+ Fully supported by TI and is a key component of
TI’s eXpressDSP™ real-time software technology

¢ Uses minimal MIPS and memory (2-8K)

DSP28 - DSP/BIOS 12-9

DSP/BIOS Configuration Tool

DSP/BIOS Configuration Tool

The following slide highlights all major blocks of DSP/BIOS. They are:
e The System Configuration Tool (“System”)
e The Real-Time Scheduler (“Scheduling”)
e The Real-Time Analysis Tool (“Instrumentation”)
e The Task Synchronisation Module (“Synchronisation’) and

e The Real-Time Data Exchange Support (“Input/Output”)

DSP/BIOS Configuration Tool e .can)

Estimated Data Size: 913 Est. Min. Stack Size [MAUs] 260

i B8 Global Settings

*
: MEM - Memory Section Manager . .
3 BLUF - Buffer pool Manager Handles memory configuration
545 - System Settings) — (builds .cmd file), run-time support
@Y, HOOK - Madule Hook Manager libraries, interrupt vectors, system
£ (g Instrumentation setup and reset, etc.

LOG - Event Log Manager . .
Real-Time Analysis Tools

System Setup Tools

#-[F] 575 - Statistics Object Manager

*
=] QB Scheduling . .
48 CLK - Clack Manager Allows application to run

-} PRD - Periodic Function Manager uninterru pted while d|sp|ay|ng
3| '"1, HWI - Hardware Inkerrupt Service Routine Manager debug data

[
-3 SWI - Software Interrupt Manager
5§ T5K - Task Manager ¢ Real-Time Scheduler
&3] c] I0L - Idle Function Manager
£ %4 Synchronization Preemptive tread manager kernel
‘%’ SEM - Semaphore Manager
% ME¥ - Maibox Manager <* ReaI'Time |/0
"__.| QUE - Akomic Queue Manager . .
@ LCK - Resource Lotk Manager P Allows two way communication

=8 Inputjoutput between threads or between

@ RTDA - Real-Time Data Exchange Settings target and PC host
B3 HST - Host Channel Manager

:'&, PIP - Buffered Pipe Manager
----:3_: SI - Stream Input and Qukput Manager
[#-4dp Device Drivers

The first part of DSP/BIOS that will be useful during the set-up of a CCS project is the System
Configuration Tool. In general, this tool will replace the handwritten linker command file that we
have used so far in our lab exercises. With the help of the Configuration Tool, we can define new
sections of physical memory and connect logical software segments to memory locations
(“MEM”). Global settings, like defining the stack size, are also done within this tool. In Lab
exercise 12, we will use this tool to setup the linker environment.

With the help of the scheduler group, we can configure the different tasks that are part of the
project. There are four different groups of tasks available: Hardware — Interrupts (“HWI”),
Software Interrupts (“SWI”), Tasks (“TSK”) and Periodic Functions (“PRD”). We will use the
scheduler part to connect RTOS-function to our software modules.

12-10 DSP28 - DSP/BIOS

DSP/BIOS Task Groups

DSP/BIOS Task Groups

If we look into a typical development cycle of a project that is not driven by an OS, we will face
the following design problem:

Design Problem: Add a new Function

—> Existing Function
_. New Function

+ lIssues:

+ Do we have enough remaining computing

il power to add another function?

+ Are there possible resource conflicts
between the new function and the
existing system?

+ Will the new system meet all time
restrictions in a real-time embedded
control system?

What are some possible solutions?

12-10

A new function is to be added to our existing project. A professional embedded system designer
would NOT start immediately with the new coding and hope that afterwards everything will work
as expected. That would be the ‘trial and error’ method and is no good at all for safety critical
applications. Instead, a serious developer would try to answer the following questions first:

How much computing power is still available BEFORE we add a new function?

How much storage capacity will the new function need? Is there enough code
memory left?

What type of resources will be needed by the new function? Are there potential
conflicts with other functions in the system?

Are there any interactions, synchronisations or message transfers between the
new function and the existing functions needed?

What is the deadline of the new function, once it is called? What is the estimated
computing time for the new function?

Do I have to prioritize the new function against others? Are there consequences
for the execution of other functions, when I have to modify the priorities of
existing functions?

DSP28 - DSP/BIOS

12-11

DSP/BIOS Task Groups

If the new system seems feasible and we do not have an OS-support, we could add the new
function as shown at the next slide:

Solution 1: extend the main-loop

Main() ¢ Call each function from an

while(1) endless loop within main

& Potential Problems:

{

What if Algorithms run at different rates:
}
}

- motor current loop at 20 kHz
- respond to keypad input at 2 Hz

What if one algorithm consumes enough
MIPS to force the other algorithm to miss its
real-time deadlines / delays its response?

12-11

This is a simple solution that might work for a few projects. But with this scheme we can face
new problems:

e What if function 1 has to be executed more frequently than function 2? Answer:
we could call function 1 more than once before we call function 2:

while (1)
{
function 1();

function 1();

function 1();

function 2()

}

e But what if function2 takes too long to execute? We might reach the next call of
functionl too late for its real time interactions! In this case we would have to
completely re-write function2, split it into several parts and interleave calls to
functionl. The resulting code would not look structured at all!

Obviously there must be a more appropriate way for this type of real-time programming!

12-12 DSP28 - DSP/BIOS

DSP/BIOS Task Groups

If you already have some basic experience with microprocessors, you may have suggested using
interrupts instead of the function loop in solutionl. This principle is shown with the next slide:

Solution 2: use interrupts

¢ An interrupt driven system places

Enain each function in its own ISR

while(1); Period Compute CPU Usage
} Funcion1: 0.05ms 1ps 2%
Function1 ISR Function 2: 500 ms 3 us ~ 0%
{ 2%
-
} running g N

/ \\ Function 1
1
[| 1

Function2_ISR L v

}

TIDSP ime o0 1 2 3 4 5 6 7

Only one ISR can run at a time: Function 1 will be delayed,

eventually missing its deadline... 12-12

We distribute all functions into dedicated Interrupt Service Routines (ISR). The main function
will perform basic initialization routines for the project like system setup, memory initialization,
peripheral unit setups, enabling of desired interrupts, prepare timer periods etc. At the end of
main the code will stay in an idle-loop, in C usually coded as “while(1);” or “for(; ;);”. When
one of the hardware units, for example a timer, calls its ISR, the assigned function will be
executed. After finishing this ISR the processor will return to main’s idle-loop and await the next
interrupt.

Our previous example could use a first timer that is initialized to a period of 50us and a second
timer with a period of 0.5s. All we would have to do is to connect timer 1 interrupt service to
function 1 and timer 2 to function 2.

This principle will work fine for most of the time, but sometimes our control unit will behave
unexpectedly. Why is this?

If the processor executes function 2 and at the same time function 1 is requested by timer 1 ISR,
the processor will finish function 2 first before it deals with the next request. In this case the
execution of function 1 will be delayed. In best cases our system will behave a little bit
sluggishly, in worst cases the motor that is controlled by function 1 will change from full forward
to full reverse....

DSP28 - DSP/BIOS 12-13

DSP/BIOS Task Groups

Hardware Interrupts (HWI)

The usual back door way out of this dilemma is using interrupts that can be interrupted by other
interrupts. This principle is called ‘nested’ interrupts and is usually the best solution for this type
of real-time projects. Nesting interrupts requires the save of the environment (registers, stack
pointer, flags etc) and status of the running interrupt before the processor can switch to the next
interrupt service. Before the processor can switch back to the interrupt that was paused, the status
must be restored. This principle is called ‘context save & restore’. If you do not have the support
of an OS, you would be responsible to take care of these additional steps. Or, your C-compiler
adds context save & restore functions automatically — usually when you mark a function with
keyword “interrupt”.

Solution 3: nested hardware interrupts (HWI)

¢ Nested interrupts allow hardware

Enain interrupts to preempt each other
return; S
}
idle

Function1_ISR
{

|
} Time o0 1 2 3 4 5 6 7
Function2_ISR

{ ¢ Use DSP/BIOS HWI dispatcher for context
save/restore, and allow preemption

} ¢ Reasonable approach if you have limited

number of interrupts/functions

& one HWI function for each interrupt

12-13

In case of DSP/BIOS the OS itself takes care of context switch. The Texas Instruments syntax for
nested interrupts is called “Hardware Interrupt (HWI)”. For the C28x we can assign one HWI
function for each physical interrupt line INT1-INT14.

NOTE: To use DSP/BIOS as background task system, we have to leave the main function after
all initialization is done! Make sure that you do not have any endless loop construct still in your
main — code.

DSP/BIOS will call its own idle — function if there are no other activities necessary at the
moment.

12-14 DSP28 - DSP/BIOS

DSP/BIOS Task Groups

To adapt a non-DSP/BIOS code for interrupt service routines you will have to delete the keyword
“interrupt’ from an existing service routine.

DSP/BIOS - HWI Dispatcher for ISRs

¢ For non-BIOS code, we use the interrupt keyword to declare an ISR
> tells the compiler to perform context save/restore
interrupt void MyHwi(void)
{
}

¢ For DSP/BIOS code, the dispatcher will perform the save/restore
> Remove the interrupt keyword from the MyHwi()
> Check the “Use Dispatcher” box when you configure the interrupt
vector in the DSP/BIOS config tools
S|

General Dispatcher I

V¥ Use Dispatcher

Aig (0x00000000

Interrupt Mask [ERO I_I
Intermupt Bitask R, [0000T

0K I Cancel Apply Help

12-14

Next you will have to tell the DSP/BIOS configuration tool to take care of context switches. Open
the configuration database file (*.cdb) and click on

=>» Scheduling = HWI Hardware Interrupt Service Routine Manager

Expand the ‘+’-sign in front of HWI, click right on the HWI that you want to modify (e.g.
“HWI_INT1”) and select “Properties”

Under “General” you can specify the name of the function that you’d like to connect to this HWI,
e.g. MyHwi. The underscore in front of the name of the function is mandatory to indicate a C
code function.

Under “Dispatcher” enable the box “Use Dispatcher”, this will include the context save and
restore functions that are needed to allow nested hardware interrupts.

DSP28 - DSP/BIOS 12-15

DSP/BIOS Task Groups

Software Interrupts (SWI)

The next group of DSP/BIOS functions is called “Software Interrupts (SWI)”. As the name says,
this group of functions is initiated by software requests. The difference to HWI’s is that the user
has more flexibility in the system design when using software interrupts. Whilst the priority of all
hardware interrupts is given by the C28x and can’t be changed at all, the user has full flexibility
to assign priorities to software interrupts as static or dynamic priorities. The number of software
interrupts is not limited by DSP/BIOS; of course the number of feasible software interrupts
depends on the computing time that is consumed by all software interrupt functions.

DSP/BIOS - Software Interrupts (SWI)

¢ Make each algorithm an independent

main software interrupt

{.. s

Il veturn to O/S; ¢ SWI scheduling is handled by DSP/BIOS
} ¢ HWI function triggered by hardware

¢ SWI function triggered by software
L DsP/BIOS e.g. a call to SWI_post()

¢ Why use a SWI?

¢ No limitation on number of SWis, and
priorities for SWIs are user-defined

¢ SWI can be scheduled by hardware or
software event(s)

¢ Relocate task processing from HWI to SWI

12-15

A recommended principle is to limit the length of hardware interrupt service routines to an
absolute minimum, just what is necessary to deal with the hardware event. All other activities that
must be executed due to the hardware event are relocated into software interrupt services. The

HWI schedules all actions that should follow the hardware event. Thus the DSP/BIOS controlled
project is most flexible.

12-16

DSP28 - DSP/BIOS

DSP/BIOS Task Groups

Periodic Functions (PRD)

Another group of DSP/BIOS objects are called “Periodic Functions”. They are based on
multiples of the DSP/BIOS system clock and are usually used to call a function at equally spaced
time intervals, e.g. blinking a LED. Recall our previous lab exercises where we used one of the
C28x core timers or an event manager timer just to create a period for a next event. We can
simplify these exercises by replacing all the timer functions by a periodic DSP/BIOS function!

DSP/BIOS - Periodic Functions

 tick |
DSP/BIOS =

LED LED LED

¢ Periodic functions run at a specific rate in your system:
- e.g. LED blink requires 0.5 Hz

¢ Use the CLK Manager to specify the DSP/BIOS CLK rate in
microseconds per “tick”

¢ Use the PRD Manager to specify the period (for the function) in ticks

¢ Allows multiple periodic functions with different rates

12-16

First we have to specify the DSP/BIOS clock rate (“ticks”) in microseconds per tick. This is done
with the CLK Manager of the Configuration Tool.

Next we can use the Periodic Function Manager (“PRD”) to define the period for a specific
function in number of ‘ticks’. We also have to connect the PRD-event with a function from our
source code.

The procedure for creating a periodic event in DSP/BIOS is shown at the next slide. Later in lab
exercise 12 we will use a periodic function to modify the status of our 8 LED output lines
periodically.

DSP28 - DSP/BIOS 12-17

DSP/BIOS Task Groups

The two steps to prepare a periodic function are shown at the slide:

Creating a Periodic Function

DSP/BIOS e
G inlipinginininininlininln

period |_| |_|

fur;c1 fur;c1

CLK - Clock Manager Properties ! B 1 ab.cdb LedBlink_PRD Properties
General 3 : ; :
l Estimated Data Size: 948 Est. Min. Stack Si Gienerl |
Obiect Memary: @ Systerm
B [-_, . comment:
¥ Ensbl= CLK Marages (-l Instrumentation
: S - =]
[¥ Use high resolution time for intemal timings T

Microseconds/Int: | 1000.0000

I™ Directly configure on-chip timer registers

mode I confinuous ¥
n Manager

I function | Ledsink I

Scheduling periad [ticks): |500
£ CLK - Clock Manager

I~ | Fix TODR

TDDF Fegister: |2
PHD Redister 43353

[=
g SWI - Software Interrupt Manage angl: IDHUDUDUUUU
@ TSK - Task Manager

agl: IUHUDUDUUUU
-6 0L - Idle Function Manager

[-#& Synchronization period (ms]: I5DU 0
Istiuctons/lnt [150000 . Toput{Output
ok Cancel | Apply |
T [| |
12-17

Finally, to start DSP/BIOS we have to terminate the main function:

Enabling BIOS — Return from main()

main ¢ Must delete the endless while() loop
{ ¢ main() returns to BIOS IDLE thread,
|l return to BIOS allowing BIOS to schedule events,

} transfer info to host, etc.

¢ An endless while() loop in main()
will not allow BIOS to activate

“DSP BIOS

12-18

12-18 DSP28 - DSP/BIOS

Real-Time Analysis Tool

Real-Time Analysis Tool

Important test support tools for RTOS based projects are analysis tools to measure and document
the efficiency and the feasibility of the implementation. This includes graphical displays for
resource usage, CPU load, the sequence of task changes during test runs and measurement tools
for blocking times of resources by individual tasks. At the end of the day the designer must
answer all the questions that we have discussed at beginning of this module with solid facts. A
widely used tool that is used to support these debug and test phases is a logic analyzer, used in
combination with a real time data logging system.

Built-in Real-Time Analysis Tools
¢ Gather data on target (3-10 CPU cycles)

¢ Send data during BIOS IDL (100s of cycles)

¢ Format data on host (1000s of cycles)

¢ Data gathering does NOT stop target CPU

1 Execution Graph - 0| x!
ADEﬁswn R T P N . -f .
L Execution Graph
KNL_swi .
SEM Posts ¢ Software logic analyzer
DlheuT_hreads - L | - = - m - m . .
Hl s ¢ Debug event timing
i N and priority
4]

CPU Load Graph

¢ Shows amount of CPU-
power being consumed

| Last 43.43% +00 | Peak: 43.43%

12-19

Texas Instruments provides some of these support tools as integrated parts of DSP/BIOS. The
Execution Graph shows the flow and interleaving of tasks and interrupts on a time base. The CPU
Load Graph gives a graphical view of the C28x computing time that is used by the whole project,
excluding the DSP/BIOS idle function.

Another tool is the “Event Log Manager (LOG)”. In order to send debug information about the
sequence of instructions to a terminal window a designer quite often uses ‘printf’- instructions.
The disadvantage is the modification of the code by these additional instructions. With
DSP/BIOS we can use the LOG — window for this purpose. All logging instructions will be
executed by the OS in background, hence not delaying the original flow of program execution.

DSP28 - DSP/BIOS 12-19

DSP/BIOS API

DSP/BIOS API

The next slide is a summary of all API Modules that are part of DSP/BIOS. In the next lab
exercise we will use the Memory Manager (MEM), System Clock Manager (CLK) and Periodic
Function Manager (PRD).

DSP/BIOS - API Modules

Instrumentation/Real-Time Analysis

TSK Communication/Synchronization

LOG
STS
TRC
RTDX

Message log manager

Statistics accumulator manager
Trace manager

Real-Time Data eXchange manager

SEM
MBX
LCK

Semaphores manager
Mailboxes manager

Resource lock manager

Device-Independent Input/Output

Thread Types

HWI
Swi
TSK
IDL

Hardware interrupt manager

Software interrupt manager
Multi-tasking manager

Idle function & process loop manager

PIP
HST
sio

DEV

Data pipe manager

Host input/output manager

Stream |/0 manager

Device driver interface

Memory and Low-Level Primitives

Clock

and Periodic Functions

CLK
PRD

System clock manager
Periodic function manager

MEM
SYS

QUE
ATM
GBL

Memory manager

System services manager

Queue manager
Atomic functions

Global setting manager

12-20

12-20

DSP28 - DSP/BIOS

Lab Exercise 12

Lab Exercise 12

Lab 12: Modify Lab 2 to use BIOS

+ Use your solution for Lab2 to begin with
+ Modify the project to use DSP/BIOS functionality

+ Let DSP/BIOS create the necessary Linker
Command Files

+ Replace the software delay loop from Lab2 by a
periodic function (“PRD”) of DSP/BIOS

+ Create a new function “led_runner()” that will
activate the next state of the LED-line

+ Call this function every 500ms with a PRD-function
out of DSP/BIOS

+ For a detailed procedure see textbook!

12-21

Objective

The objective of this laboratory exercise is to implement the code from Lab2, this time using
DSP/BIOS periodic functions rather than a simple software delay loop to generate the time
separation.

Instead of using the linker command file from Lab2 we will use the DSP/BIOS Configuration
Tool to auto generate the linker information

We will add a periodic function (PRD) to the DSP/BIOS system that will be used to execute the
next state of our control sequence.

Procedure

Open Files, Create Project File

1. Create a new project, called Lab12.pjt in E:\C281x\Labs.

2. Open the file Lab2.c from E:\C281x\Labs\Lab2 and save it as Labl2.c in
E:\C281x\Labs\Lab12.

DSP28 - DSP/BIOS 12-21

Lab Exercise 12

3. Add the source code file to your project:
« Lab12.c

4. From C:\tides\c28\dsp281x\vI00\DSP281x_headers\source add:
e DSP281x_GlobalVariableDefs.c
5. This is the first exercise in which we are using the DSP/BIOS. This requires a new
linker command file to be added to our project. The new command-file, also
provided by Texas Instruments with the peripheral header files, excludes the

PieVectorTable structure from the project.

From C:\tides\c28\dsp281x\v100\DSP281x_headers\cmd add:

e F2812_Headers_BIOS.cmd

6. The DSP/BIOS itself will include the C environment library files into the project.
There is no need to add the file “rts2800 ml.lib” manually.

7. Next we have to create a DSP/BIOS Configuration File (*.cdb). Select:
File > New > DSP/BIOS Configuration

From the next window select the template “c28xx.cdb” to begin with. Save the new
configuration file as “lab12.cdb”.

8. Add the configuration file to your project:
Project > Add Files to Project > lab12.cdb

9. The DSP/BIOS configuration has automatically generated a new linker command file
“lab12cfg.cmd”, which must be added to our project manually:

Project - Add Files to Project - lab12cfg.cmd

Project Build Options
10. Setup the search path to include the peripheral register header files. Click:
Project = Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search Path (-
1) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include

Close the Build Options Menu by Clicking <OK>.

12-22 DSP28 - DSP/BIOS

Lab Exercise 12

NOTE: Do NOT setup the stack size inside the Build Options! It will be done with
the help of the DSP/BIOS configuration tool later.

Modify Source Code

11.

Open Lab12.c to edit.

Disable the Watchdog Timer:

In function “InitSystem” make sure to disable the watchdog timer (register
WDCR). For the first DSP/BIOS — Test we would like to keep the code as simple
as possible. Later, if the code works, we can easily expand our test setup.

Delete function “delay loop”:

Recall, in lab2 we used a software delay function for the interval between the
LED-output instructions. For lab12, all timing will be done by DSP/BIOS.

Delete the endless “while(1)” construct in “main”:

At the end of “main” DSP/BIOS will take care about the background activities
and the timing of all active tasks. If we do not return from main, DSP/BIOS will
not start.

Add a new function “led_runner()” at the end of your code:

This new function will be called by DSP/BIOS periodically. The code inside this
function should copy the next value from array LED[&] to the LED-lines.

Remove variable “1” and “LED[8]” from “main” and add them at the beginning
of this new function. Declare them as “static” and initialize “i” to 0.

Increment “i” with each call of function “led runner” and load the next value out
of “LED[8]” into register “GpioDataRegs. GPBDAT.all”.

Do not forget to reset i to 0 after the end of the sequence was reached!

Edit DSP/BIOS Configuration

12. Open File “lab12.cdb”.

“MEM — Memory Section Manager”

Inspect the “System” Category by expanding the ‘+’ sign in front. Click right on
“MEM — Memory Section Manager” and select “Properties”. Verify that in the
“General”- Folder the Stack Size has already been defined as 0x0200. This is a
default value for the stack size that was initialized when we created the
configuration file. If necessary for larger project, this size can be adjusted here.
For now, just keep the default value.

DSP28 - DSP/BIOS

12-23

Lab Exercise 12

Next, move to the “Compiler Sections” tab. This table controls the connection of
code sections to physical memory in an identical way, to which we used in our
handmade linker command files. When we edit the configuration, this table will
be used by CCS to auto-generate the linker command file “lab12cfg.cmd”, which
is already part of our project. For now, just keep the table with its default values.

Close the “MEM” — menu by clicking <OK>.

“CLK” - Clock Manager

Right click on “CLK” and select “Properties”. Enable “Use high resolution time
for internal timings” and set the number of microseconds per interrupt to 1000.

Eigenschaften von CLK - Clock Manager x|

General |

Object Memery: | LOSARAM =l
[¥ | Enable ELK Manager

¥ Use high resolution time for internal imings

Microseconds/nt; 1000
[™ Directly configure on-chip timer registers

I~ Eix TODR

TDER Reaister: |2

FRE Register: |4SE!E|9

| rstructiorsddnt: I'I 50000

0k I Abbrechenl [Ibernehmen Hilfe

“PRD — Periodic Function Manager”

Expand the “Scheduling” Category. For labl12 we would like to add a periodic
function to our project. Click right on “PRD — Periodic Function Manager” and
select “Insert PRD”. A function “PRDO0” will be created.

Rename “PRDO0” to “LED_Line”.

Next, click right on “LED Line”, select “Properties” and edit the general
properties of this object. Edit the number of ticks from 65535 to 500. This is the
period of the function call in milliseconds. In field “function” enter
“ led runner”. Do not forget the leading underscore!

12-24

DSP28 - DSP/BIOS

Lab Exercise 12

Eigenschaften von period_led ﬂ

General |

comment: |<al:||:| comments herex

period (Hcks): (S0

mode I continuous b |

funchion: I_Ied_runner
argl; IEIHDEIEIEIEIDDD
aigl: IDHDDDDDDDD

period (e IEDD.D

0k I Abbrechen Ubermehmen Hilfe

Build the project

13.

Click the “Rebuild All” button or perform:

Project > Build . If build was successful you’ll get:
Build Complete, 0 Errors, 0 Warnings, 0 Remarks.

Test the code

14. Test the project with the debugger by hitting <F5>. The LED - line should show the

15.

next value after 500ms. The amazing thing is that our code never calls this function;
it is called by the scheduler-task of DSP/BIOS every 500ms.

Let’s have a final look into the source code. The main function consists of only 2
function calls:

void main (void)

{
InitSystem() ;
Gpio_select();

}

After returning from “Gpio_select()” main itself terminates! For a standard
embedded systems program this would be most strange because leaving “main”
would definitely cause a system crash.

In case of lab12 with DSP/BIOS supporting a background task, the DSP/BIOS-
scheduler, takes care of further activities.

DSP28 - DSP/BIOS

12-25

Lab Exercise 12

16. You can experiment with different time intervals for the call of function “led runner”
by changing the period property of PRD-function “LED Line” in the DSP/BIOS
configuration file “Lab12.cdb”.

Potential Solution for function “led_runner”:

void led runner (void)
{
static unsigned int i=0;
static unsigned int LED[8]= {0x0001,0x0002,0x0004,0x0008,
0x0010,0x0020,0x0040,0x0080} ;
if (i<7) GpioDataRegs.GPBDAT.all = LED[i];
else GpioDataRegs.GPBDAT.all = LED[14-i];

if (i++ > 13) 1i=0;

12-26 DSP28 - DSP/BIOS

C28x Boot ROM

Introduction

In chapter 10 we already discussed the option to start our embedded control program directly
from the C28x internal Flash memory. We also looked briefly into other options for starting the
code execution. We saw that it is also possible to start from HO — SARAM, OTP and that we can
select a ‘boot load’ operating mode that engages a serial or parallel download of the control code
before it is actually executed.

