GENETIC PROGRAMMING OF AUTONOMOUS AGENTS

Scott O’Dell

Advisors
Dr. Joel Schipper
Dr. Arnold Patton
GPAA

- Genetic Programming (GP)
- Project Description
- Results
- Conclusion
GPAA

- Genetic Programming (GP)
- Project Description
- Results
- Conclusion
PRACTICAL GENETIC PROGRAMMING
INTRO TO GP

• Machine intelligence
• Theory of evolution
• What you want: fitness function
• How to get it: primitive set
• GP does the details
INTRO TO GP

Simulation of Evolution

1. Randomly Generate Individual Genomes
2. Evaluate Fitness of Current Generation
3. Generation Limit Reached?
 - YES: Return Individual with Highest Fitness
 - NO: Create New Current Generation From previous Generation
GPAA

- Genetic Programming (GP)
- Project Description
- Results
- Conclusion
TRADITIONAL METHODS

1. Grid Domain
 • Movement is unrealistic
 • Space is warped

2. Complex Primitive Set
 • Less creative
 • More work for designer
PERIMETER MAINTENANCE

- Military defense application
- Intrusion detection
- Spatial reasoning
SOFTWARE

• GP framework and simulator

• Written for project

• Ruby
 • quick development
 • easy interfacing
GPAA

• Genetic Programming (GP)
• Project Description
• Results
• Conclusion
GRID-BASED SIMULATIONS

- Verify software operation
- Develop fitness function
- 4 guards
- Guard sensor range: 4 units
- Perimeter around base: 7 units
GRID-BASED SIMULATIONS

- **Base**
- **Starting Positions**
- **Guard Agents**
- **Enemy Agents**
- **Capture Areas**
- **Base Perimeter**
GRID-BASED SIMULATIONS

• Primitive Set
 • Forward, Left, Right
 • Distance from base
 • Arithmetic: +, -, *, /, %
 • if (a > b) then (c) else (d)
GRID-BASED SIMULATIONS

- Fitness Function Simulation
 - Enemies randomly start at edge of grid
 - Move directly to base
 - Removed if guards sense them
 - Removed in base perimeter
- Fitness Score = Number of enemies detected
HOMOGENOUS TEAM

• All guards have same controller

• Optimal result
CO-EVOLUTION OF ENEMIES

• Homogenous Guards

• Base Perimeter: 7
GRID BASED SIMULATIONS

• Software works
• Exploits grid domain
• Results are not practical
CONTINUOUS SIMULATIONS

- Eliminates warping
- Realistic movement
- 4 guards
- Guard sensor range: 4 units
- Perimeter around base: 7 units
CONTINUOUS SIMULATIONS

- Primitive Set
 - Base and Direction vector
 - Store and Recall vectors
 - Vector arithmetic: +, -, *
 - Conditionals: vector magnitude and angle
- Controller returns vector; determines heading
HOMOGENOUS TEAM
CO-EVOLUTION OF ENEMIES
CONTINUOUS SIMULATIONS

• Successful strategies with vector arithmetic
• Realistic autonomous agent movement
• Unrealistically precise maneuvers
UNCERTAIN SIMULATIONS

• Generic noise to deal with uncertainty
• Develop cautious agents
HOMOGENOUS TEAM
NOISY SIMULATIONS

• GP can produce robust control programs
• Guards more cautious
• Basic strategy unchanged
GPAA

• Genetic Programming (GP)
• Project Description
• Results
• Conclusion
PRACTICAL GENETIC PROGRAMMING
FUTURE WORK

• Autonomous agent platform
• Accurately model noise
• Test on physical agent
QUESTIONS
NOISY SIMULATIONS

• Generic noise to deal with uncertainty
• Gaussian error added to sensors and movement
• Sensor: constant variance = size of guard
• Movement: variance = 1/10th of ideal movement