In module 13 we will have a closer look into what is going on in these different modes and into
the sequence of activities that is performed by the C28x boot firmware before your very own first
instruction is touched. This chapter will help you to understand the start-up procedures of the
C28x and the power-on problems of an embedded system in general.

We start with a summary of the six options to start the C28x out of RESET, followed by a look
into the firmware structure inside the C28x Boot-ROM. This includes some lookup tables for
mathematical operations, a generic interrupt vector table and the code that is used to select one of
the six start options.

Because we have already dealt with the Flash start option in chapter 10, we can now focus on the
serial boot loader options. Two options are available: Serial Communication Interface (SCI) and
Serial Peripheral Interface (SPI). Both interfaces were discussed in detail in Modules 7 and 8. If
you have finished the lab exercises of these two modules successfully, you should be able to
develop your own code to download code from a PC as host into the SARAM of the C28x and
start it from there.

A typical application for the serial download of new code into the C28x is a field update of the
internal Flash memory that contains the control code for the embedded system. It would be much
too expensive to use the JTAG-Emulator to download the new code. Instead, Texas Instruments
offers a Flash API that uses exactly the same SCI boot load option to transmit the new code
and/or data into the C28x. This API - a portion of code that will be part of your project will take
care of the code update. For more details refer to “TMS320F2810, TMS320F2811 and
TMS320F2812 Flash API v1.00”, document number: SPRC125 on TI’s website.

Another typical application is the use of the SPI boot load option. In this case, an external serial
SPI-EEPROM of Flash holds the actual code. Before it is executed on the C28x, it is downloaded
into the C28x. This is a useful option for the ROM version of the C28x or for an R28x, which do
not have any internal non-volatile memory at all.

Finally, we will discuss a parallel boot load option that uses the GPIO port B to download code
and/or data into the C28x.

DSP28 - Boot ROM 13-1

Module Topics

Module Topics

C28x Boot ROM 13-1
TREFOAUCHION ... ettt 13-1
MOAULE TOPICS ...t ettt et et e et e et e e st e eab e e bbeeabeeeabeeeaeenaseenseeenseenasean 13-2
C28X MEMOTY MAP ...t ettt ettt et e e st e b et e e ebeeensaesteeeaseesseaenseenns 13-3
C28x ReSet BOOE LOAAETcccveeeiiieiii ettt 13-4

Timeline for BOOt LOAd:cooviiiiiiiiceieeeeee ettt e e et e e e e eetveeeeraeeeeaes 13-5
B0t — ROM MeEMOFY MAP........cc.ooooiiiiaiieee ettt ettt ettt saae e 13-6
SINE / COSINE LOOKUP TaDIEoueeniieiiiniieiiitieieeteteee ettt st ettt et sae e nbe e 13-6
Normalized SQUare ROOt TaDIEc.cceeieriieiiiieiicieceeeee ettt et sae e e aesseensesnnenee s 13-8
Normalized ArcTan TabIecc.veiieuiiiiiiie ettt e et eetae e et e e eeareeeane s 13-8
Rounding and Saturation TabIEcccecveriieiirieriiiieiiee ettt e et a e s e seeseesaeseeseenee s 13-8
BOOt LOAAET COUE......ueiieeeiiiieiie ettt e et e e et e e et e e e et e e eetaeeeeneeeeeareeeesaeeeenaes 13-8
C28X VECLOT TADIE ...ttt ettt e ettt e e st eeseaa e e e eataeeeeaaeeesneeessnteesssaeeesnes 13-9
Bo0t LOAAEr DAt Streami..................ccoeeeeeiiiiiiiieeiee et 13-10
Boot Loader Data Stream EXamPIecooeviiriiiiinieieeiesie ettt 13-11
Boot Loader Transfer FUNCLIONccc.oeioiuiiiiiiiicciie ettt ettt eve e et e et e eevee e eeanee e 13-12
Init BoOot ASSEMBIY FUNCHIONcooueiiieiiiiiiiieeit et et ettt 13-13
SCIBOOE LOAU. ...ttt ettt 13-14
SCI Hardware CONNMECTIONviiiieiieiieieeeeteeeceeieeeeeateeeeesteeeeseeeeesaaeeseeseeesenseesessaseesnsseessnseeesensesennes 13-14
SCI B0oOt Loader FUNCHION.........uuviiiiiiiiiiiiie et ettt e et e e e e e et e e e e e eennaaeeeeens 13-15
Parallel BOOt LOQAEFccc.oooouieiiieiiieeieeeeeeeeeeeee ettt 13-16
Hardware CONNECIIONcuueiieieiiieieieeetee et e eeeee e eetee e e et e e eeaaeeseaeeeeenteeeeesaeeesnaseesenseessnseesseneeeennes 13-16
C28X SOTIWAIE FLOWcceviiiieiie ettt et e et e e e e eta e e e e re e e eeteeeeereeeeareeennns 13-17
HOSE SOTEWATE FIOW ...cvviie ettt e et e et e s e e e e e eaeeeeeaaeeseneeeseneeeennes 13-18
SPIBOOE LOAUET ...ttt ettt 13-19
SPI Boot Loader Data StrEAIM...........cocveieeiueieiiieieeeieee et ettt eeite e e e e eeeteeeeetaeeeeereeeeeaneeeeereeeensneeenns 13-20
SPI BoOt Loader FIOWCRAITccvviiiiiiiiecieie ettt et e ettt ssaae e e eaeeseeneeeenes 13-20

13-2

DSP28 - Boot ROM

C28x Memory Map

C28x Memory Map

To begin with, let us recall the C28x memory map. We have a choice of starting our program
from Flash, OTP and HO-SARAM, as highlighted in the slide:

0x00 0000
0x00 0400

0x00 0800
0x00 0D00

0x00 1000
0x00 6000

0x00 7000
0x00 8000

0x00 9000

0x00 A000
0x3D 7800

0x3D 7C00
0x3D 8000
0x3F 8000

0x3F A000
0x3F F000

0x3F FFCO

TMS320F2812 Memory Map
Data | Program Data | Program
MO SARAM (1K)
M1 SARAM (1K)
PF 0 (2K) [reserved reserved
PIE vector
reserved
ENPIE=1
reServad XINT Zone 0 (8K) | 0x00 2000
PF 2 (4K) | reserved XINT Zone 1 (8K) | 0x00 4000
PF 1 (4K) | reserved
LO SARAM (4K) reserved
L RAM (4
1 SARAM (4K) XINT Zone 2 (0.5M) | 0x08 0000

XINT Zone 6 (0.5M) | 0x10 0000
0x18 0000

reserved
reserved
XINT Zone 7 (16K) | 0x3F C000
ot) (e3aS) MP/MC=1
BROM vector (32) XINT Vector-RAM (32)
MP/MC=0ENPIES MP/MC=1 ENPIE=0

We have six different options to start the C28x out of power-on. The options are hard-coded by 4
GPIO-Inputs of Port F (F4, F12, F3 and F2). The 4 pins are sampled during power-on; depending
on the status one of the following options is selected:

F4

1

0

0

F12 F3
X X
0 1
0 0
1 X
0 1
0 0

F2

X

1

0

FLASH address 0x3F 7FF6 (see slide 10-2)
HO — SARAM address 0x3F 8000
OTP address 0x3D 7800

: boot load from SPI

: boot load from SCI-A

: boot load from parallel GPIO — Port B

The F2812eZdsp controls the four lines F2, F3, F4 and F12 by four jumpers: JP7 (F4), JP8 (F12),
JP11 (F3) and JP12 (F2). A ‘1’ in the table above is coded as 1-2 and a ‘0’ as 2-3 jumper set.

Jumper JP1 selects “Microcomputer-Mode” (2-3) or “Microprocessor-Mode” (1-2).

DSP28 - Boot ROM

13-3

C28x Reset Boot Loader

C28x Reset Boot Loader

The next two slides summarize the RESET options of the C28x.

Reset
OBJMODE=0 AMODE=0

Reset — Boot Loader

XMPNMC=1
(microprocessor mode)

ENPIE=0 VMAP=1
MOM1MAP=1

XMPNMC=0
(microcomputer mode)

Reset vector fetched
from boot ROM

0x3F FFCO

Reset vector fetched
from XINTF zone 7

0x3F FFCO

Notes:

F2810 XMPNMC tied low internal to device
XMPNMC refers to input signal

MP/MC is status bit in XINTFCNF2 register
XMPNMC only sampled at reset

Boot determined by
state of GPIO pins

Execution Bootloading
Entry Point Routines
FLASH SPI
HO SARAM SCI-A
OTP Parallel load

Boot Loader Options

GPIO pins
F4 F12 F3 F2
1 X X X [jump to FLASH address 0x3F 7FF6 *
0 0 1 0 |jumpto HO SARAM address 0x3F 8000 *
0 0 0 1 |jumpto OTP address 0x3D 7800 *
0 1 x Xx | bootload external EEPROM to on-chip memory via SPI port
0 0 1 1 |bootload code to on-chip memory via SCI-A port
0 0 0 0 |bootload code to on-chip memory via GPIO port B (parallel)

* Boot ROM software configures the device for C28x mode before jump

13-4

DSP28 - Boot ROM

C28x Reset Boot Loader

Timeline for Boot Load:

1. RESET-address is always 0x3F FFCO. This is part of TI’s internal BOOT-ROM.

2. BOOT-ROM executes a jump to address 0x3F FCOO (the Boot Code). Here basic
initialization tasks are performed and the type of the boot sequence is selected.

3. Next, still as part of the Boot Code, the execution entry point is determined by the status
of the four GPIO-pins.

4. If one of the three boot loading options is selected, another dedicated part of the Boot
Code is executed to establish a standard communication path for SCI, SPI or parallel port
B. We will have a closer look into the three options in later slides.

Reset Code Flow - Summary

0x3D 7800
0x3D 8000

0x3F 8000

0x3F F000

RESET HEE 0x3F FFCO

OTP (2K)

| FLASH (128K)
E\ OX3F 7FF6

HO SARAM (8K)

Boot ROM (4K)

Boot Code
0x3F FC00

Execution Entry
Point Determined -
By GPIO Pins

|

BROM vector (32)

0x3F FC00

v
Bootloading
Routines
(SPI, SCI-A,
Parallel Load)

DSP28 - Boot ROM

13-56

Boot — ROM Memory Map

Boot — ROM Memory Map

Before we go into the boot load options let us have a closer look into the partitioning of the boot-
ROM area. The size of the area is 4K x 16bit and it is mapped both into code and data memory,
using a unified memory map.

TMS320F2812 BOOT-ROM Memory Map

Address Range Data & Program Space
0x3F F000 — 0x3F F501 SIN/COS; 641x 32(Q30)
0x3F F502 — 0x3F F711 Normal. Inverse; 264 x 32(Q29)
0x3F F712 — 0x3F F833 Normal. Sqrt;145 x32(Q30)
0x3F F834 — O0x3F FO9E7 Normal. Arctan; 218 x32(Q30)
0x3F F9E8 — 0x3F FB4F Round/Sat. 180 x 32(Q30)
0x3F FB50 - 0x3F FBFF reserved
0x3F FC00 - 0x3F FFBF Bootloader ; 960 x 16
0x3F FFCO — 0x3F FFC1 RESET - Vector; 2x 16
0x3F FFC2 — 0x3F FFFF Int. Vectors; 62 x 16

You can look at this memory with Code Composer Studio, providing you have started your
eZdsp-board in “Microcomputer-Mode™:

= View = Memory

SINE / COSINE Lookup Table

Let’s begin with the first 1282 addresses (0x3F F000 to 0x3F F501). This area includes a
SIN/COS — Lookup-table and consists of 641 32bit-numbers. The first 512 numbers are for a 360-
degrees unit circle with an increment angle of 360/512 = 0.703 degree. The remaining 128
elements repeat the first 90-degree angle.

To visualize the SIN/COS -values setup the memory window properties like this:

= View = Memory

13-6 DSP28 - Boot ROM

Boot — ROM Memory Map

Memory Window Options:

Memory Window Options 5[

Title: IMemDr_l,l
fddiess; | 0x003FFO00

G-V alue: |3|:1

Format; |32-Bit Sigrned [t j
[” Use|EEE Float

Page: IData j

[~ Enable Reference Buffer
Start Address; IUHUDDDUDUD

End Address; |I:I:-:EIEIEIEIEIEIEIEI
[T | Update Reference Buffer Sutomatizally

ok I Cancel | Help |

Numbers are in “IQ-Format” with 2 Integer and 30 Fractional Bits. CCS uses the binary content
of the memory to display it in the correct format:

¥ /F28xxRTDX PP Emulator/CPU_1 - 28k - Code Composer Studio (=] |
File Edit Yiew Project Debug Profler GFL Option Tools DSP/BIOS ‘Window Help
B L ER| e e ELE | pE i | EE| A4S
| EEE IS
| =l EEEEEIEEIEEY
Fler BEBEHEL ©
Em | | T ol
T [C] GEL files 003FFO00: 0.0 -
t--[] Projects O03FFO02: 0.01227153838
(22 003FFO04: 0.02454122808
™ 003FFO06: 0.03680722322
= O03FFO08: 0.0450676742
& 003FFO0A: 0.06132073807
— O03FFOO0C: 0.07356456388
i O03FFOOE: 0.08579731267
& O03FFO010: 0.09801714029
. O03FFO012: 0.1102222074
& O03FFO014: 0.122410675%5
ﬁ O03FFO016: 0.1345807081
. O03FFO015: 0.1467304742
& O03FFO1A: 0.1585581437
— O03FFO1C: 0.1709618885
O03FFO1E: (0.1830388878
003FFO020: 0.1950903218
O003FF022: 0.2071113763 _I
i 003FFOZ4: 0.2191012399
003FFO0Z6: 0.2310581086
003FFO028: 0.2429801803
| O03FFOZA: 0.25486565594
O03FFO02C: 0.2667127578
O03FFOZE: 0.2785186891
O03FFO030: 0.2902846774
O003FF032: 0.3020059434
O03FF034: 0.3136817403
O003FFO036: 0.3253102917
O003FFO035: 0.3368898537
O03FFO03A: 0.34841868
O03FFO03C: 0.3598950366
O03FFO3E: 0.3713171938
— O03FFO040: 0.3826834327
DI"'I NN3IFFN42: N.393997N0403 LI
[cPU HALTED [[For Help, pressF
Compare: sin (1* 360/512) = 0.012271538285719926079408261951003

sin (2* 360/512) = 0.024541228522912288031734529459283

DSP28 - Boot ROM 13-7

Boot — ROM Memory Map

Normalized Inverse Table

The next section of the Boot-ROM includes a lookup table for the Newton-Raphson inverse
algorithm. It spans 528 addresses (0x3F F502 to 0x3F F711) and covers 264 32-bit numbers in
1Q29-Format.

Normalized Square Root Table

From address 0x3F F712 to 0x3F F833 145 32-bit numbers are stored as a lookup table for
estimates of the Newton-Raphson square root algorithm. Data format is 1Q30.

Normalized ArcTan Table

A lookup table for the iterative estimation of the Normalized Arc Tangent follows from 0x3F
F834 to 0x3F F9E7 in 1Q30-format.

Rounding and Saturation Table

Finally memory area 0x3F FOES to 0x3F FB4F is used for rounding and saturation subroutines of
Texas Instrument library function, like 1Q-math or digital motor control libraries (dmclib). The
format is also of 1Q30.

Boot Loader Code

The last (1K — 64) of memory addresses is used for the Boot Loader Code. When the C28x is
coming out of RESET and is running in “Microcomputer Mode” this portion of code will be
executed first. As mentioned earlier it derives the actual entry point or the boot loader option
from the status of four input pins.

13-8

DSP28 - Boot ROM

Boot — ROM Memory Map

C28x Vector Table

The very last 64 addresses are reserved for 32 Entries of 32-bit address information for interrupt
service routine entry points. The layout is shown at the following slide. Each interrupt core line is
hard linked to its individual entry in this memory area. In the case where an interrupt is
acknowledged by the C28x the assigned 32-bit-information (shown in the next slide as
“Content”) is used as entry point for the dedicated interrupt service routine. Because we can’t
change the content of this TI-ROM we have to use the fixed entry points in MO-SARAM (0x00
0040 to 0x00 007F) to place a 32-bit assembly branch instruction into our dedicated interrupt
service routines. If we come out of RESET, all interrupts are disabled, so we don’t have to do
anything. If we decide to use interrupts, which is a wise decision for embedded control, we can
use MO-SARAM as vector table — or — we use the Peripheral Interrupt Expansion (PIE) Unit — see
Chapter 4.

C28x BOOT-ROM Vector Table
Vector Address Content Vector Address Content
RESET 0x3F FFCO | 0x3F FC00 RTOSINT | O0x3F FFEO 0x00 0060
INT1 O0x3F FFC2 | 0x00 0042 reserved 0x3F FFE2 0x00 0062
INT2 0x3F FFC4 | 0x00 0044 NMI 0x3F FFE4 | 0x00 0064
INT3 0x3F FFC6 | 0x00 0046 ILLEGAL 0x3F FFE6 | 0x00 0066
INT4 O0x3F FFC8 | 0x00 0048 USER 1 0x3F FFE8 | 0x00 0068
INT5 0x3F FFCA | 0x00 004A USER 2 0x3F FFEA | 0x00 006A
INT6 0x3F FFCC | 0x00 004C USER 3 0x3F FFEC | 0x00 006C
INT7 0x3F FFCE | 0x00 004E USER 4 0x3F FFEE | 0x00 006E
INT8 0x3F FFDO | 0x00 0050 USER 5 0x3F FFFO | 0x00 0070
INT9 0x3F FFD2 | 0x00 0052 USER 6 0x3F FFF2 0x00 0072
INT10 0x3F FFD4 | 0x00 0054 USER 7 0x3F FFF4 0x00 0074
INT11 0x3F FFD6 | 0x00 0056 USER 8 0x3F FFF6 0x00 0076
INT12 0x3F FFD8 | 0x00 0058 USER 9 0x3F FFF8 0x00 0078
INT13 0x3F FFDA | 0x00 005A USER 10 0x3F FFFA | 0x00 007A
INT14 0x3F FFDC | 0x00 005C USER 11 0x3F FFFC | 0x00 007C
DLOGINT | 0x3F FFDE 0x00 005E USER 12 0x3F FFFE 0x00 007E
13-7

DSP28 - Boot ROM 13-9

Boot Loader Data Stream

Boot Loader Data Stream

The following two slides show the structure of the data stream incoming into the boot loader. The
basic structure is the same for all the boot loaders and is based on the C28x hex utility. The tool is
called “hex2000.exe (C:\ti\c2000\cgtools\bin)” and is used to convert the project’s out-file, which
is in “COFF”-format into the necessary hex-format.

The first 16-bit word in the data stream is known as the key value. The key value is used to tell
the boot loader the width of the incoming stream: 8 or 16 bits. Note that not all boot loaders will
accept both 8 and 16-bit streams. The SPI boot loader is 8-bit only. Please refer to the detailed
information on each loader for the valid data stream width. For an 8-bit data stream, the key value
is 0xO8AA and for a 16-bit stream it is 0x10AA. If a boot loader receives an invalid key value,
then the load is aborted. In this case, the entry point for the Flash memory will be used.

Boot Loader Data Stream Structure
1 0x10AA : Key for memory width = 16 bit
2-9 Reserved for future use
10 Entry Point PC[22:16]
11 Entry Point PC[15:0]
12 Block Size (words); if 0 then end of transmission
13 Destination Address of block ; Addr[31:16]
14 Destination Address of block ; Addr[15:0]
15 First word of block
3
N Last word of block
N+1 Block Size (words)
N+2 Destination Address of block ; Addr[31:16]
N+3 Destination Address of block ; Addr[15:0]
o
)
13-8

The next eight words are used to initialize register values or otherwise enhance the boot loader by
passing values to it. If a boot loader does not use these values then they are reserved for future use
and the boot loader simply reads the value and then discards them. Currently, only the SPI boot
loader uses one word to initialize registers.

The next 10™ and 11™ words comprise the 22-bit entry point address. This address is used to
initialize the PC after the boot load is complete. This address is most likely the entry point of the
program downloaded by the boot loader.

DSP28 - Boot ROM

Boot Loader Data Stream

The twelfth word in the data stream is the size of the first data block to be transferred. The size of
the block is defined for both 8 and 16-bit data stream formats as the number of 16-bit words in
the block. For example, to transfer a block of twenty 8-bit data values from an 8-bit data stream,
the block size would be 0x000A to indicate ten 16-bit words.

The next two words tell the loader the destination address of the block of data. Following the size
and address will be the 16-bit words that makeup that block of data.

This pattern of block size/destination address repeats for each block of data to be transferred.
Once all the blocks have been transferred, a block size of 0x0000 signals to the loader that the
transfer is complete. At this point, the loader will return the entry point address to the calling
routine, which in turn will cleanup and exit. Execution will then continue at the entry point
address as determined by the input data stream contents.

Boot Loader Data Stream Example

Next is an example of a boot loader data stream that is used to load two blocks of data into two
different memory locations of the C28x. Five words (1,2,3,4,5) are loaded into address 0x3F 9010
and two words are loaded into address 0x3F 8000.

Boot Loader Data Stream Example
10AA ; Key for 16-Bit memory stream
0000
0000
0000
0000
0000
0000
0000
0000
003F ; PC - starting point after load is complete: 0x3F 8000
8000
0005 ; 5 words in block 1
003F
9010 ; First block is loaded into O0x3F 9010
0001 ; first data word
0002
0003
0004
0005 ; last data
0002 ; Second block is two words long
003F ; Second block is loaded into 0x3F 8000
8000
7700 ; first data
7625 ; last data
0000 ; next block zero length = end of transmission 13-9

DSP28 - Boot ROM 13- 11

Boot Loader Transfer Function

The next flowchart illustrates the basic process a boot loader uses to determine whether 8-bit or
16-bit data stream has been selected, transfer that data, and start program execution. This process
occurs after the boot loader finds the valid boot mode selected by the state of the GPIO pins.

The loader compares the first value sent by the host against the 16-bit key value of O0x10AA. If
the value fetched does not match then the loader will read a second value. This value will be
combined with the first value to form a word. This will then be checked against the 8-bit key
value of 0Xx08AA. If the loader finds that the header does not match either the 8-bit or 16-bit key
value, or if the value is not valid for the given boot mode then the load will abort. In this case the
loader will return the entry point address for the flash to the calling routine.

C28x Boot Loader Transfer Procedure

|Read first word(W1)|
No
Wiz 0x10AAD Rea(li secor;dbxzord
ower 8 bi
Yes

| 16bit data size |

Read E;try Point |<—
| 2

—)I Read BlockSize(R) |

Format Error

| Sbitdatasize |

Yes

No
| Read BlockAddress|
v

Y

Return and Jump

Transfer R words from to Entry Point
source to destination

13-10

13-12 DSP28 - Boot ROM

Init Boot Assembly Function

Init Boot Assembly Function

The first routine of the Boot-ROM that is called after RESET is the InitBoot assembly routine.
This routine initializes the device for operation in C28x object mode. Next it performs a dummy
read of the Code Security Module (CSM) password locations. If the CSM passwords are erased
(all 0xFFFFs) then this has the effect of unlocking the CSM. Otherwise, the CSM will remain
locked and this dummy read of the password locations will have no effect. This can be useful if
you have a new device that you want to boot load.

After the dummy read of the CSM password locations, the InitBoot routine calls the
SelectBootMode function. This function will then determine the type of boot mode desired by the
state of certain GPIO pins. Once the boot is complete, the SelectBootMode function passes back
the EntryAddr to the InitBoot function. InitBoot then calls the ExitBoot routine that then restores
CPU registers to their reset state and exits to the EntryAddr that was determined by the boot
mode.

C28x Init Boot Function

RESET
Init Boot

Initialize C28x:
OBJMODE =1
AMODE =0
MOMIMAP =1 Dummy Read - Call
DP=0 CSM passwords "| BootModeSelect
OVM =0

SPM =0

SP = 0x00 0400

A 4

A 4

ExitBoot

13-11

DSP28 - Boot ROM 13-13

SCI Boot Load

SCI

Boot Load

SCI Hardware Connection

The SCI boot mode asynchronously transfers code from SCI-A to the C28x. It only supports an
incoming 8-bit data stream and follows the same data flow as outlined before.

Note:

It is important to understand that, if you want to connect a PC via its serial COM-port to a C28x
you will need to have a RS-232 transceiver device in front of the C28x to generate the necessary
voltages. If you connect the C28x direct into the 2 PC-COM lines you will eventually destroy the

C28x!

The 2812eZdsp does NOT have such a device on the board. The Zwickau adapter board, which
was used in Module 8, is equipped with a TI MAX232. Ask your teacher about the actual set up

in your laboratory!

C28x
SCI-A

C28x SCI Boot Loader Function

7xD | RS 232 2
e.g. e Host/ e.g
RxD | Texas >< I;SD232 PC‘s COM1
MAX232 3

13-12

13- 14

DSP28 - Boot ROM

SCI Boot Load

SCI Boot Loader Function

C28x SCI Boot Function

Enable SCI-A Clock
Set LSPCLK to /4

Enable SCI-A Tx and

| Echo auto baud |
character

e

RxJ-'Pin | Read KeyValue |
Setup SCI-A: l
1 stop,8 data ,no parity No
No loopback FLASH
Disable SCI-A INT -
Disable SCI-A FIFO

l Yes

Prime SCI-A baud rate
register
ek
Enable Autobaud Sequence
detection

Autobaud
Lock ?

13-13

The F2810/12 communicates with the external host device by communication through the SCI-A
Peripheral. The auto baud feature of the SCI port is used to lock baud rates with the host. For this
reason the SCI loader is very flexible and the user can use a number of different baud rates to
communicate with the DSP.

After each data transfer, the DSP will echo back the 8-bit character received to the host. In this
manner, the host can perform checks that each character was received by the DSP.

At higher baud rates, the slew rate of the incoming data bits can be affected by transceiver and
connector performance. While normal serial communications may work well, this slew rate may
limit reliable auto-baud detection at higher baud rates (typically beyond 100 kbaud) and cause the
auto-baud lock feature to fail.

DSP28 - Boot ROM 13-15

Parallel Boot Loader

Parallel Boot Loader

Hardware Connection

The parallel general purpose I/0 (GPIO) boot mode asynchronously transfers code from GPIO
port B to internal or XINTF memory. Each value can be 16 bits or 8 bits long and follows the
same data flow as outlined in Data Stream Structure.

C28x parallel Boot Loader (GPIO)

C28x
GPIO

GPIO-D6

GPIO-D5

Host/ e.g.

PC*s COM1

, 16
4

GPIO-D6

GPIO-BO. .B15

1: C28 indicates: “ready to receive”

2: Host signals “data active at GPIO-B”
3: C28 indicates “read is complete”

4: Host acknowledges “cycle completed”

GPIO-D5

5: C28x indicates: “ready for more data”

@ @

®®

13-14

The F2810/12 communicates with the external host device by polling/driving the GPIODS5 and
GPIODG lines. The handshake protocol shown above must be used to successfully transfer each
word via GPIO port B. This protocol is very robust and allows for a slower or faster host to
communicate with the F2810/12 device.

If the 8-bit mode is selected, two consecutive 8-bit words are read to form a single 16-bit word.
The most significant byte (MSB) is read first followed by the least significant byte (LSB). In this
case, data is read from the lower eight lines of GPIO port B ignoring the higher byte.

The DSP first signals to the host that the DSP is ready to start a data transfer by pulling the
GPIODG6 pin low. The host load then initiates the data transfer by pulling the GPIODS pin low.
The complete protocol is shown in the slide above.

13-16

DSP28 - Boot ROM

Parallel Boot Loader

C28x Software Flow

Slide 13-15 shows a flowchart for the Parallel GPIO boot loader inside the C28x. After parallel
boot is selected during RESET, GPIO-port B is initialized as an input port. The two handshake
lines GPIO-D5 and D6 are initialized as input and output respectively.

Next, the first character is polled from GPIO-port B. If it was a valid 8- (0x08AA) or 16-bit
(0x10AA) key, the procedure continues to read eight more reserved words and discards them.
Next, the code entry point and all following blocks are polled according to the diagram at slide
13-14.

If all blocks are received successfully, the routine jumps to the entry point address that was
received during the boot load sequence.

C28x GPIO Boot Function

v

| Read and discard |

nitialize GPIO 8 reserved words
GPIO-B = input

GPIO-D5 = input \ 4

GPOI-D6 = output | Read Entry Point |

A 4

| Read KeyValue |
(8 or 16 Bit size)

Yes v
Jump
Entry Point

No

Call Parallel Copy Data

13-15

DSP28 - Boot ROM 13-17

Parallel Boot Loader

Host Software Flow

Slide 13-16 shows the transfer flow from the Host side. The operating speed of the C28x and
Host are not critical in this mode as the host will wait for the C28x and the C28x will in turn wait
for the host. In this manner the protocol will work with both a host running faster and a host
running slower then the C28x.

Host GPIO Boot Function

(_Start Download)

-

Y

C28x ready?
GPIO-D6=0

Load data

Signal that data avail.
GPI1O-D5 =0

A 4
A

C28x ack?
GPI0-D6=1

Deactivate GPIO-D5 =1

More Data?

End Download

Yes

13-16

First, the host waits for a handshake signal (GPIO-D6) to be activated (= 0) by the C28x.

Next, the host has to load the next character onto its parallel output port. A valid character is then
acknowledged by the host by activating (=0) a signal that is connected to the C28x GPIO-D5

input line.

The C28x has now all the time it requires to read the data from GPIO-port B. Once this is done,
the C28x deactivates its output line GPIO-D6 to inform the host that the transfer cycle is

completed.

The host acknowledges this situation by deactivating its handshake line (D5). If the algorithm has
more data to transmit to the C28x, the procedure is repeated once more. If not, the download is

finished.

13-18

DSP28 - Boot ROM

SPI Boot Loader

SPI Boot Loader

The SPI loader expects an 8-bit wide SPI-compatible serial EEPROM device to be present on the
SPI pins as indicated in Figure 21. The SPI boot loader does not support a 16-bit data stream.

C28x SPI Boot Loader Function

SPI - MOSI R Serial EEPROM
| DIN
Csﬁx || SPI - SOMI BT
SPI - CIK CLK
GPIO - F3 /CS
ST M95080 — see Module 7
Note:

(1) SPI-loader is 8bit only, it
does not support 16bit data
stream

(2) EEPROM data stream must
start at address 0x0000

13-17

The SPI boot ROM loader initializes the SPI module to interface to a serial SPI EEPROM.
Devices of this type include, but are not limited to, the Microchip M95080 (1K x 8), the Xicor
X25320 (4Kx8) and Xicor X25256 (32Kx8). The Zwickau adapter board is equipped with a
M95080, which can be used to experiment with the SPI boot load mode.

The SPI boot ROM loader initializes the SPI to the following settings: FIFO enabled, 8-bit
character, internal SPICLK master mode and talk mode, clock phase = 0, polarity = 0 and slowest
baud rate.

If the download is to be preformed from an SPI port on another device, then that device must be
setup to operate in the slave mode and mimic a serial SPI EEPROM. Immediately after entering
the SPI Boot function, the pin functions for the SPI pins are set to primary and the SPI is
initialized. The initialization is done at the slowest speed possible. Once the SPI is initialized and
the key value read, the user could specify a change in baud rate or low speed peripheral clock.

DSP28 - Boot ROM 13-19

SPI Boot Loader

SPI Boot Loader Data Stream

The following slide shows the sequence of 8-bit data expected by the Boot Loader.

C28x SPI Boot Loader Data Stream

Byte Content
1 LSB = 0xAA (Key for 8bit transfer)
2 MSB = 0x08 (Key for 8bit transfer)
3 LSB = LSPCLK value
4 MSB = SPIBRR value

5-18 | reserved
19 Entry Point [23:16]
20 Entry Point [31:24]
21 Entry Point [7:0]
22 Entry Point [15:8]
23 ... Blocks of data: block size/destination/data as shown

13-18

SPI Boot Loader Flowchart

The chart is shown on the next page. The data transfer is done in “burst” mode from the serial SPI
EEPROM. The transfer is carried out entirely in byte mode (SPI at 8 bits/character). A step-by
step description of the sequence follows:

1) The SPI-A port is initialized
2) The GPIOF3 pin is now used as a chip-select for the serial SPI EEPROM

3) The SPI-A outputs a read command to the serial SPI EEPROM

13-20 DSP28 - Boot ROM

SPI Boot Loader

4)

5)

6)

7)

8)

The SPI-A sends the serial SPI EEPROM address 0x0000; that is, the host
requires that the EEPROM must have the downloadable packet starting at
address 0x0000 in the EEPROM.

The next word fetched must match the key value for an 8-bit data stream
(0x08AA). The most significant byte of this word is the byte read first and the
least significant byte is the next byte fetched. This is true of all word transfers on
the SPI. If the key value does not match then the load is aborted and the entry
point for the Flash (0x3F 7FF6) is returned to the calling routine.

The next two bytes fetched can be used to change the value of the low speed
peripheral clock register (LOSPCP) and the SPI Baud rate register (SPIBRR).
The first byte read is the LOSPCP value and the second byte read is the SPIBRR
value. The next seven words are reserved for future enhancements. The SPI boot
loader reads these seven words and discards them.

The next two words makeup the 32-bit entry point address where execution will
continue after the boot load process is complete. This is typically the entry point
for the program being downloaded through the SPI port.

Multiple blocks of code and data are then copied into memory from the external
serial SPI EEPROM through the SPI port. The blocks of code are organized in
the standard data stream structure presented earlier. This is done until a block
size of 0x0000 is encountered. At that point in time, the entry point address is
returned to the calling routine that then exits the boot loader and resumes
execution at the address specified.

C28x SPI Boot Function
e

Read KeyValue

Enable SPI clock
Set LSPCLK to 4

Valid Key?

(0x08AA)

Enable SPI pin — |

functionality Yes

Slowest baud rate (0x7F)

Setup SPI: Read LSPCLK value |

8-bit character
Internal SPI-clock
SPI-Master

Requested

Relinquish from RESET LSPCLK = 27

Set chip enable
GPIO-F3 =1

| Change LSPCLK

!

Send Read Command

To EEPROM ¢
Address = 0x0000
[

13-19

DSP28 - Boot ROM

13-21

SPI Boot Loader

C28x SPI Boot Function (cont.)

?

| Read SPIBRR value

Requested
SPIBRR =
OX7F?

Yes

| Change SPIBRR

v

Read 7 reserved words

!

| Read Entry Point }—>| Read Data Blocks Jump EntryPoint

13-20

13-22

DSP28 - Boot ROM

C28x FIR - Filter

Introduction

This chapter looks into one of the most common applications for Digital Signal Processors:
“Digital Filters”. As we have seen before, there are two basic classes of computing: “off — line”
and “real — time”. This is also valid for digital signal processing. Because we are dealing with the
C28x controller, which is designed for embedded control, calculations are usually done in a real
time environment. For a digital filter, this means that all internal processing of the current state of
a system must be finished before a next input value is sampled. Again, computing time is most
precious! The faster we calculate the algorithm of a digital filter, the more samples we can take
from an input channel. It also means that the frequency of the input signal that is to be processed
depends directly on the efficiency of the controller.

We will start with some mathematical basics of Digital Filters, but we will not go too much into
the theoretical background. To learn more about the mathematics behind Digital Filters, you will
have to join other courses at your university. The Texas Instruments C6000- Teaching CD-ROM
is highly recommended to learn more about the design of digital filters. Beginning with chapter
14 of this CD, you will be introduced to techniques for filter coefficient estimation and to basic
approaches of windowing. Although this C6000 CD is based on the C6000 family the chapters
about Filters and Fourier Transform are also valid for the C28x.

Next we will look into the structure of “Finite Impulse Response (FIR)”-filters and their
properties. Because of their simplicity and stability, these types of filters are often used in digital
signal processing. We will calculate some examples for low-pass (LPF) and high-pass (HPF) —
FIR-filters before we look into a C implementation of such a filter algorithm for the C28x. The
use of IQ-Math C-functions leads to a much faster execution then using standard ANSI-C
implementation. As we have already seen, IQ-Math is a unique feature of the C28x, which is
based on its internal hardware units.

If the computing speed of the IQ-Math implementation is still not fast enough, we can do better!
By switching to Assembly Language coding and by using Texas Instruments Digital Filter
Library (sprc082.zip), we can bring the C28x to its top speed. By means of two examples, we will
have a look into the implementation of a FIR in Assembly Language and into the usage of the C-
callable library function “FIR16”, provided by TI.

Finally we will perform a laboratory experiment using a FIR-Filter. After we generate a 2 kHz
square wave signal, we will sample it back into the C28x by means of the internal ADC. We will
use the samples to calculate a low-pass function with a 4™ order FIR-Filter in real-time. Code
Composer Studio’s Graph Tool will be used to visualize the behaviour of both the unfiltered and
filtered signal in parallel.

DSP28 - FIR - Filter 14 -1

Module Topics

Module Topics

C28x FIR - Filter 14-1
TREPOGUCTION ...ttt ettt et ettt e et e et e et e eseeeaae s 14-1
MOAULE TOPICS ...t ettt et et e et e et e e st e eab e e bbeeabeeeabeeeaeenaseenseeenseenasean 14-2
Basics of Digital Filter TREOTYcccccouiiiiiiiiit ettt 14-3

Time Domain EQUATIONccecuiiiiiieiieierieeiestieie ettt ete st eaeseteteesaesseesesseessesssesseensesssensasssessesseensens 14-3
Frequency Domain EQUAtiONcccuevuiiiirieiiiiieiieieseesee ettt ettt st 14-5
Finite IMpulse ReSPONSE FIIIETc.occeiieiiiiiii ettt ettt 14-8
Properties of @ FIR = FIIter....c..couiiiiiiiiiiiic ettt 14-9
FIR EXAINPIES.........ccveeieeeeiieiieiiiee ettt ettt ettt sttt e s e s e e e st e sbeesbeebeesbanseensenneensenseenns 14-10
FIR IMplementation iR C..............ccccooimiiuiiiieieieieee ettt ettt sttt 14-14
FIR Implementation in Assembly LaNGUAZEcccccoeiriiiriniiieiinieeieeeeee et 14-16
Circular Addressing MOAE..........oiueiuiiuirieiiieeree ettt e eneene e e 14-17
FIR- FIIEET COR ..ttt ettt ettt eae b ebesee e nee 14-19
Texas Instruments C28X Filter LIDFATY...........c.cccuooveiieceeeieie ettt et ese s 14-21
MATLAB FIltEr SCIIPE ...cvetiiiieieieieietcitetetett ettt ettt et ebeeae et eae e ee 14-22
FIR16 Library FUNCHOMNc..oouiieieieieieiet ettt et ettt 14-23
Lab 14: FIR — Filter for a SQUare-wave SIGNALccccooviiviiienieieneeie st eie et 14-25
ODJECLIVE ..ottt ettt ettt et ettt et e bt e st e st e et e eat et e eatesh e e st e s st e bt esbenbeenbesbtesbeenbenbesneensesaeenteneee 14-25
PLOCEAUIEceieeeeeeie ettt et et e s e e e e e e e e e e s ene e e e st eneeseeeeeneneenes 14-26
Open Files, Create Project FIle........ocoiiiiiiieiiiieieeiee ettt ettt 14-26
Project BUild OPHIONS ...c.eeviiiiiiiiieieiteieeite ettt ettt st ettt bttt st e st et e b st eaee 14-27
MOIfY SOUICE COA@....eeuviieieiieiiieiieieeteie ettt etesee e et este st e bt esbestaesseeseessesseesseessesseensenssensesssensennes 14-27
Build and Loadc..ccooiiiiiiiieee ettt e 14-29
TS ettt bbbt b et h bt e b e bt a e bttt et b et ae et s b nrenaee 14-30
Feedback the Signal into ADCociiiiiiiiieieeiee ettt sttt et sae b sneesbesneenes 14-31
Set up ADC sample period (TIMET 2)cc.cccveriieieriieieriieieste et este et e e e ebe e e steesaesaeessesseessesseesss 14-31
Connect TIPWM t0 ADCINZccuiiiiiiiiinteieit ettt ettt st ettt sae et s 14-32
Build, Load and TEStccouviieiiiieeeiie ettt ettt et e et e et e e e e te e e eare e e etee e eeteeeeeareeenans 14-32
Inspect and Visualize the FIRcccoooiiiiiiiiiieieesecest ettt st be et ene 14-33
CCS Graphical TOOLccuviiieiiiiesiieie ettt ettt ettt sttt et e s eaesaeesbesbeeseesbeenseesbesseensensesnsensennns 14-34

14-2

DSP28 - FIR - Filter

Basics of Digital Filter Theory

Basics of Digital Filter Theory

Time Domain Equation

The following equation for a Linear Time-Invariant (LTI) system is the starting point to derive a
representation of a Digital Filter:

Basics of Digital Filter Theory

¢ Digital Filter Algorithms are probably the most used numerical
operations of a Digital Signal Processor

¢ Digital Filters are based on the common difference equation for
Linear Time-Invariant (LTI) — systems:

N-1 N-1
2 a, yn-ml=Y b -x{n—k]
m=0 k=0

+ y(n) = output signal
+ x(n) = input signal
+ a_, b, = coefficients
+ N = number of coefficients (order of system)
¢ Normalized to a, = 1 we derive the basic equation in time domain:

ym) =Y by xn-k1-Y a, - yln—m]

m=1

It is an equation for discrete input (x (n)) and output (y (n)) signals that are processed by a
transforming system. The properties of the transformation are expressed by coefficients (a,, and
by). Terms like x[n-k] or y[n-m] are used to express the status of the input and output signal k or
m times before the current sample time n. For causal systems, all samples before time t = 0 are
Zero.

These types of equations represent the modification of the output signal y(n) on a time base — we
call it “Time Domain Representation”. The smallest amount of time that is used in these
equations is the sampling period. After the input signal is sampled, the continuous time scale is
replaced by a sequence of numbers. According to Shannon’s sampling theorem, the sampling
frequency must be at least twice as fast as the highest frequency component of the input signal.

The calculation of the normalized equation for y(n) can be visualized graphically, as shown with
the next slide:

DSP28 - FIR - Filter 14-3

Basics of Digital Filter Theory

Time Domain Chart of a Digital Filter
x(n) by y(n)
x(n-1) y(n-1)
x(n-2) y(n-2)
-k . v -
X(n-k) 1= delay 1 of sample period yin-m)
gain =1 s

This flow can be used to calculate y(n) from the current input sample x(n) and samples of the
input signal, taken one (x(n-1)), two (x(n-2)) or k (x(n-k)) samples before. We call this part the
“forward” section of the calculation. If we include the status of the output signal delayed by one
period (y(n-1)), two periods (y(n-2)) up to k periods (y(n-k)) into the calculation of the new value
of y(n), we add a “feedback’ section to the computing scheme.

To translate this flowchart into a computer program, we would have to store not only the current
input x(n) and output y(n), but also information about their previous states. How do we code this
in a programming environment? Usually, with two arrays that are big enough to store all the
previous states of x and y. This type of array is usually called a “buffer”. It functions as delay-
line, hence the term “Delay-Line-Buffer”.

So what happens when the code has calculated a new value of y(n)? Obviously, y(n) must be
presented to the outside world as a new result of our calculation. Fine, but what is next? To
perform a calculation in real-time, the code must read the next sample from input signal x and
store it at buffer position x(n). But x(n) is still occupied by the sample from one period earlier!
Before we can store the new sample in x(n), the code must move all entries in array x to the next
position, x(n) to x(n-1), x(n-1) to x(n-2) and so on. During this procedure the oldest sample will
be discarded. At the output side, the code has to shift all y — values in a similar manner.

Consider the sequence of shift operations! In practice, we have to shift the second oldest first,
followed by the next oldest. If not, we fill the entire buffer with x(n)!

14 -4

DSP28 - FIR - Filter

Basics of Digital Filter Theory

Frequency Domain Equation

The second interpretation of the behavior of a LTI-system is done in terms of frequency — the
“Frequency Domain” - Equation.

The basic operation to transfer a time discrete signal in frequency domain is called “Z-
Transformation” (ZT). The transformation follows these rules:

Transfer Function of a Digital Filter

¢ The Z-Transform of the original input signal x(n) is defined as:

ZT{x(n)} = X(2)= . 1(r) 2"

¢ with z = epT and p=0 +]a) p = complex angular frequency

¢ One property of the Z-Transform is that the ZT of a time-shifted
signal is equal to the ZT of the original signal except of a factor z'*:

ZT{x(n-k)}=z"-X(2)

The slide shows how the series of discrete input samples x (n) is converted into a complex series
X(z). Instead of representing the signal as sequence ‘“number over time” we can represent the
signal as sequence “complex number over frequency”.

One important property of the ZT is that the ZT of a time shifted input signal x (n-k) is identical
to the ZT of the non-time shifted signal x(n), except for a multiplier z*. This feature reduces the
workload to calculate the complex series for X(z) dramatically.

How do we use this ZT to convert the time-domain equation for an LTI-system into its frequency
representation? Well, we have to apply the ZT to both sides of the time-domain equation, shown
at the next slide:

DSP28 - FIR - Filter 14-5

Basics of Digital Filter Theory

Transfer Function of a Digital Filter

¢ Z-Transform is applied to both sides of the time domain equation of
a Digital Filter :

ZT{y(n)+§am -y[n—m]}=ZT{§bk -x[n—k]}

m=1

Y(2)+ Y a2 "V (z) = Y bz X(2)

X(z){l + famzm:| = X(z){f bkzk:|

m=1 k=0

The final equation is called “Transfer Function” of the Digital Filter. It is a frequency domain
representation of the influence that is exerted to an input signal by the Digital Filter.

Transfer Function of a Digital Filter

¢ Finally we derive the Transfer Function of a Digital Filter of order
N in frequency domain:

N-1 .
bz
_Y(2) k=0 ¢
_(Z) — - N-1
&) 1+ az™"
m=1

For a given spectrum of input frequencies X(z) the transfer function defines the shape of the

output spectrum Y(z). Complex frequency numbers are represented as magnitude and phase per
frequency line.

14-6

DSP28 - FIR - Filter

Basics of Digital Filter Theory

In a similar way as we have seen for the time-domain flow, we can draft a calculation scheme for
the transfer function in the frequency domain. Each delay-unit in the time domain is replaced by a
multiplication by complex number z'. The basic principle to calculate a new Y(z) is similar to the
time-domain flow, except the complex multiplication. The algorithm still needs two arrays to
store X(z) and Y (z), except that they have to now use complex numbers with a real and imaginary
part for each number. The Frequency Domain Calculation of the frequency response of a system
is normally used to analyse an incoming signal for its frequency components.

Frequency Domain Flow of a Digital Filter

Y(2)

Multiply by z! in Frequency Domain =
Unit delay by one sample period in Time Domain

DSP28 - FIR - Filter 14 -7

Finite Impulse Response Filter

Finite Impulse Response Filter

If a Digital Filter does not have any feedback components (all a,, = 0), we call this system a
“Finite Impulse Response” (FIR). It can be shown that the response of such a system to a single
input impulse will eventually vanish.

Finite Impulse Response (FIR) - Filter

¢ If all feedback coefficients a, are equal to zero we derive the
equation system for a “Finite Impulse Response (FIR)” — Filter:

(=2 - p

X(z) =

¢ and:

y(n) =Y bxln—k]

Time Domain

Frequency Domain

If feedback components exist, the system is called an “Infinite Response Filter” (IIR).

Infinite Impulse Response (IIR) - Filter

¢ If coefficients a,, are present we call this type of filter “Infinite
Impulse Response (IIR). In this case the equation with feedback
part must be used for the filter calculation.

¢ Obviously the “feedback” terms a_ *y(n-m) deliver some amount of
energy back into the calculation.

¢ Under particular circumstances this feedback system will respond
to a finite input impulse infinite in time — hence the name.

N-1

bzt
Y(z) _ 2.h

k=0

- N-1
X(2) 1+ Z a,z™"
m=1

H(z)=

Y= b, xn—k1- Y a, - y[n—m]
k=0

m=1

IIR - Filter

14-8

DSP28 - FIR - Filter

Finite Impulse Response Filter

Properties of a FIR - Filter

Simple FIR Diagram
X0 X1 X2
Xin —e— z-1 z-1

wi) wl) wm()

Yout
y(n) = b0 x x(n) + b1 x x(n—1) + b2 x x(n-2)

14-10

One typical property of the FIR-Transfer Function is its periodicity by 2:

Properties of a FIR Filter

¢ Replacing z by it’s original definition:

e(0'+jw)T

T
Z:ep =

disregarding o (loss — less filter) and normalizing to T=1:

H(z)

N-1
=H(/")=) be
k=0

z=e’?

¢ Since ei2nk=1;

N-1 N-1
ﬂ(ej(a)+27z)) — Zbke—]k(aHZﬂ) — Zbke—]ka)e—]Zﬂk — ﬂ(e]a))
k=0 k=0

¢ FIR filters have a periodic frequency response of 27 !
¢ We need to limit the spectrum!

14-11

DSP28 - FIR - Filter 14-9

FIR Examples

FIR Examples

Let us calculate the frequency response of the following filter system. As the diagram shows it
lacks feedback components — it is of FIR-type. It is a first-order filter, the filter coefficients are

o bo =+0.5
o b1 =+0.5

What will the magnitude of the output signal look like? Which frequency components will pass
the filter, which one will be damped?

FIR — Example 1

-1
. X ® Frequency Response ?

(05| =62 ® Type of Filter ?

by =05 b;=0.5

H(z) :boz0 +b]z’1
H(z) :0.5(1+271) z=e"; p=c+jw;, o=2xf; T=fi
A
—ji2f

H(jo)=051+e ™)

f, = sampling frequency

H(jo)=0.51+cos(2x fi) — jsin(27w J)

4 A
|H(jo)|=Re’+Im’

14-12

If we calculate the magnitude for frequencies =0, = /8, = fa/4, £ =f4*3/4 and f = f4/2 we get:

[H(jw)| =1,0.92,0.707,0.382 and 0

14-10 DSP28 - FIR - Filter

FIR Examples

The graph is shown next. Low frequencies are amplified by 1, the more we approach 0.5*f,, the
more the magnitude is damped and finally reaches 0. This is a low-pass filter!

FIR — Example 1 (cont.)

H(jow)=0.5(1+ COS(27Z'%) —J sin(27rfi))

A A
H(jw)| =VRe’+Im’

I f=0 HGo)|=1
2. £=0.125%f, :|H(w)|=092
3. £=025*f, :|H(jw)|=0.707
4. £=0375*f, :|H(w)|=0382
IHGw)T 4 5. £=05*f, :|H({w)|=0

1

Filter — Type: Low-pass

0.5 -

: : - >
0.25 0.5 A

14-13

What happens, if the input frequency f goes beyond fa/2, violating the SHANNON-theorem?
The magnitude rises from 0 to 1, introducing false (“aliased”) frequency components!

FIR — Example 1 (cont.)

H(jo)=0.5(1+ cos(zzzfi) _ jsinz-Ly)

A A
|H(jw)| =vRe’+Im’

. £=0.625%f, :|H(jw)|=0.382
2. £=075*f, :|H(jw)|=0.707
3. £=0875%f, :|H(jw)|=0.92
4. f=f, [H(jw)|=1

[HGw)l 4

Aliasing, if £>0.5f,

Input Frequencies must be
limited to 0.5*f, by an
additional Low Pass input filter

0514

Y

0.25 05 /£,
14 -14

DSP28 - FIR - Filter 14-11

FIR Examples

The solution to suppress any frequencies that violate the sampling theorem is to introduce an anti-
aliasing filter before the samples are taken. This way, no frequency component beyond fs/2 will
disturb the digital processing. The anti-alias filter is an analogue low-pass filter.

FIR — Example 1 (cont.)

¢ Solution: Use an anti-aliasing filter at
input to limit all input frequencies to f,/2.

X[n]

FIR —y[n]

X(t) — [ADC

Analogue
Anti-Aliasing

14-15

In the next example for an FIR-Filter of order 1 we only change coefficient b, from +0.5 into -
0.5.

FIR — Example 2

x(n-1)
s il o
b,=0.5 b, = -0.5
—'® 0 1
¥(n) ® Frequency Response ?
® Type of Filter ?

Note : We only changed b, from +0.5 to -0.5 !

[HGw)l A

1__

0.5 Filter Type: High Pass

v

0.25 05 f/f,
14 - 16

14-12 DSP28 - FIR - Filter

FIR Examples

What happens? The digital FIR-filter now damps frequencies around f=0 and amplifies an input
frequency of f=f4/2 by 1. The filter type has changed from low-pass into high-pass. By
modifying coefficients we can change the behaviour of the filtering system. Compare this feature
with an analogue filter, where you would have to change resistors or capacitors with a soldering
iron.

If the modification of filter coefficients is done in real-time by the controller code itself, we call
this an “Adaptive Filter”.

We can also use digital filters to non-technical topics. The next example of a 2" order FIR-Filter
shows how the average stock price per week is calculated using the “moving average
calculation™:

FIR — Example 3

x(n-1) x(n-2) ® Assume no previous inputs
o———> -1 1| —
x(n) X(0) = 205 X(-1) = 05 X(-2) = 0
l by=0.25 b;=0.5 b,=10.25
) ‘®_' y(n)
A
Input ¥(0) = 0.25%x(0) + 0.5%x(-1) + 0.25%x(-2) = 5
40
30 40 y(1) = 0.25%20 + 0.5+20 + 0.25%0 = 15
ig [¥(2) = 0.25%20 + 0.5+20 + 0.25%20 = 20
12
! > ti =02 . .2 =
mon tue wed thu fri sat sun ime y@)=0 SD *+0 SD *+0 SD D
yéd) = o.zs*D + o.sﬂ + o.zs’D = D

b Output)
40- - ¥(5) = 0.25%20 + 0.5%40 + 0.25*12 = 28
307 — ¥(6) = 0.25%20 + 0.5%20 + 0.25%40 = 25
20 :
10 4 2 n pessssas E . .

; » ime ® Moving average calculation

mon tue wed thu fri sat sun

14 -17

The input is the daily stock price; the output is the moving average. Due to the nature of causally
determined systems, we assume that we do not have previous inputs when we start on Monday
(time = zero). Of course a broker would know the prices from last week and would request us to
add them to our calculation — technically speaking, the stock market is a non causal system,
probably practically too.

Anyway, if our calculation advances to Wednesday everybody will be pleased with our results of
a moving average.

Let’s go back to more technical issues and leave the stock market brokers without further DSP-
support.

DSP28 - FIR - Filter 14-13

FIR Implementation in C

FIR Implementation in C

Before we proceed to the implementation of a FIR filter using the C28x, let us recall one
important step between the periodic calculations. The sample buffer must be prepared to include
the latest sample value at the start of the buffer by shifting all elements by one position. Quite
often this is done in ascending order:

Periodic FIR - Filter Calculation

before we can

LOWER calculate the FIR a
MEMORY second time:
ADDRESS XO X, is used for latest sample
> old X, becomes new X,
Xl
HIGHER X2) old X, becomes new X,
11\;[]])21];/[[{(])3%‘3{ “Delay Line update”

Which movement should you perform first?

14-18

The following code is taken from a Texas Instruments example to implement FIR-Code for the
C28x in IQ-Math-format. You have seen that this fixed-point math’s is much better adapted to the
C28x than any standard ANSI-C solution — in terms of computing power.

The name of the function “IQssFIR” relates to “IQ — single source FIR” — only one stream of
input numbers is computed. Input parameters are two pointers to the array of input samples and to
the coefficients and the number of taps — that’s order minus 1.

The processing is based on the data type “ iq” which is defined in “IQmathLib.h”. The return
parameter is the new output value y(k), also in “_iq”-format.

When you inspect the code, you will notice that it operates from back to front, placing the two
pointers to the end of the two buffers and post-decrementing them after any single multiplication.
The shift operation on the delay line is done immediately after the current tap has been processed
with the help of a temporary pointer “xold”.

The accumulation is done with a simple add-operation using local variable y.

14 - 14

DSP28 - FIR - Filter

FIR Implementation in C

C sourcecode FIR - IQmath

FIR Filter Implementation in C

/***

Function: IQssfir()
Description: IQmath n-tap single-sample FIR filter.

y(k) = a(0)*x(k) + a(l)*x(k-1) + ... + a(n-1)*x(k-n+1)

*
*
*
*
*
* DSP: TMS320F2812, TMS320F2811, TMS320F2810

* Include files: DSP281lx Device.h, IQmathLib.h

* Function Prototype: _iq IQssfir(_ig*, _ig*, Uintlé)
* Useage: y = IQssfir(x, a, n);

* Input Parameters: x = pointer to array of input samples

& a = pointer to array of coefficients

* n = number of coefficients

* Return Value: y = result

* Notes:

* 1) This is just a simple filter example, and completely

* un-optimized. The goal with the code was clarity and

* simplicity,

* not efficiency.

* 2) The filtering is done from last tap to first tap. This
* allows

*

more efficient delay chain updating.
***/

14 -19
L] L) L)
FIR Filter Implementation in C
_iq IQssfir(_iq *x, _iq *a, Uintlé n)
{
Uintl6 i; // general purpose
_iq y; // result
_iqg *xold; // delay line pointer
/*** Setup the pointers ***/
a=a+ (n-1); // a points to last coefficient
x =x + (n-1); // x points to last buffer element
x0ld = x; // temporary buffer
/*** Last tap has no delay line update ***/
y = _Iompy(*a--, *x--);
/*** Do the other taps from end to beginning ***/
for (i=0; i<n-1; i++)
{
y =y + _IOmpy(*a--, *x); // filter tap
*x0ld-- = *x--; // delay line update
}
return(y) ;
}
14 - 20

DSP28 - FIR - Filter 14-15

FIR Implementation in Assembly Language

FIR Implementation in Assembly Language

Although the previous example of a C based implementation of a FIR algorithm used 1Q-Math
function calls to calculate the next value for the output, there is still headroom to optimize the FIR
code for the C28x. As we have seen from the C example, basic mathematical operations in this
algorithm are multiply instructions for each “coefficient” and “sample” in the delay chain and add
operations to sum the partial products. To prepare the next filter calculation cycle, all sample
values have been shifted by one position after they have been processed.

DSP’s have a unique group of assembly instructions that take advantage of the parallel hardware
units: “Arithmetic Logic Unit (ALU)” — for the sum operation and “Hardware Multiplier (MUL)”
- for the multiplication. Thanks to the Harvard Architecture of DSP’s, two operands can be read
simultaneously — one from the data bus and the other from the program-bus.

The assembly language instruction set supports these types of operations in single clock cycle
with the “Multiply and Accumulate” (MAC) instruction. In case of the C28x, two groups of
assembly instructions are available:

e MAC for 16-bit and 32-bit operands

e DMAC for 16-bit operands

The DMAC — “Dual Mac” instruction takes advantage of the 32-bit width of the internal busses
and processes four 16-bit operands (two coefficients and two samples) in a single cycle.

FIR Filter Implementation in ASM

¢ FIR Filter Optimization:

> Previous C solution is a generic one, coded in standard
ANSI-C, can be compiled for every microprocessor or
embedded microcomputer. Works well.

> But is not optimized for Digital Signal Processors like the
C28x. In case more computing power for the real time
calculation of a FIR is needed, one can take advantage of
internal parallel hardware resources of a DSP.

> ASM-coding of a FIR allows to reduce the number of clock
cycles needed to calculate one loop of the FIR algorithm.

> A new Addressing Mode is used to avoid the shift operations
R/ti tl(ie,glelay-line or input samples: “Circular Addressing
ode

> Describe the Circular Addressing function
> Implement FIR filters using Circular Addressing Mode

14-21

14-16

DSP28 - FIR - Filter

FIR Implementation in Assembly Language

Circular Addressing Mode

Knowing that MAC or DMAC will accelerate FIR-code the last portion to be optimized is the
shift operation of samples, after they have been processed. Assembly language addressing modes
of operands include one particular mode that is used to avoid these shift operations altogether. We
won’t dive too deep into assembly language programming yet, but to explain this addressing
mode, let us take an example.

Circular Addressing Usage

. Delay - Delay line

Xin = XO X2

I
Z 1
: : Yout = A0*Xin + A1*X1 + A2*X2
+

Finite Impulse Response (FIR) Filter

Sum Of Product MAC P,*XAR6++, *XART++
Sum Of Product + Delay | MAC P, *AR6%++, *XAR7++

Samples coming in: Xin b ; t " ; Time (T
i i X0 x() x@ @3 x@ ime (T)
On recursion, X2 X1 0 (T=2)
= —_— =
X2 =X1 2 = o (T=3)
X1 =X0 T3
X0 = new Xin X2 X1 X0
x[n-2] x[n-1] x[n]
x(n-2) x(n-1) x(n) 14-22

The new addressing mode is called “Circular Addressing Mode” and it is coded with the
percentage (%) —sign in front of the pointer register name:

The instruction
MAC P,*XAR6++,*XAR7++
e Adds the previous product (stored in P) to the pre-accumulated sum in register ACC

e Multiplies the data memory operand, pointed to by XAR6, by the program memory
operand, pointed to by XAR7

e Post-increments the two pointers XAR6 and XAR7.

DSP28 - FIR - Filter 14-17

FIR Implementation in Assembly Language

If we introduce a new syntax:
MAC P,*AR6%++,*XAR7++

The first pointer XAR6, which points to the sample array in data memory, is used in a circular
fashion. Once the pointer has reached the end of the array it will store the next value at start of the

buffer. We call this “Circular Buffer”.

The next slide explains this with a six element buffer, which is used to store the name of month.
If the last space in buffer was used, the month “July” will replace the oldest entry “January”

Delay Line with a Circular Buffer
L’ oldest oldest
&)
JUN JUN /’ JUN
MAY
APR APR APR
A 3
S oldest
Linear Memory storage
JAN @input JUL JUL
FEB *AR6%++ FEB @input—s| AUG
MAR MAR *AR6S++ MAR
APR APR APR
MAY MAY MAY
JUN JUN JUN
14-23

Before we use this circular addressing mode, register XAR7 must be aligned to point to the first
element of the coefficient array.

XAR7 must be initialized to point to the start of the circular buffer. This start address of the
circular buffer must be aligned to a 256-word boundary (8 LSB’s = 0000 0000), which is usually
done with the help of a linker command file instruction (see next slide).

The lower 8 bits of register XAR1 are used to specify the size of the circular buffer. This is an
implicit usage of register XAR1 by the circular addressing mode; it is not shown in the assembly

code!

14-18 DSP28 - FIR - Filter

FIR Implementation in Assembly Language

Circular Addressing Hardware

start of buffer Buffer Size N
AAAA .. AAAA |AAAA AAAA|0000 0000|_> Element 0

(align on 256 word boundary)

access pointer XARG6 (32) circular
| AAAA . AAAA |AAAA AAAA |xxxx xxxxl—» buffer
range

ARI Low (16)
end of buffer e | m-1 | [FlementN

AR1 Low is set to buffer size - 1
All 32 bits of XARG6 are used
LINKER.CMD

SECTIONS
{ D_LINE: align(256) { } > RAM PAGE 1

| MAC P, *AR6%++, *XART++

}

14-24

FIR- Filter Code

The next slide is an assembly language implementation of a 3" order FIR filter (4 taps). It can be
adapted to higher orders by changing the constant “TAPS” and the number of coefficients in
array “tbl”. All operands are 16-bit wide in Q15-format.

The directive “.usect” defines un-initialized data memory of length “TAPS” and assigns it to
symbol “xn”. The linker command file will connect this section “D_LINE” to physical memory.
The directive “.data” defines initialized code memory and assigns it to symbol “tbl”. The four
coefficients in this array are in [1Q15-format.

The directive “.text” opens the code-section for assembly instructions. After setting core op-mode
bits (SXM, OVM, PM) the two pointers XAR6 and XAR?7 are initialized to point to symbol “xn”
and “tbl” respective. AR1 is loaded with the buffer size.

Next, a new sample is read from the external ADC at data memory address “0O:adc” and stored at
first place in the circular buffer. We also could have used the internal ADC. The ‘%++’ operator
will set the circular buffer pointer to its next element.

After clearing register ACC, P and OV (“ZAPA”) the following two instructions will do the
entire filter work. The repeat instruction (“RPT”) tells the C28x to repeat the following
instruction #number plus 1 times, in our case twice. The instruction “DMAC” will perform two
16x16-bit MAC operations, reading and processing two members of “xn” and “tbl” per cycle. The
3" order FIR filter will be calculated in two clock cycles.

DSP28 - FIR - Filter 14-19

FIR Implementation in Assembly Language

Finally the two halves of the result are added using the instruction “ADDL ACC:P” and the new
result is loaded in [1Q15-format to an external DAC at address “0:dac”.

FIR Filter — Dual MAC - Operation

TAPS .set 4 ; FIR — Order +1
xn .usect “D_LINE” 6 TAPS ; sample array in I1Q15
.data ; FIR - Coeffs in I1Q15
tbl .word 32768*707/1000 ; 0.707
.word 32768*123/1000 ; 0.123
.word 32768* (-175) /1000 ; -0.175
.word 32768%*345/1000 ; 0.345
.text
FIR: SETC SXM ; 2's complement math
CLRC OVM ; no clipping mode
SPM 1 ; fractional math
MOVL XART7, #tbl ; coefficient pointer
MOVL XAR6, #xn ; circular buffer pointer
MOV AR1, #TAPS-1 ; buffer offset
MOV *XAR6%++,* (0:adc) ; get new sample (x(n))
ZAPA ; clear ACC,P,0OVC
RPT # (TAPS/2) -1 ; RPT next instr. (#+1)times
| DMAC ACC:P,*XAR6%++,*XAR7++ ; multiply & accumulate 2pairs
ADDL ACC:P ; add even & odd pair-sums
MOV * (0:dac) ,AH ; update output (y(n))
RET

14-25

Circular Addressing Summary

Buffer Size

¢ Up to 256 words

& Break larger arrays into <= 256 word blocks.
Buffer Alignment

& Always align on 256-word boundaries, regardless of size. Unused
space can be used for other purposes.

¢ Let the linker assign addresses. Link largest blocks first.
Usage

¢ XARG is the only circular pointer.

¢ ARI1 must be set to the size minus one (0 - 255).

¢ Pointer update is post-increment by one (*XAR6%++) .
L 2

32-bit access causes post-increment by two. Make sure XAR6
and ARI1 are even to avoid jumping past end of buffer.

14-26

14 - 20 DSP28 - FIR - Filter

Texas Instruments C28x Filter Library

Texas Instruments C28x Filter Library

So for some types of applications, it seems to make sense to code in Assembly Language. But, as
usual, there is no need to re-invent the wheel. Better than developing your own code is — use a
library. Texas Instruments is offering a variety of libraries for free, one of them us dedicated to
Digital Filters.

Texas Instruments C28x Filter Library

¢ MATLARB script to calculate Filter Coefficients for FIR and IIR,
includes windowing

¢ Filter Modules:
¢ FIR16: 16-Bit FIR-Filter
¢ IIR5BIQ16: Cascaded IIR-Filter (16bit-biquad)
¢ IIR5BIQ32: Cascaded IIR-Filter (32bit-biquad)

¢ C-callable Assembly (“CcA”) Functions
¢ Adapted to internal Hardware features of the C28x
¢ Uses the Dual -MAC instruction
¢ Interface according to ANSI-C standard

Available from TI-web as document “sprc082.zip”

14 -27

To make it easier to use this library in a C-based program environment, all library functions are
equipped with an interface structure. Thus any library function can be called like an ordinary C
subroutine.

An important step in designing a Digital Filter is to calculate Filter Coefficients. This task
involves a lot of theoretical background. Without this knowledge, you won’t be able to profile the
set of coefficients for a given transfer function. As recommended earlier, join additional courses
at your university to understand the math behind Digital Signal Processing.

The library package includes also a MATLAB script to calculate filter coefficients, including
windowing techniques.

DSP28 - FIR - Filter 14-21

Texas Instruments C28x Filter Library

MATLAB Filter Script

The MATLAB filter script allows you to initialize essential parts of the transfer function, like
sampling frequency, filter type, order, type of window and corner frequency.

MATLAB Filter Script

FIR Filter Design Example: Low-pass Filter of Order 50
LPF Specification:

FIR Filter Order : 50

Type of Window : Hamming

Sampling frequency : 20KHz

Filter Corner Frequency : 3000Hz

ezFIR FILTER DESIGN SCRIPT

Input FIR Filter order(EVEN for BS and HP Filter) : 50
Low Pass : 1

High Pass : 2

Band Pass : 3

Band Stop : 4

Select Any one of the above Response : 1

Hamming : 1

Hanning : 2

Bartlett : 3

Blackman : 4

Select Any one of the above window : 1

Enter the Sampling frequency : 20000

Enter the corner frequency(Fc) : 3000

Enter the name of the file for coeff storage : Ipf50.dat

14-28

The output of the MATLAB calculation is a list of coefficients and a graph of magnitude and
phase of the filter response.

MATLAB Filter Script

MATLAB — Output File for Filter Coefficients:

#define FIR16_COEFF {\
9839,-2219809,-1436900,853008,3340889,3668111,-896,\
-5963392,-8977456,-3669326,8585216,18152991,13041193,\
-8257663,-30867258,-31522540,131,45285320,64028535,\
25231269,-58654721,-124846025,-94830542,68157453,\
320667626,551550942}

Magnitude Respanse

3 2030 s000 €0a0 sooo RITEL

-1030

1500

Phase (degrees)

3 2000 s000 [T sooo RETEL
ertz

14-29

14 - 22

DSP28 - FIR - Filter

Texas Instruments C28x Filter Library

FIR16 Library Function

FIR16 is one of the library functions of sprc082. It processes a single stream of input samples in
Q15-format into a new output value of the same format. One instance of this function occupies 52

words of code memory and processing time is 350 ns with a 150 MHz C28x.

FIR16 Library Function

input output
: FIR16 >
Item C-Callable ASM Comments
Code Size 52 words text +
cinit
Data RAM 0 words*
xDAIS ready fes
XDAIS component No |ALG layer not implemented
Mukiple instances es
Reentrancy es
Muliiple Invocation Yes
Stack usage 2 words Stack grows by 2 words

* Each pre-initialized FIR1E structure consumes 12 words in the data
memary and 13 words in the cinit section

14 - 30

The format of the FIR16 functions object structure is shown next. Interface parameters are

Input:

Output:

2 pointers to coefficients and samples

Order of filter

1 pointer to an initialize function of the filter

1 pointer to the calculation function

1 new filter output value.

To guarantee the ability to operate with more than 1 instance of the filter, you should call the
function by its function parameters (init, calc) only.

DSP28 - FIR - Filter

14 - 23

Texas Instruments C28x Filter Library

L .
FIR16 Library Function

Object Definition:

typedef struct {
long *coeff ptr; /* Pointer to Filter coeffs */
long *dbuffer ptr; /* Delay buffer pointer */
int cbindex; /* Circular Buffer Index */
int order; /* Order of the Filter */
int input; /* Latest Input sample */
int output; /* Filter Output */
void (*init) (void *); /* Pointer to Init function */
void (*calc) (void *); /* Pointer to calc function */
}FIR16;

coeff_ptr: Pointer to the Filter coefficient array.

dbuffer_ptr: Pointer to the Delay buffer.

cbindex: Circular buffer index, computed internally by initialization function

based on the order of the filter.

order: Order of the Filter. Q0-Format, range 1 — 255

input: Latest input sample to the Filter. Q15-Format (8000-7FFF)

output: Filter output value. Q15-Format (8000-7FFF)

14-31

The next slide is an example for the usage of the filter function. An instance of FIR16, called
“Ipf” has been defined in a DATA_SECTION “firfilt”. All accesses to parameters and functions
are made by this instance.

FIR16 Library Usage Example

#define FIR ORDER 50 /* Filter Order */

#pragma DATA SECTION (lpf, "firfilt");
FIR16 1lpf = FIRlG_DEFAULTS;

#pragma DATA SECTION (dbuffer,"firldb") ;
long dbuffer[(FIR_ORDER+2) /2] ;

const long coeff[(FIR_ORDER+2) /2]= FIR16_LPF50;

main ()

{
1lpf.dbuffer ptr=dbuffer;
lpf.coeff ptr=(long *)coeff;
lpf.order=FIR ORDER;
lpf.init (&lpf) ;

}

void interrupt isr20khz ()

{
lpf.input=xn;
lpf.calc(&lpf) ;
yn=1pf.output;

14 - 32

14 - 24 DSP28 - FIR - Filter

Lab 14: FIR — Filter for a square-wave signal

Lab 14: FIR - Filter for a square-wave signal

Objective

Lab 14: LP -Filter of a square wave

Objective:

Generate a square wave signal of 2 KHz at EVA-TIPWM
Asymmetric PWM , duty cycle 50%

Use T1-Compare Interrupt Service to serve the watchdog
Wire - Connect TIPWM to ADC-input ADCIN2

Sample the square wave signal at SOKHz

Sample period generated by EVA-Timer 2

Store samples in buffer “AdcBuf”

Filter the input samples with a FIR — Low pass 4™ order
Store filtered output samples in buffer “AdcBufFiltered”

Visualize “AdcBuf” and “AdcBufFiltered” graphically by Code
Composer Studio’s Graph Tool

L 2B JER R JER JEE 2R JEE 2R 2R 2

14-33

The lab experiment consists of four parts:

First we will generate a 2 kHz square wave signal at output TIPWM. At the
Zwickau adapter board this signal can be connected to a loudspeaker (JP3
closed). Or, use a scope to visualize the signal.

Second we will feedback this signal back into one channel of the internal ADC
and store the digital samples in a data memory buffer “AdcBuf™.

Next, we call a Low-Pass Filter of FIR-Type with order 4 to wave-shape the
signal edges. The coefficients were calculated with MATLAB as:

o 1/16,4/16,6/16,4/16 and 1/16

o The sampling frequency is set to 50 kHz
The filtered numbers will be stored in “AdcBufFiltered”
Finally we will use Code Composer Studios graphical tool to visualize the
contents of “AdcBuf” and “AdcBufFiltered”. We will take advantage of the real

time debug capabilities to display the data without interrupting or delaying the
C28x while it is running!

DSP28 - FIR - Filter

14-25

Lab 14: FIR — Filter for a square-wave signal

LovePass Filter Macnitude

—_

w E
£o5--- eteeean -
%DE - - 1 - .
E 1
=
o040 - - -
]
2
0.2 - - - -
=
0 I I I i
M 05 1 15 2 25
Frequency (Hz) w1’
- Lmw-Pass Fitter Fhase
.1|:|:| -
@ : :
E"_Em S BN HRR - i
& s
300 .
A0 | | i i
0 0s&) 14 2 25
Frequency (Hz] wiot
Procedure

Open Files, Create Project File
1. Create a new project, called Lab14.pjt in E:\C281x\Labs.

2. Open the file Lab5.c from E:\C281x\Labs\Lab5 and save it as Labl4.c in
E:\C281x\Labs\Lab14.

3. Add the source code file to your project:

e Lab14.c
4. From C:l\tides\c28\dsp281x\W100\DSP281x_headers\source add:

o DSP281x_GlobalVariableDefs.c
From C:\tides\c28\dsp281x\v100\DSP281x_common\cmd add:

e F2812_EzDSP_RAM_Ink.cmd

14 - 26 DSP28 - FIR - Filter

Lab 14: FIR — Filter for a square-wave signal

From C:\tides\c28\dsp281x\W100\DSP281x_headers\cmd add:

e F2812_Headers_nonBIOS.cmd

From C:\tides\c28\dsp281x\v100\DSP281x_common\source add to project:
e DSP281x_PieCtrl.c
e DSP281x_PieVect.c

e DSP281x_Defaultlsr.c

From C:\ti\c2000\cgtoolslib add:

e rts2800_ml.lib

Project Build Options

5. Setup the search path to include the peripheral register header files. Click:
Project 2> Build Options

Select the Compiler tab. In the preprocessor Category, find the Include Search
Path (-i) box and enter:

C:\tidcs\C28\dsp281x\v100\DSP281x_headers\include;
.\include; C:\tidcs\C28\IQmath\clQmath\include

6. Setup the stack size: Inside Build Options select the Linker tab and enter in the Stack
Size (-stack) box:

400

Close the Build Options Menu by Clicking <OK>.

Modify Source Code

7. Open Labl4.c to edit: double click on “Lab14.c” inside the project window. First we
have to remove the parts of the code that we do not need any longer. We will not use
the CPU core timer 0 in this exercise; therefore we do not need the prototype of
interrupt service routine “cpu_timerQ_isr()”. Instead, we need a new ISR for EVA-
Timerl-Compare-Interrupt. Add a new prototype interrupt function: “interrupt void
T1 Compare_isr(void)”.

8. We do not need the variables “i”,’time_stamp” and frequency[8]” from Lab5 - delete
their definition lines at the beginning of the function “main”.

DSP28 - FIR - Filter 14-27

Lab 14: FIR — Filter for a square-wave signal

10.

11.

12.

Next, modify the re-map lines for the PIE entry. Instead of “PieVectTable. TINTO =
& cpu_timer isr” we need to re-map:

PieVectTable.T1CINT = &T1_Compare_isr;

Delete the next two function calls: “InitCpuTimers();” and
“ConfigCpuTimer(&CpuTimer0, 150, 50000);” and add an instruction to enable the
EVA-Timerl-Compare interrupt. According to the interrupt chapter this source is
wired to PIE-group 2 , interrupt 5:

PieCtrIRegs.PIEIER2.bit.INTx5 = 1;
Also modify the set up for register IER into:
IER | = 2;

Next we have to initialize the Event Manager Timer 1 to produce a PWM signal. This
involves the registers “GPTCONA”, “T1CON”, “TICMPR” and “T1PR”.

For register “GPTCONA” it is recommended to use the bit-member of this
predefined union to set bit “TCMPOE” to 1 and bit field “T1PIN” to “active low”.

For register “T1CON” set
o The “TMODE”-field to “counting up mode”;

Field “TPS” to “divide by 17;

e Bit “TENABLE” to “disable timer”;
e Field “TCLKS” to “internal clock”

e Field “TCLD” to “reload on underflow”

¢ Bit “TECMPR” to “enable compare operation”
Remove the 3 lines before the while(1)-loop in main:

e “CpuTimerORegs. TCR.bit.TSS = 0;”

o “i =07

e “time stamp = 0;”

and add 4 new lines to initialise TIPR, TICMPR, to enable GP Timerl Compare
interrupt and to start GP Timer 1:

EvaRegs.T1PR = 37500;
EvaRegs.T1CMPR = EvaRegs.T1PR/2;
EvaRegs.EVAIMRA.bit.T1CINT = 1;

EvaRegs.T1CON.bit. TENABLE = 1;

14 - 28

DSP28 - FIR - Filter

Lab 14: FIR — Filter for a square-wave signal

13.

14.

What is this number 37500 for? Well, it defines the length of a PWM period:

f — J CcPU
"M T1PR-TPS,, - HISCP

with TPSTIZI, HISCP = 2, fCPU = 150MHz and a desired fPWM =2 kHz
we derive: T1PR =37500!

T1CMPR is preloaded with half of TIPR. Why’s that? Well, in general TICMPR
defines the width of the PWM-pulse. Our start-up value obviously defines a pulse
width of 50%.

Modify the endless while(1) loop of main! We will perform all activities out of GP
Timer 1 Compare Interrupt Service. Therefore we can delete almost all lines of this
main background loop, we only have to keep the watchdog service:

while(1)

{
EALLOW;
SysCtriIRegs.WDKEY = 0xAA;
EDIS;

}

Rename the interrupt service routine “cpu_timerO isr” into “T1_Compare isr”.
Remove the line “CpuTimer0.InterruptCount++;” and replace the last line of this
routine by:

PieCtriIRegs.PIEACK.all = PIEACK_GROUP2;

Before this line add another one to acknowledge the GP Timer 1 Compare Interrupt
Service is done. Remember how? The Event Manager has 3 interrupt flag registers
“EVAIFRA”,”EVAIFRB” and “EVAIFRC”. We have to clear the TICINT bit (done
by setting of the bit):

EvaRegs.EVAIFRA.bit.T1CINT =1;

Build and Load

15.

Click the “Rebuild All” button or perform:

Project > Build

and watch the tools run in the build window. If you get syntax errors or warnings
debug as necessary.

DSP28 - FIR - Filter

14 - 29

Lab 14: FIR — Filter for a square-wave signal

Test

16. Load the output file down to the DSP Click:

File 2 Load Program and choose the desired output file.

17. Reset the DSP by clicking on:

Debug > Reset CPU followed by
Debug = Restart and
Debug = Go main.

18. When you now run the code the DSP should generate a 2 kHz PWM signal with a

duty cycle of 50% on TIPWM. If you have an oscilloscope you can use jumper JP7
(in front of the loudspeaker) of the Zwickau Adapter board to measure the signal.

If your laboratory can’t provide a scope, you can set a breakpoint into the interrupt
service routine of TI Compare at line “PieCtrlRegs.PIEACK.all =
PIEACK_GROUP2; Verify that your breakpoint is hit periodically, that register
TI1PR holds 37500 and register TICMPR is initialized with 18750. Use the Watch
Window to do so.

Do not continue with the next steps until this point is reached successfully! Instead,
go back and try to find out what went wrong during the modification of your source
code.

Tek 1. @ dcq Complete M Pos -36000s CURSOR
¥
Typ

=

et

Guele
CH

b4 100 5

End of Lab 14 Part 1

14 - 30

DSP28 - FIR - Filter

Lab 14: FIR — Filter for a square-wave signal

Feedback the Signal into ADC

19. Three files have been provided to this lab to add the ADC functionality. Add the two
files “Adc.c”, “Adc_isr.c” and “filter.c” to your project.

20. In function “InitSystem” of Lab14.c enable the ADC-clock:
SysCtriIRegs.PCLKCR.bit. ADCENCLK = 1;
21. In “main”, just after the call of “InitPieVectTable()” add a call to initialize the ADC:
InitAdc();
This function will setup the ADC to one conversion per trigger. ADCIN2 will be
converted by SEQ1 out of Event Manager A trigger. An interrupt will be requested
with every end of sequence. Inspect the code of “InitAdc()”.

22. Next, we have to connect the ADC interrupt to a new function:
”ADC_FIR _INT ISR()”. This function is defined in the new source code file
“Adc_isr”. All we have to do is to replace the entry in the PieVectTable by this new
address. Look in “main” and locate the line, where we already overload the
PieVectTable with T1 Compare isr. Add a new line:

PieVectTable.ADCINT = &ADC_FIR_INT_ISR;

The new function “ADC_FIR INT ISR” is not declared yet in “Lab14.c”. Therefore
we have to add a new prototype statement at the beginning of “Lab14.c™:

interrupt void ADC_FIR_INT_ISR(void);
Register IER must be modified to enable INT1 (ADC) and INT2 (T1-Compare):

IER | = 3;

Set up ADC sample period (Timer 2)

23. EVA-Timer 2 will be used to generate the sample period for the ADC. Each period
event of T2 will trigger a start of an ADC sequence automatically, if we enable this
option:

EvaRegs.GPTCONA.bit.T2TOADC = 2;
Add this line in front of the while(1)-loop of “main”.
Before the code enters the while(1)-loop we have to initialize EVA-Timer2 to
produce a sample period of 50 kHz. Register T2CON defines the operating mode.
Let’s select:

e Continuous up — Mode

e Timer — Prescaler : 1

DSP28 - FIR - Filter 14 - 31

Lab 14:

FIR — Filter for a square-wave signal

e Enable Timer (TENABLE = 1)

e No Timer Compare Operation Enable

Register T2PR must define the time period. According to:

fPWM =

fCPU

T2PR-TPS,, - HISCP

and with a given 150MHz CPU frequency, HISCP =2, TPST2 = 1 and 50 KHz as

output frequency we derive:

T2PR = 1500

Add the necessary instructions for T2PR and T2CON!

Connect T1PWM to ADCIN2

24. Connect TIPWM (eZdsp Pin P8 -15) to ADCIN2 (eZdsp Pin P9 -6) with a wire or a

1000 Ohm resistor provided

by your laboratory technician.

Caution: Be careful when connecting pins while the eZdsp is
powered on. By plugging the wire into wrong pins you can

damage the board!

To be safe, ask your technician for assistance before you connect

anything!

Build, Load and Test

25. Finalize the Project and prepare a test: :

Project 2>
File >
Debug 2>
Debug >
Debug 2>

Build

Load Program
Reset CPU
Restart

Go main.

If all code was modified correct, the 2 kHz-Signal should still be auditable at the

loudspeaker.

To verify that our ADC sampling is operating as expected, place a breakpoint at the
beginning of the ADC’s interrupt service routine (“ADC _FIR INT ISR”) in file
“Adc _isr.c”. If you run the code in real time (F5), it should hit the breakpoint

periodically.

14 -32

DSP28 - FIR - Filter

Lab 14: FIR - Filter for a square-wave signal

Inspect and Visualize the FIR

26. Let us inspect the code in this ISR. The sample (AdcRegs. ADCRESULTO) is stored
in a buffer “AdcBuf” after it is scaled to 3.0V and converted into an IQ-number. The
default value is 18Q24, defined in “IQmathLib.h”.

We can display the content of this buffer in a memory window:
View 2> Memory
= Address: AdcBuf
= (Q-Value: 24

= Format: 32 Bit Signed Int

= Page: Data

/F2812 PP Emulator/CPU_1 - 28xx - Code Composer Studio ;lilil
File Edit WYiew Project Debug Profiler GEL Option Tools DSP/BIOS ‘Window Help
EE T TR jlﬁﬂ"ﬁa%|§¥?|n§§ [gz | EE| A% %4 | o
[Lp1a_2i =][osbug o | N e R |
Blee 0BmEHEL | &
?’} | DSPYEIOS Config ;I B @ Memory {Data: 32-Bit Signed Int}
o |21 Generated Files #define W 5 /¢ filteFon3Fonan: AdeBur "
2 Include ig xDPelay[N] = {0, O, 0O, 0O, O}; Jf filte .
i DSP281x_Ade.h 7/ filter coefficients posronan: 0.0
e 003F9042: 2.999267578
™ ~[2] DsP281x_CpuTic _ig coeffs[N] = (_IQ(0.0825), _TQ{0.25), _T0(0.3| josragaq: 2 .080z67578
o g:;z:i:-gi: 003F9046: 2.999267578
i 003F9048: 2.999267578
ol ~1E] D5P281x_Device 003FS044: 2.999267578
- DSP2E1%_ECan. ,.faﬁaaﬁaﬁﬁaﬁmfxmmaammanrﬁﬁaaﬁaaxafﬁaaﬁaaﬁaaﬁaam ODIFODAC: 2.999257578
{l} ggzi:ixiv‘h interrupt wvoid ADC FIR_INT ISE(void) O03F904E: 2 .999267578
z DSPZSlz_GEabr: ;ta\:ic Uintle ikbuf=0; DOIFS0SD: Z.299267578
- ‘ 003F9052: 2.999267578
il DSP281x_Gpin b 003F9054: 2.9959267578
% o ggzgi:_::z? & PieCtrlRegs.PIEACK.all = PIEACK GROUP1: 003F9056: 2 .999267578
- 003F9058: 2.999267578 |
— DSP2E1x_PieYe: /®%% Manage the ADC registers #%#/ O03FO054: 0.0
D5P281x_Scih AdcRegs. ADCTRLZ .bit .R3T_SEQL = 1; 003FS05C: 0.0
DSP2&1x_Spikh AdcRegs. ADCST.bit. INT SEQ1 CLR = 1; 003FSOSE: 0.0
~|E] DsP281%_SWPrR . 003FO0ED0: 0.0
= Depzatx_sysc_|| (LA ODiFonEZ: 0.0
5] DAPZELx_Hintf. b GpioMuxRegs.GPGHUX.all = Ox0; 003FO064: 0.0
| ~1E] D5P281x_xlntru 003F9066: 0.0
Tmathtib.h GninMuxRens. GPADTR.A11 0O03FS06E: 0.0
(] Libraries 003F906R: 0.0
003F906C: 0.0
- O03F206E: 0.0
Ll_l 003F2070: 0.0
003F9072: 0.0

[Linking...] "C:itileZoo0\cgroolsibinicliooo™ —@"Debug. 1kE™ ;I
Euild Complete,
0 Errors, 0 Warnings, 0 Remarks.
-
[4[4B T#T Buila [EE »
|cPUHALTED |POLITE REALTIME | For Help, press F1 Ln 40, Col 76

DSP28 - FIR - Filter 14 - 33

Lab 14: FIR — Filter for a square-wave signal

27.

28.

Back to “ADC _FIR INT ISR”. After the sample is stored in AdcBuf, it is also
placed as latest sample in a filter-array “xDelay”. Then a function “IQssfir” is called
and its return value is stored in a new buffer “AdcBufFiltered”. Obviously, the return
value is the output signal from the FIR-Filter.

Now inspect the filter-function “IQssfir” in “filter.c”. Input parameters are the
samples, the coefficients and number of taps. The filter implementation is a C-based
solution with no optimization. The difference to the solution that was presented at the
beginning of the chapter is that it is a tailored solution for the C28x 1Q-Math Library,
running much faster than any ANSI-C solution with float variables.

You have also learned about Texas Instruments Filter Library. Knowing that these
library functions are based on an assembly language implementation we could move
on and increase the speed of the FIR-calculation further by replacing the “IQssfir”-
function with one from the library.

CCS Graphical Tool

29.

Now let’s visualize both the square wave and the filtered signal. CCS has a build in
tool to visualize the content of an area of code or data memory graphically. We can
use this tool to plot the content of “AdcBuf” and “AdcBufFiltered”:

View 2 Graph = Time/Frequency
Select the properties:

e Display Type : Dual Time

Start Address upper display: AdcBuf
e Start Address lower display: AdcBufFiltered
e Page: Data

e Acquisition Buffer Size: 50

¢ Display Data Size: 50

e DSP Data Type: 32-bit signed integer
e (Q-Value 24

e Sampling Rate: 50000

e Time Display Unit: us

When you close the property window with <OK> a Graphical Display with a yellow
background should pop up.

14 -34

DSP28 - FIR - Filter

Lab 14: FIR - Filter for a square-wave signal

30. Enable Real Time Mode:
Debug = Real Time Mode
Click right in the graph window and select “Continuous Refresh”

31. Run the code in Real Time (F5)

The Graph window should look like this:

/F2812 PP Emulator/CPU_1 - Z8xx - Code Composer Studio - =] x|
Fle Edit ‘“iew Project Debug Profier GEL Option Tools DSP/BIOS ‘window Help

IR ElEEETIEL | vl EE 4% A6
[Lob1a_2 i =|[oebug o | R U R A |

Fle oBEEHEL P

?ﬁ Files

o [0 GEL Files

=23 Projects

{F =25 Lab14_2.pjt (Debug

il} |2 Dependent Project

= -1 DR/EIOS Carfig

0 [Generated Files
— -2 Include

B [+ Libraries

& Ela SfILIFEE

&

&

DSP281x_ﬁEaders

= F2812_E2D5P_RAT

&

3003 T T T T T T
100 700 =) a00 as0
4 | (240, 0y (940, 0} lin* [A0to Scale |
[1]%
[Linking...] "C:yvtiye2000begtoolshbintclZ000" —B"Debug. lLkE™ A:J

Euild Complete,
0 Errors, 0 Warnings, 0 Bemarks.

-

[4] [+, Buitd IEN 3
|cPUHALTED |POLITE REALTIME | For Help, press F1 Ln 80, Col 1

End of Lab 14

DSP28 - FIR - Filter 14 - 35

Lab 14: FIR — Filter for a square-wave signal

This page has intentionally been left blank.

14 - 36 DSP28 - FIR - Filter

C28x Digital Motor Control

Introduction

In this module, we will look into an application area that is not usually the domain of Digital
Signal Processors: real-time control of electrical motors. In the old days, control of the speed and
torque of electrical motors was done purely using analog technology. Since the appearance of
microprocessors, more and more control units have been designed digitally, using the advantages
of digital systems. This improves the degree of efficiency and allows the implementation of more
advanced control schemes, thanks to increase real-time computing power. It is a natural
progression to use the internal hardware computing units of a DSP to transfer the calculation from
a standard microprocessor to a DSP. This way, we can implement more advanced algorithms in a
given period of time.

However, to use a digital controller for motor control, the system needs a little more then
computing power. The output signals of the digital controller to the power electronic are usually
generated as pulse width modulated signals (PWM). It would be most cost-effective if the
controller could be equipped with an internal PWM-unit. To control the operation of the motor
we need to do some measurement for currents and voltages — analogue to digital converters
(ADC) will be helpful as well. A typical unit to perform a position/speed measurement is an
optical encoder; quite often, we build in a Quadrature Encoder (QEP). Recalling all parts of the
C28x we discussed in chapters 1-9, you can imagine that the C28x is an ideal device for Digital
Motor Control (DMC).

The chapter will not impart a deep knowledge of electrical motors and drives. Instead, it will give
you a sense what needs to be done to use the C28x to control the motor of a vacuum cleaner or
the motor of an electrical vehicle. To fully understand the principles, it needs a lot more classes at
university. If you are in a course of electrical engineering that focuses on drives and power
engineering, you might be familiar with most of the technical terms. If not, see this chapter as a
challenge for you to open up another application field for a Digital Signal Processor.

Module 15 is based on a Texas Instruments Application Note (SPRC129, “C28x & F28x
PMSM3 1: 3-Phase sensored Field Oriented Control®, Version 3.0, May-17-2003). Depending
on the laboratory equipment at your university, you might be offered the chance to attend a
laboratory session to build a working solution for such a motor control.

After a general discussion of the basics of motor control, we will focus on the computing steps
necessary to build a control scheme for Field Oriented Control (FOC). This will be done in an
incremental way, to help you to understand the computing steps. We will not discuss any power
electronic hardware requirements or design constrains.

A complete working reference design is available in the appendix of this CD-ROM, based on a
small 24V 3-phase PMSM, the eZdspTMS320F2812 and the DMC550, a power electronic
adapter board available from Spectrum Digital.

DSP28 - Digital Motor Control 15-1

Module Topics

Module Topics

C28x Digital Motor Control 15-1
THIPOAUCTION ..o ettt ettt ettt et et e e bt ettt e e bt et e et e sbeenaeeneas 15-1
MOAULE TOPICS ...t ettt et et e et e et e e st e eab e e bbeeabeeeabeeeaeenaseenseeenseenasean 15-2
Basics Of EICCIFICAL MOTOTSooiiiiiiiiiiii ettt ettt ettt 15-3

IMOLOT CALEEOTIES ..veuveevrerienreeiieteeeesteetesseetesseenseessessaeseaseessesssesseassassaensesseensesssessesssessessensesnsesseessens 15-3
3 PRASE IMIOTOT ...ttt ettt ettt et e st a e s bt et eeat et e eabe s bt et e shb et e e st e beenbesaeenbean 15-4
Permanent Magnet SyNnchronous MOLOTecuieierierienierie ettt eieseeieseeestesee e ebeeseesseeseessessseseees 15-6
Brushless Direct Current Motor (BLDC)c..covuieiiiiiiieieeieieetesiteie sttt eae e e s 15-7
3 — Phase POWET SWILCRESeouiiiiiiiitiieiee ettt st eennens 15-8
MOtor CONIFOL PFIRCIPIESoc.ooeeeeeiieeeee ettt ettt ettt e enae e e s 15-9
SCalar CONIOL (“V/HZ™) woeeieiiiiieie ettt ettt sttt ettt et e s st enbe st enbeseaesseensesseensanseensees 15-9
Field Oriented Control (FOQC)iiieiiiieieciesieeieetest ettt ettt sbeesaesteesae e s eseesbesreenes 15-10
FOC CONtrol SCHEIME.cuveuieiieiieiieieieieetet ettt sttt et n e eee e s ne e 15-11
FOC Core Math OPEFATIONSccoeeeeeeiesiieeiet ettt ettt ettt enaesaeenseeaeesaesneenees 15-12
PARK TTaNSTOIML.....couiiiiiiiiicieteteeete ettt ettt st s 15-12
CLARKE TTaNSTOIII «..cuiiiiiiiiiiieiecitetee ettt sttt st et ettt s beeae 15-14
PARK Transform SUIMIMATYcoeeriirieririiiieieeiesieete sttt sttt eite st et site bt entesbeesaesaeensesasesbeenes 15-15
Texas Instruments Digital Motor COontrol LiDYary................ccccceeiriieiiniiiiiiieiceeeeeereeenans 15-16
351 1Y (o Y& LY ST 15-18
FOUC fOr PMSM ..ottt ettt ettt ettt et s 15-19
Hardware Laboratory SEHUD.......coeiuerererieeieteieieeete ettt ettt ese st s s seeseeneeseeneenesnenes 15-20
PMSM Library MOGUIES........cccviiiiriierienieeieetiesteeteetesteeteestesaessaessesssesseessesseesesssesssessesseessesssessesnes 15-22
PMSM Software FIOWCRAItcc.eoiririiniieneiiececectcee ettt 15-23
Lab 15: PMSM CONIFOL PFOJECEccooiiiiiiiiiiiiiieii ittt 15-24
BUILA LEVEL 1 ottt sttt e ettt e e et e st eneeeeeaeeeesnenee 15-24
BUILA LEVEL 2 ..ottt ettt et 15-28
BUILA LEVEL 3 ..ttt sttt et ettt ettt n e neeneeneeeennenee 15-30
BUILA LEVEL 4 ...ttt sttt ettt ae bt eae e nee 15-32
BUILA LEVEL S .ottt ettt et 15-35

15-2

DSP28 - Digital Motor Control

Basics of Electrical Motors

Basics of Electrical Motors

Motor Categories

In order to classify the different electrical motors families, we can distinguish motors driven by
direct current (DC) and motors driven by an alternating current (AC). DC motors are the most
popular ones: both stators and rotors carry an excitation created by coils or windings in which DC
current circulates. In order to ensure the motor rotation by commutating the windings, brushes are
permanently in contact with the rotor.

Electrical Motor families

Motor Classification:
¢Direct Current Motors (DC)

¢ Alternating Current Motors (AC)
+ Asynchronous Induction Motor (ACI)

+ Permanent Magnet Synchronous Motor
(PMSM)

+ Synchronous Brushless DC Motor (BLDC)

Under the classification of AC motors, we have synchronous motors and asynchronous motors;
both motor types are induction machines.

Asynchronous machines require a sinusoidal voltage distribution on the stator phases in order to
induce current on the rotor, which is not fed by any currents nor carries any magnetic excitation.

Synchronous motors are usually called “Brushless DC Motors” (BLDC) but can also be called
“Permanent Magnet Synchronous Motors” (PMSM) depending on their construction and the way
of being controlled. In this type of motor, we have one sinusoidal or trapezoidal excitation on the
stator and one constant flux source on the rotor (usually a magnet).

Because of the selected application note as the base of this module, we will focus on the PMSM —
type for the rest of this module.

DSP28 - Digital Motor Control 15-3

Basics of Electrical Motors

3 — phase Motor

Let us start with a brief discussion of a 3-phase motor. We can start with a magnet rotating in
front of an electrical winding. This can be expanded into a three phase winding approach. Wind-
ings a, b and c are physically spaced 120° apart from each other. While the magnet is rotating
with a mechanical speed (2, each winding sees a varying flux that induces voltage and current at
their ends. Applying the Faraday law to each of the phases, we can obtain a three-phase equation
system that will be the base of our rotating machine study.

3 — Phase - Motor (Mswm)

¢ For most three phase machines, the winding is stationery, and
magnetic field is rotating

¢ Three phase machines have three stator windings, separated
120° apart physically

¢ Three phase stator windings produce three magnetic fields,
which are spaced 120°in time

jot
I, .e

’a)t—zn
J 3

Depending on the number of pole pairs (p) of the rotating magnet, the electrical pulsation of the
inducted voltage will change. For a two pole pairs rotating magnetical excitation, the electrical
pulsation is twice the mechanical pulsation. For a complete 360° turn of the magnet, the windings
see two North and South poles. This observation for two pole pair magnet can be generalized to
w= p* with electrical (o) and mechanical () pulsation. Parameter e is the inductive voltage,
called ,,Back Electromotive Force (Bemf) “.

We can represent the system using the following equations (in real notation as an example):

e, = D2 sin(ar) = E\2 sin(pQt)

e, = CDa)\/Esin(a)t —2?7[) = E2 sin(th _2?”)
) 4r) 4
e, = O w2 sin a)t—T = E[2 sin th—?

15-4

DSP28 - Digital Motor Control

Basics of Electrical Motors

Instead of rotating the magnet in front of windings and inducing a flux variation and a Bemf
inside the three phases we can turn the principle around:

We can place a sinusoidal source current distribution on the stator that creates a rotating magnetic
field. In this case, we apply a rotating force to a magnetic field placed in the center of the stator.
This leads us to the principle of the synchronous motor.

Phase currents

ia ib ic

1,00 /\
050

24 47 70 93 116 139 162 15‘5\%& 231 254 277 300 323
-0,50
-1,00

3 — Phase - Motor

Three stationary pulsating magnetic fields

¢ The three phase winding

wt

produces three magnetic
fields, which are spaced
120° apart physically.

When excited with three
sine waves that are a 120°
apart in phase, there are
three pulsating magnetic
fields.

The resultant of the three
magnetic fields is a rofating
magnetic field.

DSP28 - Digital Motor Control

15-56

Basics of Electrical Motors

Permanent Magnet Synchronous Motor

Synchronous motor construction: Permanent magnets glued or screwed tightly to the rotating axis
create the rotor flux (constant). When excited, the stator windings create electromagnetic poles.
By controlling the stator currents, we control the stator magnetic field and the revolution of the
rotor.

| Synchronous Motor

Rotor field . .
¢ Rotor is carrying a constant

magnetic field created either
by permanent magnets or
current fed coils

& The interaction between the
rotating stator flux, and the
rotor flux produces a torque
which will cause the motor to
rotate.

¢ The rotatioﬁ of the rotor in this case will be at the same exact
frequency as the applied excitation to the rotor.

¢ This is synchronous operation.

60.

(r.pm) [® Example: a 2 poles pair

synchronous motor will
run at 1500 r.pm for a
f : AC supply frequency (Hz) 50Hz AC supply
frequency

Rotor speed (rad/s) : Q = @ gives
p

p : motor poles pair per phase

The permanent magnet approach is suitable for synchronous machine ranging up to a few kilo
Watts (kW). For higher power ranges, the rotor is composed of windings in which a DC current
circulates with the appropriate sequence of North and South poles, in order to get the desired pole
pair number.

This action of the rotor chasing after the electromagnet poles on the stator is the fundamental
action used in synchronous permanent magnet motors.

The phase difference between the rotor and the rotating stator field must be controlled to produce
torque and to achieve a high degree of efficiency. This implies:

o The rotating stator field must revolve at the same frequency as the rotor permanent
magnetic field. If not, the rotor will stop chasing after the stator field.

e The angle between the rotor field and the stator field must be equal to 90° to obtain
the highest mutual torque production. This synchronization requires knowing the
rotor position in order to generate the right stator field.

15-6 DSP28 - Digital Motor Control

Basics of Electrical Motors

Brushless Direct Current Motor (BLDC)

We can distinguish two types of synchronous motor: Brushless Direct Current motor (BLDC) and
Permanent Magnet Synchronous Motor (PMSM). This terminology defines the shape of the Bemf
of the synchronous motor. Both a BLDC and a PMSM motor can have permanent magnets on the
rotor, but different Bemf shapes. It is mainly linked to the way of mounting and disposing of the
magnets on the rotor. To get the best performances out of the synchronous motor, it is important

to identify the type of motor in order to apply the most appropriate type of control scheme.

Synchronous Motors: BLDC and PMSM

N 7

—— e 1,00
Hall A
——— - 0.50
7 N
Phase B 0,00

\ 0, \ >
== -_———— 1 24 47 70 93116 139 162 135,208 231 254 277 300 323 36
Hall B
=N N 1,00

Phase €)

HallC[™ |

@ ¢ Both gypically) have permanent-magnet rotor and a
R wound stator
I\JA\ ¢ BLDC (Brushless DC) motor is a permanent-magnet

Y, B brushless motor with trapezoidal back EMF
H — ¢ PMSM (Permanent-magnet synchronous motor) is a
LW 7 Bermanent—magnet brushless motor with sinusoidal
3 ack EMF

B

¥

Back EMF of BLDC Motor Back EMF of PMSM
0 22 0 2”08 2n08 3007 30”3699 L o — E, st
Phase A 7,) '

wt

DSP28 - Digital Motor Control

165-7

Basics of Electrical Motors

3 — Phase Power Switches

As we saw in the previous basic diagrams, we need to apply three 120° phase shifted excitation
signals into the power circuitry of the motor. As you have seen in Module 5 (,,Event Manager®) a
PWM signal can be used to modulate sine wave shaped signals. With three independent switching
pattern streams and six power switches, we can deliver the necessary phase voltages to generate
the required torque imposed by the load. The goal is to build the correct IGBT’s conduction se-
quences to deliver sine wave shaped currents to the motor to transform it in a mechanical rotation.

This is traditionally achieved by comparing a three-phase sinusoidal waveform with a triangular
carrier. In the digital world, on the DSP processor, we compute a sinusoidal command and apply
it to the PWM units that generate the appropriate PWM outputs usually connected to gate drivers
of the IGBT’s from the inverter.

Basically we are “chopping” a DC voltage, carried by the DC bus capacitor, in order to build the
appropriate voltage shapes to the stator phases, with the goal of having a good efficiency during
this energy conversion process. This is a power electronics concern: we need to minimize the noi-
se introduced by these conducting sequences source of harmonics.

3 — Phase Voltage Inverter

DC - Voltage Upper & lower
devices can not
be turned on
simultaneously
(dead band)

Six PWM signals
to control == >
Power Switches ™
B 3 - phase
outputs to motor
/4 terminals
Power
Switching
Devices

15-8

DSP28 - Digital Motor Control

Motor Control Principles

Motor Control Principles

Scalar Control (“V/Hz”)

The V/Hz regulation scheme is the simplest one that can be applied for an asynchronous motor.
The goal is to work in an area where the rotor flux is constant (Volts proportional to speed).

In practical solutions, the speed sensor is optional as the control is tuned to follow a predefined
“speed-profile versus load*- table, assuming the load characteristics are known in advance.

Obviously, this type of control bases itself on the steady electrical characteristic of the machine
and assumes that we are able to work with a constant flux on the complete speed range the appli-
cation targets. This is why this type of control does not deliver a good dynamic performance and
a good transient response time; the V/Hz profile is fixed and does not take into account conditions
other than those seen in a steady state. The second point is the problem at startup AC induction
motors, which cannot deliver high torques at zero speed; in this case, the system cannot maintain
a fixed position. In practice for low speed, we need to increase the delivered voltage to the stator
compared to the theoretical V/Hz law.

Scalar Control Scheme (“ V/{”)

\" PWM1
PWM
PWM PWM3 3-

C d PWM4
ommaNd Fewws Yl Phase

VI/f profile f B nverter

Speed scaling

Speed calculator

+ Simple to implement: All you need is three sine
waves feeding the motor

+ Position information not required (optional).

- Doesn’t deliver good dynamic performance.
- Torque delivery not optimized for all speeds

DSP28 - Digital Motor Control 15-9

Motor Control Principles

Field Oriented Control (FOC)

Instead of using a pure sine wave shaped modulation of the PWM stage, in recent years the space
vector theory has demonstrated some improvements for both the output crest voltage and the
harmonic copper loss. The maximum output voltage based on the space vector theory is 1.155
times larger than the conventional sinusoidal modulation. It makes it possible to feed the motor
with a higher voltage than the simpler sub-oscillation modulation method. This modulator enables
higher torque at high speeds, and a higher efficiency. Torque distortion is also reduced.

The space vector PWM technique implemented into the existing TI DMC library reduces the
number of transistor commutations. It therefore improves EMI behavior.

Field Oriented Control (FOC)

¢ Field Oriented Control (FOC) or Vector
Control, is a control strategy for 3-phases
induction motors where the torque
producing and magnetizing components
of the stator flux are separately
controlled.

¢ The approach consists in imitating the
DC motors’ operation

¢ FOC will be possible with system
information: currents, voltages, flux and
speed.

A typical characteristic of FOC - PWM command strategy is that the envelope of the generated
signal is carrying the first and the third harmonics. We can interpret this as a consequence of the
special PWM sequence applied to the power inverters. Literature also mentions the third
harmonic injection to boost out the performance we get out of the DC bus capacitor. This third-
harmonic exists in the phase to neutral voltage but disappears in the phase-to-phase voltage.

15-10

DSP28 - Digital Motor Control

Motor Control Principles

FOC Control Scheme

The overall system for implementation of the 3-phase PMSM control is depicted in the next slide.
The PMSM is driven by the conventional voltage-source inverter. The C28x is generating six
pulse width modulation (PWM) signals by means of space vector PWM technique for six power-
switching devices in the inverter. Two input currents of the PMSM (i, and i,) are measured from
the inverter and they are sent to the C28x via two analog-to-digital converters (ADCs).

FOC control scheme

Inverse Park

\ V,
® | Q q
“42(D—{ PID |-5-@—{ PID [02 /1= space 2
- - Vector BuMs 3-
WVD d Va | pwm Bunis,| Phase
q N q Inverter
Field Weakening
Controller 9,
®
. Iq Iq iy
D,Q d,q b
Io | i!
d,q 4 ab,c
Park T Clarke T
Speed
Calculator qr

g +ip+i =0

mm) Some key mathematical components are required!

15-10

Theoretically, the field oriented control for the PMSM drive allows the motor torque be
controlled independently with the flux-like DC motor operation. In other words, the torque and
flux are decoupled from each other. The rotor position is required for variable transformation
from stationary reference frame to synchronously rotating reference frame. As a result of this
transformation, the so called Park transformation, the g-axis current will be controlling torque

while the d-axis current is forced to zero for a PMSM. Here “d” means direct and “q” means
Quadrature.

Therefore, an important key module of this system is the information of rotor position from QEP
encoder.

Note that the same control scheme with an additional field weakening controller can be used to
control 3-phase asynchronous AC induction motors.

DSP28 - Digital Motor Control 15-11

FOC Core Math Operations

FOC Core Math Operations

PARK Transform

The PARK transform is not something new. This theory has been around for 75 years. As we will
see, this technique requires a large amount of mathematical calculations involving in particular
matrix multiplications. Thanks to new control processor technologies, it becomes now possible to
use this real-time control technique.

Let us consider the voltage vector (Vs) applied to the stator of the three phase machine we are
working on (ACI or PMSM).

This theory is not limited to sinusoidal distribution and can be applied to any kind of vector. For
now, we will consider the general case.

The PARK transform is only a referential change defined as below:

PARK transform (1929):
vsl

¢ (Vs): voltage vector applied ()=|v,
to motor stator (index s) ;
S3

¢ Park transform is a referential change

- cos by —sin 6 1
Vsl 2 2 vsd
v, |=| cos(@, - 7”) —sin(0; — ?”) 1 v,
_Vs3 vSo
cos(fs — 4—”) —sin(f; — 4—”) 1
3 3
_Vsl vsd vsd vsl
Ve, |= [P(HS)1 Ve, and Vg, |= [P(HS)Tl Vg,
_VS 3 Vso Vso Vs3

15-11

The index “S” indicates that we work with the stator parameters. This referential change
transforms the Vg vector in a new vector as written below:

15-12

DSP28 - Digital Motor Control

FOC Core Math Operations

vsl vsd vsd vsl
-1

vs2 = [P(ex)] vs‘q and vsq = [P(Hc)] vx2

Vs3 sz VSO VS3

PARK coordinates will play an important role in the FOC control from a regulation point of view.
Instead of using the general PARK transform, literature prefers the normalized PARK transform
for which inverted matrix is much easier to calculate and which allows building an orthogonal
referential change. The normalized PARK transform is defined as follows:

cosd, —sinf,

2 27 . 27
IZCNE \g cos(6, =) —sin(6, =)

4 A
0 ——) —sin(@d. ——
_cos(-) sin(0, 3)

tol =51 =11

Park Transform key components

Vel Wsol H Vs = 0 (tri- phases balanced system)

Vg Vs, =0

Ve, Vg, =0

Ve, Vs, =0

(Vsq, Vsq, Vso) are called the Park coordinates

V¢q4: direct Park component

V¢q: Squaring Park component

V... homo-polar Park component

V., is null for a three-phases balanced system

Each pair of components is perpendicular to each other

® 6 6 6 0 o

15-12

DSP28 - Digital Motor Control 15-13

FOC Core Math Operations

CLARKE Transform

The normalized PARK can be seen as the result of the combination of the CLARKE transform
combined with a rotation. Literature sometimes refers to PARK in this way: this is the case for
the TI Digital Motor Control library. This gives an intermediate step that helps to build the regu-
lation scheme.

CLARKE - Transformation

¢ Transform is usually split into CLARKE transform and one rotation

¢ CLARKE converts balanced three phase quantities into balanced two
phase orthogonal quantities

CLARKE
v —
v, B v, v, =V
by = 2, +v,
B

A 0. =wgt
q \S S +

Vim Va Rotation
Vi cos(HS) sin(GS) Y
Vq - —sin(HS) cos(HS) ' Vﬂ
Vs ||- PARK TRANSFORM _

We start from a three-phase balanced system that we first transform in a two-phase balanced
system: this is the role of the CLARKE transform that defines a two-phase rotating frame (o, f)
that rotates at the speed of the rotating stator magnetic field (ws). If we “sit” on the rotating frame
(a,) then we see stationary variables. This is the role of the 65 angle rotation that allows us to
move from the rotating domain to the stationary domain.

15-14 DSP28 - Digital Motor Control

FOC Core Math Operations

PARK Transform Summary

In the next slide, the two modules “PARK” and “CLARKE” are shown in a “one-piece”
transform. Texas Instruments DMC library uses two C-callable functions to perform the
coordinate transform. The library functions are based on the fixed point math ,,]Q-Math*.

Combining the CLARKE and PARK transforms as defined above, we move from the three phase
rotating domain to the stationary domain: we just need to control DC quantities in real-time.

PARK Transform summary

V(l
\Z , v,
v, »| Clarke Vs Park
V3 > Y

Three phase rotating Two phase rotating
domain domain

Stationary domain

¢ Stator phase current
example: |, is moving at 6g
and its PARK coordinates
are constant in (d,q) rotating
frame.

¢ Can be applied on any three-
phase balanced variables
(flux...)

15-14

To drive the power switches with new calculated values we have to re-transform these stationary
control values back into the three phase rotating domain. This is done with a similar transform
function called “Inverse PARK”, shown in slide 15-10.

The control itself is done with 3 instances of a C-callable function “PID” (see slide 15-10). This
function implements a discrete proportional (P)-integral (I)-derivative (D) control scheme with an
additional anti-windup feedback. To learn more about the theory refer to file ,,pid_reg3.pdf*in the
appendix.

DSP28 - Digital Motor Control 15-15

Texas Instruments Digital Motor Control Library

Texas Instruments Digital Motor Control Library

Texas Instruments Digital Motor Control (DMC) Library is available free of charge and can be
downloaded from the website. It consists of a number of useful functions for motor control ap-
plications. Among those functions, there are pure motor control modules (Park and Clark trans-
forms, Space Vector PWM, ...) as well as traditional control modules (PID controller, ramp
generator, ...) and peripherals drivers (for PWM, ADC, ...)

Based on this DMC library, Texas Instruments has developed a number of application notes for
different types of electrical motors. All applications examples are specially designed for the
C2000 platform and come with a working example of the corresponding software, background
information and documentation.

One branch of this library is dedicated to the C28x and takes advantage of the 32 Bit IQ-Math
data format.

The following slide shows the examples available for the C28x:

Texas Instruments Motor Control Solution
“C2000 - Digital Motor Control Library (DMC)” :

2 %1/11 le Phase ACI Motor Control Using Constant
z

4 3-Phase ACI Motor Constant V/Hz Control
4 3-Phase ACI Motor Field Oriented Control
¢ 3-Phase Sensored Field Oriented Control (PMSM)

¢ 3-Phase Sensorless Field Oriented Control
(PMSM)

¢ 3-Phase Sensored Trapezoidal Control (BLDC)
¢ 3-Phase Sensorless Trapezoidal Control (BLDC)

15-15

15-16 DSP28 - Digital Motor Control

Texas Instruments Digital Motor Control Library

In the remaining part of this chapter we will focus on the “C28x & F28x PMSM3 1: 3-phase
Sensored Field Oriented Control” — Literature Number SPRC129. The laboratory setup will be
based on the following hardware modules:

o TMS320F2812 eZdsp (Spectrum Digital Inc.) with 5V DC power supply

e DMCS550 power drive adapter board (Spectrum Digital Inc.),

e A 24V 3-Phase PMSM (Applied Motion Inc.)

e External 24V — DC power supply unit

Digital Motor Control Library (DMC-Lib)

¢ The DMC-Library is a collection of most
commonly used algorithms and function
blocks for motor control systems

¢ For every algorithm and function:
+ Essential theoretical background information

+ Data types for input/output parameters with
numerical range and precision

+ Function prototypes and calling conventions
+ code size (program and data memory)

+ Build Level based code examples

15-16

NOTE:
Depending on existing equipment at your university laboratory, you might be able to attend
sessions based on other motor types. The procedure for all library solutions will be similar and is

based on TI’s modular approach for each of the motor solutions.

To accomplish the lab exercises you will need an additional student user guide, which is tailored
to your university lab.

Ask your professor if this optional laboratory exercise is available to you.

DSP28 - Digital Motor Control 15-17

Texas Instruments Digital Motor Control Library

Library Modules

The following slide lists all groups of C-callable modules which are part of the library. Each
block is explained in detail with its accompanying documentation. After the installation of the
library, a separate subfolder (“C:\tidcs\dmc\c28\lib\dmclib\doc”) includes the documentation.

Digital Motor Control Library (DMC-Lib)

The DMC-Lib contains

PID regulators,

Clarke transformers,
Park transformers,
Ramp generators,

Sine generators,

Space Vector generators,

® 6 6 6 06 0 o

Impulse generators,

and more...

15-17

For example, the file “pid_reg3.pdf” explains the interface and the background of the PID-
controller:

pid_ref_reg3 o

PID_REG3 pu
pu

pid_out_reg&

pid_fdb_reg3
—

All functions are coded for 32-Bit variables in 1Q-Math-format, which was explained in module
11. Successful completion of module 11 is necessary to be up to speed with the following
software modules. All functions are used as instances of a predefined object class, based on a
structure definition in a header file.

15-18 DSP28 - Digital Motor Control

Texas Instruments Digital Motor Control Library

FOC for PMSM

The following slide is the data flow chart of the complete application for a 3-Phase PMSM. This
software project will be implemented step-by-step during the laboratory.

Laboratory: FOC for PMSM
:__"___"_: ________ *_—___"__: _______]? __________ | PWMI1
| 1s Vas Vas a, TPWM2
! |
| Space| T (FWMS
| Vector > PWM | PWM4
| Gen, | 1, | Priver [rwes
| > | PWM6
: | Voltage
1 1 Source
: : Inverter
I . I ADCIN1
| las las Tleg?2 N :
! ‘ 8°_| I apcin2
| . [Clarke i, Bus |
| <«— Driver L | ADCIN
| A |
| |
| |
! |
: : Encoder
7 . SPEED o QEP |
I r
| FRQ e <! THETA |eio——i
i ~ dir DRV _QEP_inc |

|

|
: TMS320F28x controlleri 15-18

The diagram shows all library modules, which are part of the C28x real time control solution for
this type of motor.

It consists of three PID-controller loops that are executed periodically. This period is defined to
20 (in kHz) by parameter “ISR_FREQUENCY” in file “parameter.h” and can be adapted to the
needs of the motor, which is used in your laboratory.

PID-controller 1 (top left) controls the rotating speed of the motor, controller 2 (top) is used to
optimize the torque and controller 3 is leveling the flux.

The coordinate transform modules, which we discussed previously, form part of the control
scheme as well as the QEP — support module to estimate speed and position of the rotor.

DSP28 - Digital Motor Control 15-19

Texas Instruments Digital Motor Control Library

Hardware Laboratory Setup

Before we busy ourselves with the software project, let’s summarize the hardware equipment that

we need to continue:

Hardware for Laboratory setup:

* Type: A0100-104-3-100

* load, e.g. DC Motor as Generator
* PC parallel port to JTAG

* 5VDC(eZdsp)

* RS232 (optional)

* Oscilloscope

TI Library Solution “PMSM 3-1 (spre129)

* Spectrum Digital eZdsp TMS320F2812
* Spectrum Digital DMC550 drive platform
* 3-phase PMSM with a QEP encoder

* Applied Motion 40mm Alpha Motor

* 24V DC power supply (DC bus voltage)

15-19

PC- parallel port

TI Library Solution “PMSM 3-1" (sprci29)

15-20

15-20

DSP28 - Digital Motor Control

Texas Instruments Digital Motor Control Library

PMSM 3-1 Laboratory

15-21

DSP28 - Digital Motor Control 15- 21

Texas Instruments Digital Motor Control Library

PMSM Library Modules

The next two slides are a summary of all the library modules used in the software project.

TI DMC Library Modules

i i VcLs Vqs vqs vas
as as — — — —_—
— —
Inv.
Park
i |Clarke|. Vs Vs Vs | Park | vp,
bs lﬁs —) —_—
— —
ekr ekrT

Variable transformation from
phase ab-axis to
stationary of-axis

Variable transformation from Variable transformation from
stationary af-axis to synchronously rotating dg-axis to
synchronously rotating dg-axis stationary of-axis

Vas T,
Space| T,

v Vector ’

Bl Gen | T,

Space-vector generator producing
the duty cycle ratio of PWM signals

Proportional-Integral

shaft position and rotor direction

controller
T, PWMI
PWM
T, Dri PWM3
— river PWM4
T PWMS |
C
— PWM6 |

PWM generation

15-22
TI DMC Library Modules
i’ 0
s . QEP_A 0, —-— (08
- Vas QEP B QEP NG SPEED |—,
i | PI —— THETA 2 dir FRQ
— QEP_ind DRV dir. —
QEP driver and

Speed estimation from
rotor position and rotor direction

ADCIN1

ADCIN2
—_—

Ileg2
Bus

ADCIN3 Driver
—

ADC driver for two line currents
and DC-bus voltage measurement

15-23

15-22

DSP28 - Digital Motor Control

Texas Instruments Digital Motor Control Library

PMSM Software Flowchart

The flow of the control software consists of an initialize part (c_int00 plus main) and two
interrupt service routines (INT2, INT3). After main() has done the primary initialization, it stays
in an endless loop. All further activities are done by the two ISR’s. INT3 belongs to the QEP-unit
and is called when the rotor passes through zero degrees. INT2 belongs to Timer 1 underflow and

executes the control loop periodically.

|: c_int0 :I INTZintarrrupt

1
Imitial e S TIUF_IER
modulas +
L Save contexts and
claarintarmuptflags
Initialize timer T1/T2 i
Exscuts the speasd
L FID module
Enable T1undarflow +
and CAP3 interrupts
and core intermupt Exacule the 1dlq PID
INTZINT3 modules
, ¥
Execute the IFPARK
Initialize othersystam medule
and modulke
pammetars '*
Executethe
SVGEN_DCY
PWIGEN medulas

¥

Background Y
loop Exscuts the ADC moduls
{currents! DC-bus volt
measuremsnt)

INT3 intarrrupt +

Exacute the CLARKE!
PARKE modules
CAP3 ISR *
+ Executs CEP and
SFPEED_FR
Save contexts and
claarinterruptflags +
* Update EN_DRIVE
and PWWMDAC
Update QEP ISR +

+ Restora contexts —{Rawm)
Restors contexts —{Ratum)

DSP28 - Digital Motor Control 15-23

Lab 15:

PMSM control project

Lab 15: PMSM control project

The laboratory experiment is gradually built-up in order that the final system can be confidently
operated. Five phases of the incremental system build are designed to verify each of the major
software modules used in the system.

Build Level 1

This first level describes the steps for a “minimum” system check-out, which confirms correct
operation of system interrupts, the peripheral and target independent I PARK and SVGEN_DQ
modules and the peripheral dependent PWM_DRYV module.

Notice that only the x2812 eZdsp is used in this phase. The PMSM and DMCS550 are not to be
connected yet.

In the build.h header file located under ../pmsm3_1/cIQmath/include directory, select phase 1
incremental build option by setting the parameter “build level” to “level 1”. Use the ‘Rebuild All’
feature of CCS to save the program, compile it and load it to the target.

Build Level 1

:_""__"_—_""T __________________________ __ " pwmi

: Vq_testing W

: —_ ! PWM3

| Inv. PWM M pwas

| Vd_testing | park Driver [T~ Fwris

| |

i I | PWM6

| A

| |

! |

: rmp_out :
speed_ref |
pdl - Ramp | | Ramp !

: control Gen. !

| key modules under test

| |

| |

I i

! |

| |

! |

i TMS320F28x controller !

I

l l

| |

: |

|
:_ __ : 15-24

15-24

DSP28 - Digital Motor Control

Lab 15: PMSM control project

Code Composer Studio with
Real Time Mode

1. Load a workspace file ‘pmsm3 1. wks’
2. In build.h, #define BUILDLEVEL LEVEL1

3. Rebuild all

| i x|

‘ Rebuild all

4‘ Load program to target Fle Edt Wiew Project Debug

Hew L4
(..\pmsm3_1.out) P culto
Clost
Sove sl
Luad Program, .,

15-25

Code Composer Studio with
Real Time Mode

5. In Debug menu, “Reset CPU” and then set
“‘Real-time Mode”. Then, click “Yes” when the
message box pops up.

CPU_1 - DSP Device Driver W |

Do pou want to allow realtime mode switching?:
Can't enter realtime mode unless debug events are enabled.

Bit 1 of ST1 must be 0.

q = |

6. Click “Run” icon #

15-26

After running and setting real time mode, set variable “enable flg” to 1 in the Watch Window in
order to enable interrupt TIUF. The variable named “isr_ticker” will be increased incrementally,
as can be seen in Watch Window to confirm the interrupt working properly.

DSP28 - Digital Motor Control 15-25

Lab 15: PMSM control project

Code Composer Studio with
Real Time Mode

7. Right click on watch window. Then, check
“Continuous Refresh”.

Property Page ..

Expand £z Aray.
Fiemoye &iay Expansion
Delete Selected Itemis)

Add Tab
EditTab...
Delete Tab...

Refresh
Freszs Window
Continuous Refresh

&llove Docking
Close
Float In Main Window

8. Set “enable_flg” to 1 in watch window.
(to enable T1UF interrupt and PWM drive on DMC550)

15-27

Code Composer Studio Level 1

4 /F2812 XDS560 Emulator/CPU_1 - 28xx - Code Composer Studio
File Edt View Project Debug Profiler GEL Option Tools DSP/EIOS ‘window Help

8 & = G 4
[pmsma_1_dmess0pt | Debug =] =t Heé OEEHERERZA

Fries ¥ build.h 9 [=1[E3]
(0 GEL files Folloving is the list of the Build Level choices
=3 Projects o
=2 pmsma_1_dmc550.pjt (De #define LEVELL 1 #% SYGEN_DO and FC_FVM_DRY
Dependent Project #defins LEVELZ 2 /% Currents messurement tes
EDZEE;;C s #define LEVEL] 3 /% Two current PT requlator
onfig #define LEVELY 4 #% CQEP test and angle calib
(2 Generated Fies #define LEVELS S #% Speed closed loop using
- (1 Includs #defins ALWATS RUN
=[] Libraries
= 23 Source ;h
is lins ssts the BUILDLEVEL tc one of the availabls c
DSP28_Defaultlsr.c
D3P28_GlobalariableD #define BUILDLEVEL LEVELL

D3P23_Piettrd.c

DSP28_Pievect.c #ifndef BOILDLEVEL

- . .
D5paR SysCirl.c gziﬁ?? Eiléé?al BUILDLEVEL must be defined

= — Watch Windaw Changing I

E2DSP_RAM Jrk,cmd #endit x BUIY [ome [Value 7 T

§ enable_fig 1 ﬂ det
< > ‘ % Evafiegs TICNT 1843 unsignedint | uns

| q § EvaRegs.CMPR1 1786 g
[File Wiew | #Bookmarks © EvaRicgs.CHPRZ S
% EvaRegs CMPR3 1442 .
pnsn3_1_dmcS50.pjt - Dely G is1_ticker 32156 WatCh WlndOW
Build Complete. © back_ticker for bU|Id 1

0 Errors, 0 Warnings, 0 Remarks

& speed_ref -0

e}
Lol ACBE1 TR BUM2 | ABNIN3 | AT BNld4 | o Bui

[T+ T+ Buita
CPU RUNNING POLITE REALTIME For HE\E press F1 Ln &7, Col 19 MM 15-28

15-26 DSP28 - Digital Motor Control

Lab 15: PMSM control project

The speed ref value is specified to the RAMP_GEN module via RAMP_CNTL module. The
I PARK module is generating the outputs to the SVGEN DQ module. Three outputs from
SVGEN_DQ module are monitored via the PWMDAC module with external low-pass filter and
an oscilloscope. The expected output waveform can be seen in the next slide. Waveforms Ta, Tb,
and Tc are 120° apart from each other. Specifically, Tb lags Ta by 120° and Tc leads Ta by 120°.

Results: Build Level 1

= Graph Property Dialog, E\
Iﬂﬂﬂmﬂ_ Dual Time: =
Graph Title bufft & buff2

Interleaved Data Sources Mo

Start Address - upper display _DLOG_4CH_buff [o
Start Address - lower display _DLOG_4CH_buff2 -
Page Data

Acquisition Buffer Size 400

Index Increment 1

Display Data Size 400

DSP Data Type 16bit signed integer

Q-value 1}

Sampling Rate (Hz) 1

Flot Data From Left to Right

Left-shifted Data Display Yes

Autoscale Off

DC Value 1}

Mawimnum *Y-walue 40000

Ares Display On

Time Display Urit s

Status Bar Display On

Magritude Display Scale Linear

Data Plot Style Line

Grid Style Zeto Line

Cursor Mode Data Cursor

Cancel | Help

----------- rmp_out
....... 'S
~. M N
N .
. \
Ta™ N
\ .
\ \‘
* \
\ .
buff1 & buff2 3]
[40e.47 -\ |
\ ~
24e+4 °
80004 \
-60004 ‘\
-2 de+4] \
-4.0e+4] : : \
4.0e+4] :
\
2 dg+4] °
\
80004 \
-30004
\
-2 4g+4]
4 DE+4,I T T T T T
o BE.T 133 200 267 333 399

(232, 25024) (252, -22814) Time Lin_Fixed Scale

-29

Next, the PWM_DRYV module is tested by looking at the six PWM output pins.

Note:

recommendations.

A simple 1% — order low-pass filter RC circuit must be created to visualize the integral of the
PWM-signals with an oscilloscope. Ask your laboratory technician about provisions or additional

Once the low-pass filter is connected to the PWM pins of the x2812 eZdsp, the filtered version of
the PWM signals are monitored by oscilloscope. The waveform shown on the oscilloscope should
appear as same as one shown above. It is emphasized that the Ta waveform may be out of phase
comparing with the filtered PWM1 signal.

DSP28 - Digital Motor Control

15-27

Lab 15:

PMSM control project

Build Level 2

Build Level 2 — Current verification

| | PWM1

! Vq_testing Vs T, > TPWM2

I 'PWM3

i Inv. ‘iﬁgi T, pwm owvia

: Vd_testing X Park | vg, Gen. | T, Driver I PWM5

| > | PWM6

: . i ”l Voltage
1 Source

! 0, yaN Inverter
! . . 4 \ | ADCINI

| lgs Los 1 /

! 2 Tleg2 \ A

| i | Park ig, Clarkq Bus

! “— < Driver] A

| y

|

I

I

|

key module under test

Speed_ref
Heed_ Ramp
control Gen.

|l rmp_out

|

|

|

|

I

]

|

i

‘ NS
\/:
|

|

|

|

|

|

|

|

I

|

|
TMS320F28x controller: 15-30

Assuming Level 1 is completed successfully, this section verifies the analog-to-digital conversion
(ILEG2_DCBUS DRYV) and the Clarke/Park transformations (CLARKE/PARK). Now the
PMSM motor and DMC550 must be connected since the PWM signals are successfully generated
from phase 1 incremental build.

Note:

The DMC550 drive platform must be adjusted BEFORE we can continue. Ask the laboratory
technician if this was done prior to the class. This step includes the correct setting of jumper 13,
3,4, 10, 11, and 14. The ADC input voltages must be limited by R5,R6, R14 and R15 of the
DMC550. Do NOT modify this setup! Otherwise, you might damage the hardware!

In the build.h header file located under ../pmsm3_1/cIQmath/include directory, select phase 2
incremental build option by setting the build level to level 2. Use the ‘Rebuild All’ feature of
CCS to save the program, compile it and load it to the target.

15-28

DSP28 - Digital Motor Control

Lab 15: PMSM control project

Instructions: Build Level 2
1. Tune the 24V Power Supply to 10 Volts with 1 Amp limit
2. Load a workspace file ‘pmsm3_1.wks’
3. Inbuild.h, #define BUILDLEVEL LEVEL2
4. Reset CPU, Compile, Load, start RTM and Run
5. Switch on 24V Power Supply

6. Set variable “enable_flg” to 1 in watch window.

7. Try to change motor speed by setting “speed_ref” (p.u.)
in watch window. Then, motor should change its speed
accordingly.

15 - 31

Results: Build Level 2
1. PMSM should run open-loop smoothly
2. The currents in the motor phases should be
sinusoidal.
Tek .M. Trig'd M Pos: 0000 TRIGGER:
+
Typ
Flanke|
Ouelle
. /‘\ G
Flanke:
i \ '
tndus
Kopplung
CH2 S00m M 10.0ms CHZ 7 1.76v
30.0160Hz
15-32

The slide above shows the measured signals ,,ia“(yellow) and ,,ib“(blue) from module
~ILEG2 DCBUS DRV*.

DSP28 - Digital Motor Control 15-29

Lab 15:

PMSM control project

At this stage, the motor should rotate already, but without any control. Therefore we can’t
connect the load yet. We can modify the speed of the motor by changing variable “speed_ref”
between -0.15 (anti-clockwise), 0 (stop) and +0.15(clockwise) rotation.

With variable “rcl.rmp_dly max”, we can modify the acceleration of the motor with values
between 0 (fast) and 100 (slow).

Variable “Vq_testing” will be replaced in the following levels by a control value to control the
torque of the motor. Now we can use this variable to experiment with different torque control
values.

Build Level 3

At this level, we close the two inner loops of the control scheme by enabling the dg-axis current
regulation performed by PID_REG3 modules. To confirm the operation of current regulation, the
gains of these two PID controllers are necessarily tuned for proper operation.

Build Level 3 - Tuning of dq-axis current closed loops
key modules under test
i . T | PWMI
i Iq_ref Vs Vas a, | PWM2
I | pr > I PWM3 -
i v Inv. 5&1“; Loyl PWM
! 1d_ref ds. ds | Park Vps* Gen. | T Driver IPWM5
I PI o | PWM6
: - | ”l Voltage
1 | Source
: rmp_out : Inverter
I lA
: lds ias iﬂ N :
| < < Tleg2 | | Al
! i Park| j, |Clarkq j | Bus [«
! — Driver [1 A
| ‘ |
| |
I I
I I
i d ref : Encoder
Speed_re
peed_ Ramp | | Ramp | | !
: control Gen. !
| |
| |
: TMS320F28x controller: 15-33

In the build.h header file located under ../pmsm3_1/cIQmath/include directory, select phase 3
incremental build option by setting the build level to level 3. Use the ‘Rebuild All’ feature of
CCS to save the program, compile it and load it to the target.

15-30

DSP28 - Digital Motor Control

Lab 15: PMSM control project

After running and setting real time mode, set “enable flg” to 1 in the Watch Window, in order to
enable interrupt T1UF. The variable named “isr_ticker” will be incrementally increased as seen in
watch windows to confirm the interrupt working properly.

In this build level, the motor is supplied by AC input voltage and the motor current is
dynamically regulated by using PID_REG3 module through the park transformation on the motor
currents.

Instructions: Build Level 3

1. In build.h, #define BUILDLEVEL LEVEL3
2. Compile, Load, start RTM and Run
3. Set “enable flg” to 1 in watch window.

4. Tune-up the PI
. Observe dg-axis current regulations at PI inputs (i.e., reference and feedback). For
example, “pidl_iq.pid_ref reg3” and “pid1_iq.pid_fdb reg3”.
Try to change motor speed by setting “speed_ref” (p.u.) in watch window . Then,
observe dg-axis current regulations.

ref
P out

15-34

DSP28 - Digital Motor Control 15- 31

Lab 15:

PMSM control project

Build Level 4

The objective of this level is to verify the QEP driver and its speed calculation. The number of
poles (p) must be set in file “parameter.h” according to the motor used in your laboratory. Next,
parameter “mech_scaler” must be set according to the number of encoder-pulses per 360°-
rotation:

mech-scaler = 1 / encoder-pulses (in Q30 — Format)

Build Level 4 — Encoder verification
: ___________________ *______—__: __________________ : PWM1
: Iq_ref_, vqs Vas iy : PWM2
! | PI > PWM3
| > Inv. space| T, | pwwm owaia
| P «| Vector . I
! Id_ref Vas | Park | vg, Gen. | T Driver I PWM5
[| PI T | PWM6
: - | Voltage
1 1 Source
i rmp_out : Inverter
|
| . . » |
! tas —os P Ileg2_| |
! i, Park g, Clarke s Bus [+
! — < < Driver | !
| ‘ |
Speed_ refl v :
peé} —"el Ramp | | Ramp !
! control Gen. Theta_elec QEP A |
| — —
| 0, QEP QEP B |
! < THETA [« o
: dir DRV _inc ;
|
: TMS320F28x controlleri 15-35

Next, we have to adjust the offset angle between the index pulse of the encoder and the physical
zero degrees angle of the rotor. At the end of this step, the offset will be stored as parameter
“gepl.cal_angle”. With control variable “locktr flg=0" we can activate the ramp generator in real
time mode. If the motor is running, register T2CNT counts the number of pulses since the last
index pulse. When we set “Locktr flg =17, the ramp is disconnected and the motor stops. T2CNT
holds the offset between rotor position zero degrees and the QEP index pulse.

After tuning the QEP, the signals “qepl.theta elec” and “rgl.rmp out” should be similar in
frequency and amplitude (see slide 15-37).

With the number of pole-pairs p=4 the frequency of “qepl.theta mech” must be exactly % of
signal “gepl.theta_elec™:

15-32

DSP28 - Digital Motor Control

Lab 15: PMSM control project

Tek Sl Trig'd M Paos: 0.000s CH3
+
Kopplung

ﬂ\./ 'L/ \./ '\./ﬁ "-._/ '_./ '\./ﬂ "\f '\,/ﬁ I\ Eaneite

200rHz
Wolts/Div,

Tasthopf
o

Inwertieruna
CH2 S00my M 25.0ms CH3 & 256Y
CH3 S00rn 10.0001Hz

3y

Note: the signals are saw-tooth signals. Due to the low pass filter at the signal output lines the
shape is smoothed.

Instructions: Build Level 4

1. In build.h, #define BUILDLEVEL LEVEL4
2. Compile, Load, start RTM and Run
3. Set the DC-bus to 24 Volts 1 Amp

4. Set “enable flg” to 1 in watch window.

15 - 36

DSP28 - Digital Motor Control 15-33

Lab 15: PMSM control project

Results: Build Level 4

¢ Emulated angle VS sensed angle

buff1 & buffz =

EET ‘

2 Ne+d

63524

-6552

-2.0e+d

-3 .Se+4,‘

33e+4]
2 Ne+d
£5504

5550

-20e+4

-3'38+4’w T T T T T T T
0 256 512 768 1024 1280 1536 1792 2047
(146, S326) (146, 31932) Time Lin_Auto Scale

15-37

If you compare the changes in reference speed against real motor speed (slide 15-38), you will
see that the motor follows any changes sluggishly. The reason is that we do not have closed the
speed control loop yet. This will be done in the last build level 5.

Results: Build Level 4

¢ Speed reference VS real speed

Graphical Display 5]
T2

4329

144]
144]
-432]

720 ‘ ‘ ‘

792

475]

158]

-158] w

475

7924

0 280 500 750 100 135 180 175 18
(71, 0) (71, -17) Tirne: Lin |Auto Scale

15-38

15-34 DSP28 - Digital Motor Control

Lab 15: PMSM control project

Build Level 5

After tuning the Encoder unit, we will use this feedback information as position information in
our control loops. The simulated ramp modules from level 1 to 4 are no longer needed. We will
also close the speed control loop.

Build Level S — close speed loop
:_“"_“": ________ :"“"“: _______ T_ __________ | PWMI1
| 1s Vas Vas a, TPWM2
| T >
| Space| T | PWM3
| Vector > PWM | PWM4
: Gen. [, | Priver [CFwnE
I > | PWM6
: | | Voltage
1 | Source
: : Inverter
| ; ; ! ADCIN1
| Nl
! — — Tleg2 || ADCIN2
| . Clarke i, Bus i
! «<—- Driver | ADCIN3
| ‘ :
| |
| |
| |
: : Encoder
T I SPEED QEP |
| r FR 0, QEP_B |
. Q |—'—+ THETA .
i . dir DRV . QEP_inc |
|
|
: TMS320F28x controlleri 15 -39

To adjust the speed reference we can use potentiometer R66 of the DMC550. Its analogue value
can be connected to ADCINA7 and the converted result can be used for a calculation of signal
“speed_ref”. To do this we need to modify the Interrupt Service Routine of EVA-Timerl.

Note:

This last step depends on the hardware setup in your laboratory. Ask your technician if this option
is available in your case.

DSP28 - Digital Motor Control 15-35

Lab 15: PMSM control project

To verify the correct operation of module “speed ref” we can do some measurements:

Tek Sl Tria'd K Paos: 0.000s TRIGGER
+
Typ
Flanke
\u-"/\-/w
Ouelle

Modus
E’WW“N Kopplung
CH2 500y M 10.0ms CH3 .~ 262Y

CH3 S00mY CHA S00mt 36.1436Hz

The first signal (top) is “speedl.theta elec”. For this example and knowing that p=4 we can
calculate the mechanical speed to:

Speed].theta mech = (36.1436 s / 4) * 60 = 542 rpm

This value should be verified with a stroboscope, if available.

Instructions: Build Level 5

1. In build.h, #define BUILDLEVEL LEVEL5
2. Compile, Load, start RTM and Run
3. Set the DC-bus to 24 Volts

4. Set “enable_flg” to 1 in watch window.

15 -39

15-36 DSP28 - Digital Motor Control

Lab 15: PMSM control project

If we measure the change in reference speed against real motor speed we should see a much

better response of the control system (see slide 15-41).

Results: Build Level 5

¢ Fastest response time with
the closed loop!

-8601

1
i

294

-588

-EE?_I T T T T T
0 333 867 100 133 167 198
(0, 0 (0, 0 Time: Lin |Auto Scale |

15-41

A thesis project at Zwickau University was the implementation of the C28x control scheme for a

PMSM in a tram generator.

Application of PMSM 3-1:

15-42

DSP28 - Digital Motor Control

15-37

Lab 15: PMSM control project

This page has intentionally been left blank.

15-38 DSP28 - Digital Motor Control

SPECTRUM
DAL

OOOOOOOOOOOO

ezZdsp '™ F2812
Technical

Reference

2002 DSP Development Systems

ezdsp™ F2812
Technical Reference

506265-0001 Rev. A
May 2002

SPECTRUM DIGITAL, INC.
12502 Exchange Dr., Suite 440 Stafford, TX. 77477
Tel: 281.494.4505 Fax: 281.494.5310
sales@spectrumdigital.com www.spectrumdigital.com

IMPORTANT NOTICE

Spectrum Digital, Inc. reserves the right to make changes to its products or to discontinue any
product or service without notice. Customers are advised to obtain the latest version of relevant
information to verify data being relied on is current before placing orders.

Spectrum Digital, Inc. warrants performance of its products and related software to current
specifications in accordance with Spectrum Digital’s standard warranty. Testing and other quality
control techniques are utilized to the extent deemed necessary to support this warranty.

Please be aware, products described herein are not intended for use in life-support appliances,
devices, or systems. Spectrum Digital does not warrant, nor is it liable for, the product described
herein to be used in other than a development environment.

Spectrum Digital, Inc. assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein. Nor does Spectrum
Digital warrant or represent any license, either express or implied, is granted under any patent right,
copyright, or other intellectual property right of Spectrum Digital, Inc. covering or relating to any
combination, machine, or process in which such Digital Signal Processing development products or
services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments
may cause interference with radio communications, in which case the user, at his own expense, will
be required to take any measures necessary to correct this interference.

TRADEMARKS

eZdsp is a trademark of Spectrum Digital, Inc.

Copyright © 2002 Spectrum Digital, Inc.

Contents

1

N

>

Introduction to the eZdsp ™ F2812 i 1-1
Provides a description of the ezdsp™ F2812, key features, and board outline.

1.0 Overview ofthe eZdsp™ F2812o 1-2
1.1 Key Features of the eZdsp™ F2812\ i 1-2
1.2 Functional Overview of the eZdsp™ F2812, 1-3
Operation of the estpT'\’I F2812 . 2-1

Describes the operation of the eZdsp™ F2812. Information is provided on the DSK’s various
interfaces.

2.0 The eZdsp™ F2812 OPerationeouueinue e 2-2
2.1 The eZdsp™ F2812 BOArdttt e e 2-2
2.1.1 Power CONNECIOr 2-3
2.2 €Zdsp™ F2812 MEMOIY ..ottt 2-3
2.2.1 MeMOIY MapD ..t 2-4
2.3 eZdsp ™ F2812 CONNECIOISo oot et 2-5
2.3.1 PL,ITAG INterface ...ttt 2-6
2.3.2 P2, Expansion Interface 2-6
2.3.3 P3, Parallel Port/JTAG Interface e e 2-8
2.3.4 P4,P8,P7,1/0 Interface 2-8
2.3.5 P5,P9, Analog Interface i 2-10
2.3.6 P6, POWer CONNECIOr i e e 2-12
2.3.7 Connector Part NUMbDErS i e e 2-13
2.4 eZdsp™ F2812 JUMPEIS oottt e 2-13
2.4.1 JP1, XMP/MCRN SelECt ..ot 2-14
2.4.2 JP2, Flash Power Supply Select 2-15
2.4.3 JP6, Voltage Control Select i e 2-15
2.4.4 JP7,JP8,JP11,JP12, Boot Mode Selectt 2-16
2.4.5 JP9, PLL SeleCt 2-16
2.4.6 JP10,Connect XFBItto LED DS2 i e e 2-17
2.5 LEDS . 2-17
2.6 TeSt POINtS . 2-17
eZdsp ™ F2812 SChemMatiCsttt e A-1

Contains the schematics for the estpT'\’I F2812

estpT'\’I F2812 Mechanical Information B-1
Contains the mechanical information about the eZdsp ™ F2812

List of Figures

Figure 1-1, Block Diagram eZdsp™ F2812 i 1-3
Figure 2-1, eZdsp™ F2812 PCB OULINE ...\ oottt e 2-2
Figure 2-2, eZdsp™ F2812 MemOory SPace vurineee et 2-4
Figure 2-3, eZdsp™ F2812 Connector POSIIONSo v oot 2-5
Figure 2-4, Connector P1 Pin Locations it 2-6
Figure 2-5, Connector P2 Pin LOCationNst 2-6
Figure 2-6, Connector P4/P8/P7 CONNECIOIS ...ttt i et ees 2-8
Figure 2-7, Connector P5/P9 Pin Locationst 2-10
Figure 2-8, Connector P6 Location it e 2-12
Figure 2-9, estpT'\’I F2812 Power ConNNectort e 2-12
Figure 2-10, eZdsp™ F2812 Jumper POSItIONSo ot 2-14
List of Tables
Table 2-1, eZdsp ™ F2812 CONNECIOrS .. vvit ettt e 2-5
Table 2-2, P1, JTAG Interface Connectort 2-6
Table 2-3, P2, Expansion Interface Connector — i 2-7
Table 2-4, P4/P8, 1/0 CONNECIOrS ... o e e 2-9
Table 2-5, P7, 1/0 CONNECtOr ... e 2-10
Table 2-6, P5/P9, Analog Interface Connector i 2-11
Table 2-7, Connector Part Numbers 2-13
Table 2-8, eZdsp ™ F2812 JUMPEIS ...\ttt 2-13
Table 2-9, JP1, XMP/MCn Select 2-14
Table 2-10, JP2, Flash Programming Voltage Select 2-15
Table 2-11, JP6, Test Mode Select 2-15
Table 2-12, JP7,JP8, JP11, JP12, Boot Mode Select ~, 2-16
Table 2-13, JP9, PLL Disable 2-16
Table 2-14, JP10, Connect XF Bitto LED DS2 i 2-17
Table 2-15, LEDS ...t 2-17
Table 2-16, TeSt POINtS e 2-17

About This Manual

This document describes board level operations of the ezdsp™ F2812 based on the
Texas Instruments TMS320F2812 Digital Signal Processor.

The ezdsp™ F2812 is a stand-alone module--permitting engineers and software
developers evaluation of certain characteristics of the TMS320F2812 DSP to
determine processor applicability to design requirements. Evaluators can create
software to execute onboard or expand the system in a variety of ways.

Notational Conventions

This document uses the following conventions.

The “estpT'\’I F2812" will sometimes be referred to as the “eZdsp”.

Program listings, program examples, and interactive displays are shown in a special
italic typeface. Here is a sample program listing.

equations
Ird = Istrobe&rw;

Information About Cautions

This book may contain cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software,
hardware, or other equipment. The information in a caution is provided for your
protection. Please read each caution carefully.

Related Documents

Texas Instruments TMS320F2801 Users Guide

Texas Instruments TMS320C28XX Fixed Point Assembly Language Users Guide
Texas Instruments TMS320C28XX Fixed Point C Language Users Guide

Texas Instruments TMS320C28XX Code Composer Users Guide

Chapter 1

Introduction to the eZdsp ™ F2812

This chapter provides a description of the eZdsp™ for the TMS320F2812
Digital Signal Processor, key features, and block diagram of the circuit

board.

Topic Page
1.0 Overview of the estpT'\’I F2812 1-2
1.1 Key Features of the ezdsp™ F2812 1-2
1.2 Functional Overview of the ezdsp ™ F2812 1-3

Spectrum Digital, Inc

1.0 Overview of the ezdsp™ F2812

The estpT'VI F2812 is a stand-alone card--allowing evaluators to examine the
TMS320F2812 digital signal processor (DSP) to determine if it meets their application
requirements. Furthermore, the module is an excellent platform to develop and run
software for the TMS320F2812 processor.

The ezdsp™ F2812 is shipped with a TMS320F2812A DSP. The ezdsp™ F2812
allows full speed verification of F2812A code. Two expansion connectors are provided
for any necessary evaluation circuitry not provided on the as shipped configuration.

To simplify code development and shorten debugging time, a C2000 Tools Code
Composer driver is provided. In addition, an onboard JTAG connector provides
interface to emulators, operating with other debuggers to provide assembly language
and ‘C’ high level language debug.

1.1 Key Features of the estpT'\’I F2812

The eZdsp™ F2812 has the following features:
» TMS320F2812A Digital Signal Processor
» 150 MIPS operating speed
1K words on-chip RAM
» 128K words on-chip Flash memory
* 64K words off-chip SRAM memory
» Onboard 30 MHz. CPU clock from gate array
« 2 Expansion Connectors (analog, 1/0)
» Onboard IEEE 1149.1 JTAG Controller
* 5-volt only operation with supplied AC adapter
 TI F28xx Code Composer Studio tools driver

* On board IEEE 1149.1 JTAG emulation connector

eZdsp™ F2812 Technical Reference

Spectrum Digital, Inc

1.2 Functional Overview of the ezdsp ™ F2812

Figure 1-1 shows a block diagram of the basic configuration for the ezdsp™ F2812.
The major interfaces of the eZdsp are the JTAG interface, and expansion interface.

-2 07T rmrC»x0>»70

30 Mhz. a
PARALLEL e\
PORT/JTAG
CONTROLLER | > ’
EXTERNAL
JTAG

XTAL1/OSCIN

ANALOG TO
DIGITAL
CONVERTER

JTAG

TMS320F28xx

|zo—mz>vxm mOr>z>|

| ZO—wzr»TUXxXm o~- |

Figure 1-1, BLOCK DIAGRAM ezZdsp™ F2812

Spectrum Digital, Inc

1-4 eZdsp™ F2812 Technical Reference

Chapter 2

Operation of the ezdsp™ F2812

This chapter describes the operation of the estpT'\’I F2812, key
interfaces and includes a circuit board outline.

Topic Page
20 Theezdsp™ F2812 Operation 2-2
21 Theezdsp™ F2812 Board 2-2
2.1.1 Power Connector 2-3
22 ezdsp™ F2812 Memory 2-3
2.2.1 Memory Map 2-4
2.3 ezdsp™ F2812 Connectors 2-5
2.3.1 P1,JTAG Interface 2-6
2.3.2 P2, Expansion Interface 2-6
2.3.3 P3, Parallel Port/JTAG Interface 2-8
2.3.4 P4,P8,P7,1/0O Interface 2-8
2.3.5 P5,P9, Analog Interface 2-10
2.3.6 P6, Power Connector 2-12
2.3.7 Connector Part numbers 2-13
24 ezdsp™ F2812 Jumpers 2-13
2.4.1 JP1, XMP/MCn Select 2-14
2.4.2 JP2, Flash Power Supply Select 2-15
2.4.3 JP6, Voltage Control Select 2-15
2.4.4 JP7,JP8,JP11,JP12, Boot Mode Select 2-15
2.45 JP9, PLL Disable 2-16
2.4.6 JP10, Connect XF Bit to LED DS2 2-17
25 LEDs 2-17
2.6 Test Points 2-17

Spectrum Digital, Inc

2.0 The ezdsp™ F2812 Operation

This chapter describes the estpT'\’I F2812, key components, and operation.

Information on the eZdsp’s various interfaces
consists of four major blocks of logic:

is also included. The ezdsp™ F2812

« Analog Interface Connector

* |/O Interface Connector
* JTAG Interface
« Parallel Port JTAG Controll

2.1 The ezdsp "™ F2812 Board

er Interface

The ezdsp™ F2812 is a 5.25 x 3.0 inch, multi-layered printed circuit board, powered
by an external 5-Volt only power supply. Figure 2-1 shows the layout of the F2812

eZdsp.

Piloooooon), SPECTRUM DIGITAL INCORPORATED o 208 o
B |ccoo ooz po == @Jm
ut

I I I I I
0000000000000 O0OOOO00OO0COOOOO00

2
e D 1‘Dooooooooooooooooooooooooooooo‘El @1

U3 EXPANSION g o2 [O
™ s —= 0ooo
— i} (]
o eZdsp TMS320F 2812 OOODO0ONEOO0mAnONnDD L cTo
o5 U6 mipmemumoimn,
O £ = u4 QUL
03 = =
o0 = = TO00C00000 000000000000 o E E |
o g] 5| 2 s |
59 =] g U7 o g g =
50 * D DRNOODD %E% o 0O]8 g g 5
@) SLIE D g E
03 P4 5 E]
80 0 pﬁg 1[@9] 1[E60lps| T O = ® =
ing -m -m = 8o
08 D D D PS5 jz; ul1 D LU
Ds2]
°o ?? =i=j EIING] @ .
0o ==
O crapst Y2 plg prp piz 1/ PS5 ANALOG oo o
00000000000000000000P4 [00O000000 M O s
o3 00000000000000000000_ 20000000000 .
- 00000000000000000000f® [l[D000000OOA| TR
D 5 0000000000, P9)
Y2
° g L s v °
& ~ WWW.SPECTRUMDIGITAL.COM ASSY 506260 RE

Figure 2-1, ezdsp™ F2812 PCB Outline

ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

2.1.1 Power Connector

The ezdsp™ F2812 is powered by a 5-Volt only power supply, included with the
unit. The unit requires 500mA. The power is supplied via connector P6. If expansion
boards are connected to the eZdsp, a higher amperage power supply may be
necessary. Section 2.3.6 provides more information on connector P6.

2.2 ezdsp™ F2812 Memory

The eZdsp includes the following on-chip memory:

» 128K x 16 Flash

» 2 blocks of 4K x 16 single access RAM (SARAM)
* 1 block of 8K x 16 SARAM

» 2 blocks of 1K x 16 SARAM

In addition 64K x 16 off-chip SRAM is provided. The processor on the eZdsp can be
configured for boot-loader mode or non-boot-loader mode.

The eZdsp can load ram for debug or FLASH ROM can be loaded and run. For larger
software projects it is suggested to do a initial debug with on eZdsp F2812 module
which supports a total RAM environment. With careful attention to the 1/O mapping in
the software the application code can easily be ported to the F2812.

2-3

Spectrum Digital, Inc

2.2.1 Memory Map

The figure below shows the memory map configuration on the ezdsp™ F2812.

Block
Start Address

OO0 D000

000 0040
OO0 0400

OO0 D800

000 0Da0

L GAK
242400 Equivalent Data Space)

Ox00 1000
OO0 2000

Ox00 G000

Cx00 TOOO

000 8000
Ox00 G000
~ 0x00 ADDD

030 T8I0
030 2000

r 0x3F 0000
13F TFFR

0x3F 8000
0 dF ADOD

High 4K

{24x/240% Equivalent
Program Space)
M

O XF FOOO

~ GxdF FFCO
LEGENLC:

On-Chip Memary

External Memory XINTF

Data Space Prog Space

Data Spaca Prog Space

M0 Vector — RAM (32 = 32)
(Enabled if VMAP = 0]

0 SARAM (1K = 16)

M1 SARAM (1K= 18)

Peripheral Frame 0
(2K = 161
PIE Vector - RAM
(256 = 18)
{Enabled if VMAP =1,
ENPIE=1)

Resarvad

Resanved

Reserved

¥INTF Fone 0 (8K = 16, TTCARANDT)

Reserved

EINTF Zona 1 (8K =16 {ZCS0ANDT (Protectad)

Peripheral Framea 2
(4K = 18, Protected)
Reservad

Peripheral Frame 1
(4K = 18, Protected)

LO SARAN (4K = 18, Secure Block)

L1 SARAN (4K = 16, Secure Block)

Reserved

¥INTF Zone 2 (050 = 16, TTCE2)

Reserved

EINTF Zene 6 (0.5M = 18, ICSRANDT)

OTP (2K = 16, Secure Block)

FLASH (128K = 16, Secure Block)

128-Bit Password

HO SARAM (2K = 18}

Resenved

Reserved

Boot ROM (4K = 18]
{Enabled if MP/MC = 0)

EINTF Zone T (16K = 18, ﬂﬂﬁbﬁﬂﬁ.‘;
{Enabled if MP/RIE = 1)

BROM Vector - ROM (32 = 32)
(Enabled if VMAP =1, MP/MC =0, ENPIE=10)

EINTF Wector - RAM {32 = 32)
(Enabled if YMAP =1, MPT = 1, ENPIE = o)

I:l Only one of thess vector maps—MD vactor, PIE vactor, EROM vector, XINTF vector—should be enabled at a time.

Figure 2-2, ezdsp ™ F2812 Memory Space

000 2000
000 4000

008 0000
010 0000
018 0000

(x3F COO0

Note: The on-chip flash memory has a security key which can prevent visibility when

enabled,

2-4

ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

2.3 ezdsp™ F2812 Connectors

The ezdsp™ F2812 has five connectors. Pin 1 of each connector is identified by a
square solder pad. The function of each connector is shown in the table below:

Table 1: ezdsp™ F2812 Connectors

Connector Function
P1 JTAG Interface
P2 Expansion
P3 Parallel Port/JTAG
Controller Interface
P4/P8/P7 I/O Interface
P5/P9 Analog Interface
P6 Power Connector

The diagram below shows the position of each connector

Pl ooo00000) SPECTRUM DIGITAL INCORPORATED o i ‘:'B‘:' o
@D, _|cocco ooz po o)
LY Tac J060000000000000000000000000000 o)
P 0006660000000000600600060000606600 < G0l
O 103 EXPANSION _ o
— eZdsp' TMS320F 2812 m 2z
o P DOODOoODOoooonnonoy 45 £
o SE Ve pmmmimimimim 88
O = g LU
o3 E E uw - = (O
£ 5] g <] g
OO g g g =l]
e} £ £ TOO0UIORaORaO00000000 o | B g
09 = = S| E = 0
] | = |
00 g g u7 s | = g -
50 Rl = E 2 |0 O8] & E 5
A 30 SLIE D E E
o) 0O JP4 g g
80 uio ¢ =) 1[0 1[Eo0les| O O = o %
08 D D D g J? =j;; ut1 D b QU T s
nse P9
°n &ﬁ [f”fl ‘uu‘ i [EEONI Eﬁ -
— cJ UL 58w O oo
O (), g iz JPlO 1 PS _ANALOG 80 D
H_)» P He5500605006050605006p: 080006500 o =
P4/P8/P7 -) Tm'eoooooooooooooooooooo‘ 2[0000000000
Q < © 1|00000000000000000000f8 | Dooooooooobée ©
) g = [J000000000py T
| o—W z L1 s o
@ a ~ WWW.SPECTRUMDIGITAL.COM ASSY 506260 RE
Figure 2-3, eZzdsp™ F2812 Connector Positions

Spectrum Digital, Inc

2.3.1 P1, JTAG Interface

The ezdsp™ F2812 is supplied with a 14-pin header interface, P1. This is the

standard interface used by JTAG emulators to interface to Texas Instruments DSPs.

The positions of the 14 pins on the P1 connector are shown in the diagram below as
viewed from the top of the eZdsp.

P1
13111({9 (7| 5|31 1
O 14112|10| 8 4|2 2
JTAG

Fig 2-4, P1 Pin Locations

The definition of P1, which has the JTAG signals is shown below.

Table 2: P1, JTAG Interface Connector

Pin # Signal Pin # Signal
1 T™MS 2 TRST-
3 TDI 4 GND
5 PD (+5V) 6 no pin
7 TDO 8 GND
9 TCK-RET 10 GND
11 TCK 12 GND
13 EMUO 14 EMU1

2.3.2 P2, Expansion Interface

The positions of the 60 pins on the P2 connector are shown in the diagram below as
viewed from the top of the eZdsp.

P2
2|4 |6 |8|10|12 (14 (16 (18 |20|22|24|26|28|30(32|34|36|38|40|41(43(45|47|49|51|54|56|58 |60
1(3 |5 9 (11 |13 |15 (17|19 |21 |23|25|27|29 |31 |33|35 |37 |39 |42 |44 |46|48|50|52|53|55|57 |59

Figure 2-5, Connector P2 Pin Locations

ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

The definition of P2, which has the 1/O signal interface is shown below.

Table 3: P2, Expansion Interface Connector

Pin # Signal Pin # Signal
1 +5V 2 +5V
3 XDO 4 XD1
5 XD2 6 XD3
7 XD4 8 XD5
9 XD6 10 XD7

11 XD8 12 XD9
13 XD10 14 XD11
15 XD12 16 XD13
17 XD14 18 XD15
19 XAO0 20 XAl
21 XA2 22 XA3
23 XA4 24 XA5
25 XA6 26 XA7
27 XA8 28 XA9
29 XA10 30 XA11l
31 XA12 32 XA13
33 XAl4 34 XA15
35 GND 36 GND
37 XZCSOAND1n/PSn 38 XZCS2n/DSn
39 XREADY 40 ISn
41 XRnW 42 STRBnN
43 XWE 44 XRDn
45 +3.3V/BR- 46 XNMN/INT3
47 XRSn/RSn 48

49 GND 50 GND
51 GND 52 GND
53 XA16 54 XA17
55 XA18 56 XHOLDnN
57 XHOLDAN 58

59 60

2-7

Spectrum Digital, Inc

2.3.3 P3, Parallel Port/JTAG Interface

The ezdsp™ F2812 uses a custom parallel port-JTAG interface device. This device
incorporates a standard parallel port interface that supports ECP, EPP, and
SPP8/bidirectional communications. The device has direct access to the integrated
JTAG interface. Drivers for C2000 Code Composer tools are shipped with the eZdsp
modules

2.3.4 P4/P8/P7, /O Interface

The connectors P4, P8, and P7 present the 1/O signals from the DSP. The layout of
these connectors are shown below.

1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20| P4
2|4|6|8|10|12|14|16|18|20|22 |24 |26 |28|30|32|34|36 |38 |40
13|57 |9|11|13|15|17|19|21|23|25|27|29|31|33|35|37 |39 P8
1|2|3|4a|5|6|7|8]|9|10|P7

Figure 2-6, P4/P8/P7 Connectors

2-8 ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

The pin definition of P4/P8 connectors are shown in the table below.

Table 4: P4/P8, 1/O Connectors

Pli3n4# P4 Signal P|i3n8# P8 Signal Pli3n8# P8 Signal
1 +5 Volts 1 +5 Volts 2 +5 Volts
2 XINT2/ADCSOC 3 SCITXDA 4 SCIRXDA
3 MCLKXA 5 XINT1n/XBIOn 6 CAP1/QEP1
4 MCLKRA 7 CAP2/QEP2 8 CAP3/QEP11
5 MFSXA 9 PWM1 10 PWM2
6 MFSRA 11 PWM3 12 PWM4
7 MDXA 13 PWM5 14 PWM6
8 MDRA 15 T1IPWM/T1CMP 16 T2PWM/T2CMP
9 17 TDIRA 18 TCLKINA
10 GND 19 GND 20 GND
11 CAP5/QEP4 21 22 XINTIN/XBIOnN
12 CAP6/QEP12 23 SPISOMA 24 SPIOMA
13 T3PWM/T3CMP 25 SPICLKA 26 SPISTEA
14 TAPWM/T4CMP 27 CANTXA 28 CANRXA
15 TDIRB 29 XCLKOUT 30 PWM7
16 TCLKINB 31 PWM8 32 PWM9
17 XF/XPLLDISN 33 PWM10 34 PWM11
18 SCITXDB 35 PWM12 36 CAP4/QEP3
19 SCIRXDB 37 T1CTRIP/PDPINT 38 T3CTRIP/PDPINTBN
20 GND 39 GND 40 GND

2-9

Spectrum Digital, Inc

The pin definition of P7 connector is shown in the table below.

Table 5: P7, 1/0 Connector

P|i3n7# P7 Signal
1 C1TRIPn
2 C2TRIPn
3 C3TRIPn
4 T2CTRIPN/EVASOCn
5 C4TRIPN
6 C5TRIPN
7 C6TRIPN
8 TAREPN/EVBSOCn
9
10 GND

2.3.5 P5/P9, Analog Interface

2-10

The position of the 30 pins on the P5/P9 connectors are shown in the diagram below
as viewed from the top of the eZdsp.

P5 ANALOG
112|3|4|5|6|7|8]9]10
246 |8|10[12|14|16] 18|20

113 |5 7|9 |11|13|15|17 |19
P9

Figure 2-7, Connector P5/P9 Pin Locations

ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

The definition of P5/P9 signals are shown in the table below.

Table 6: P5/P9, Analog Interface Connector

P5

P9

P9

Pin # Signal Pin # Signal Pin # Signal
1 ADCINBO 2 GND 2 ADCINAO
2 ADCINB1 4 GND 4 ADCINAL
3 ADCINB2 6 GND 6 ADCINA2
4 ADCINB3 8 GND 8 ADCINA3
5 ADCINB4 10 GND 10 ADCINA4
6 ADCINB5 12 GND 12 ADCINAS
7 ADCINBG6 14 GND 14 ADCINAG
8 ADCINB7 16 GND 16 ADCINA7Y
9 ADCREFM 18 GND 18 VREFLO
10 ADCREFP 20 GND 20

2-11

Spectrum Digital, Inc

2.3.6 P6, Power Connector

2-12

Power (5 volts) is brought onto the eZdsp™ F2812 via the P6 connector. The
connector has an outside diameter of 5.5 mm. and an inside diameter of 2 mm. The
position of the P6 connector is shown below.

POWER

TP1

O

Figure 2-8, Connector P6 Location

The diagram of P6, which has the input power is shown below.

P(S\A

+5V

&

Ground

PC Board
J

Front View
Figure 2-9, estpT"/I F2812 Power Connector

ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

2.3.7 Connector Part Numbers

The table below shows the part numbers for connectors which can be used on the
ezZdsp™ F2812. Part numbers from other manufacturers may also be used.

Table 7: ezdsp™ F2812 Suggested Connector Part Numbers

Connector Male Part Numbers Female Part Numbers
P1 SAMTEC TSW-1-10-07-G-T | SAMTEC SSW-1-10-01-G-T
P2 SAMTEC TSW-1-20-07-G-T | SAMTEC SSW-1-20-01-G-T

*SSW or SSQ Series can be used
2.4 ezdsp™ F2812 Jumpers
The ezdsp™ F2812 has 9 jumpers available to the user which determine how
features on the eZdsp™ F2812 are utilized. The table below lists the jumpers and their

function. The following sections describe the use of each jumper.

Table 8: ezdsp™ F2812 Jumpers

Position As
Jumper # Size Function Shipped From
Factory
JP1 1x3 XMP/MCn 2-3
JP2 1x3 Flash Power Supply 1-2
JP6 1x3 Test Mode Select 2-3
JP7 1x2 Boot Mode 3 2-3
JP8 1x3 Boot Mode 2 2-3
JP9 1x3 PLL Disable 1-2
JP10 1x3 Connect XF to LED DS2 1-2
JP11 1x3 Boot Mode 1 1-2
JP12 1x3 Boot Mode 0 2-3

WARNING!
Unless noted otherwise, all 1x3 jumpers must

be installed in either the 1-2 or 2-3 position

2-13

Spectrum Digital, Inc

The diagram below shows the positions of the seven jumpers on the ezdsp™ F2812.

Jpo|l |IP12 JP2
\ 7 JP1
SPECTRUM DIGITAL INCORPORATED o1 T SIS OK
©0 2 pd L L I L L LS
OOpP0O0000000000ODO00000000000000 ul ol
JP10 @f‘mo 0000000000000 000000000000 = 1009
\4 EXPANSION

0000000000 000000000000

% d e

[00n000000 000000000000

U7z

/

i

i

J

gg
us cracrapst Y€ g o gpi3 1m0 P5__ANALOG 84 o
P e 00000000000 00000000 P4 [HOOOOO000O0| N T S
o3 TPl 2[00000000000000000000|_ (0000000000 o
O ~ 6 1D0000000000000000000f® [[D0COOOOC0OOO| TR
) - 0000000000y T) <<
o o 3 - J] s <~ o
o o WWW.SPECTRUMDIGITAL.COM ASSY 506260 RE

Figure 2-10, ezdsp ™ F2812 Jumper Positions

2.4.1 JP1, XMP/MCn Select

Jumper JP1 is used to select the XMP/MCn option. The 1-2 selection allows the DSP to
operate in the Microcontroller mode. The 2-3 selection allow the DSP to operate in the
Microprocessor mode. The positions are shown in the table below.

Table 9: JP1, XMP/MCn Select

Position Function
1-2 Microcontroller mode
2-3* Microprocessor mode

* as shipped from factory

2-14 ezdsp™ F2812 Technical Reference

Spectrum Digital, Inc

2.4.2 JP2, Flash Power Supply

Jumper JP2 is used to supply voltage to the DSP for programming the on-chip Flash
memory. This jumper is always in the 1-2 position. The is shown in the table below.

Table 10: JP2, Flash Programming Voltage Select

Position Function
1-2* Programming voltage supplied to DSP
2-3 Programming voltage not supplied to DSP

* always in this position

2.4.3 JP6, Test Mode Select

Jumper JP2 is used to determine if the eZdsp will operate in Test mode or User mode.
The 1-2 selection puts the eZdsp in Test Mode. If position 2-3 is selected the eZdsp is
in the User Mode. The 2-3 position should always be used, do not change. The
positions are shown in the table below.

Table 11: JP6, Test Mode Select

Position Function
1-2 Test mode
2-3*% User Mode

* always use this position

2-15

Spectrum Digital, Inc

2.4.4 JP7,JP8, JP11, JP12, Boot Mode Select

Jumpers JP7, JP8, JP11, JP12 are used to determine what mode the DSP will use for
bootloading on power up. The options are shown in the table below.

Table 12: JP7, JP8, JP11, JP12, Boot Mode Select

JP7,BOOT3 | JP8,BOOT2 | JP8, BOOT2 | JP8, BOOT2 MODE
SCITXDA MDXA MDXA MDXA
1 X X X FLASH
0 1 X X SPI
0 0 1 1 SCI
0 0 1 0 HO *
0 0 0 1 OoTP
0 0 0 0 PARALLEL

* factory default

2.4.5 JP9, PLL Disable

Jumper JP9 is used to enable/disable the use of the Phase Lock Loop (PLL) logic on
the DSP. The selection of the 1-2 position enables the use of the PLL. If the 2-3
position is used the PLL is disabled. The positions are shown in the table

below.

Table 13: JP9, PLL Disable

Position Function
1-2* PLL Enabled
2-3 PLL disabled

* as shipped from the factory

eZdsp™

F2812 Technical Reference

Spectrum Digital, Inc

2.4.6 JP10, Connect XF Bit to LED DS2 Select

Jumper JP10 is used to determine if the XF bit from the processor is connected to LED
DS2. If the 1-2 position is selected the XF bit is connected to LED DS2 through a
buffer. The 2-3 selection disconnects the XF bit from driving LED DS2. The table
below shows these options.

Table 14: JP10, Connect XF Bit to LED DS2

Position Function
1-2* XF bit connected to LED DS2
2-3 XF bit not connected to LED DS2

* as shipped from the factory

2.5 LEDs

The ezdsp™ F2812 has two light-emitting diodes. DS1 indicates the presence of
+5 volts and is normally ‘on’ when power is applied to the board. DS2 is under software

control and is tied to the XF pin on the DSP through a buffer. These are shown in the
table below:

Table 15: LEDs

LED# | Color | Controlling Signal

DS1 Green +5 Volts

DS2 Green XF bit (XF high = on)

2.6 Test Points

The ezdsp™ F2812 has two test points. The signals they are tied to are shown in the
table below.

Table 16: Test Points

Test Point Signal
TP1 Ground
TP2 Analog Ground

2-17

Appendix A

ezdsp '™ F2812
Schematics

The schematics for the ezdsp™ F2812 can be found on the CD-ROM that
accompanies this board. The schematics were drawn on ORCAD.

A-1

Appendix B

ezdsp ™ LF2401
Mechanical Information

This appendix contains the mechanical information about the eZdsp™
LF2401

B-1

Spectrum Digital, Inc

9|eds 0] 70U SI buimelp siyl

- GO = 062’2 - C/¥'T—= oz
« DOT0 —] = *
ay=tolly o o H_Z\w [3@ 092908 Assv Zﬂo JQEUH,QZDQFQMQM E‘EEW o R
o) 6 Ldoococococooodm = 0 D
) ot Oooooo0o0o0o0m! mwn‘OOOOOOOOOOOOOOOOOOODH @ Q ey
0000000000 000000000000 OOOOOO0O0OJe 1dL Q
8 Q RB[0000000000 ¥dOOOOOO0O0000000000000M0 \Q\
o o0 907IYNY &d 0/1 Idr rdr 0Tdr 2In ST ¥12 €12 6N
55 | LI R P mBE s 2
+ R ndarfel] [1w g8 =SHE P O
= 8arg[] 69 aqr €50 mmm = u O%
J000ao0aou0oaCa D do0aNauoeaanua0aanen n o = =
= @ g carfel] O Bl o So
= = O D@’ []! Be on €051 o 1
‘ : = T T e e |90
~ 00cC'¢ 5 - SNE i El'E 222 |90 .
J00'E€ E E o o 88 _mmmmm_ 28 = = 255 O3 000G ¢
= = n g 2 ss =L= 88 | of
g g = g 7N O
= = Q000000000000000000000 E E 2n 350
g g | | =l= 822 |39
= = A g MEM gg- 50
g8 r: m s, SLE 88 |0
== I
882 m 2182402eSW1,dsp 73
D:DD 20 == NOISNYdX3 entd Q
ST =0000000000000000000000000000OO P)~
ﬁ,|E% n 00000000000 0000000000000000000R
P o= , , , , , % 2loo ocooo
2 2 99w !
° DED i) IILYIOHI0ONT I9LI0I0 WNH103dS DO0O000 | g
D A A
05¢ 0 —w— |—-— sy —m@W———————

ezdsp™ F2812 Technical Reference

B-2

SPECTRUM

ITAL

INCORPORATED

Printed in U.S.A., May 2002
506265-0001 Rev. A

