

Vision Based Autonomous Security Robot (VBASR)

Bradley University - ECE Department Senior Capstone Project Sponsored by Northrup Grumman February 23, 2010 Student: Kevin Farney Advisor: Dr. Joel Schipper

Presentation Outline

- What the project is...
- What has been completed so far...
- Where the project is going...

Project Summary

• What is VBASR?

- Autonomous, Mobile, Security Camera
- VBASR is a computer vision project
 - Computer vision is defined as making useful decisions about real physical objects and scenes based on sensed images [1].
- Primary Goals Using Computer Vision
 - Navigation
 - Obstacle Avoidance

Vision Algorithm

OpenCV 2.0

Intel

Computer vision library

- Image processing/computer vision
- User interfacing
- Core functionality
- Machine learning

Image Processing

Basic Ideas

- Digital Signal Processing
- Convolving Masks
- Linear Algebra
- Image Properties
 - Grayscale, RGB, RGBA (alpha, opacity)
 - Bits per pixel

Vision Algorithm – Idea #1

Vision Algorithm – Idea #2

Vision Algorithm

Testing OpenCV - Filters

Testing OpenCV - Filters

Testing OpenCV - Filters

Testing OpenCV - Edge

Why Filters?

Testing OpenCV - HighGui

Testing OpenCV - Corners

Selecting Parameter Values

Original Image to Edge Detection

Edge Detection to Corner Detection

Corner Detection to Vertical Lines

Corner Detection to Average Corners

Vision Algorithm - Example Two

Original Image to Edge Detection

Vision Algorithm - Example Two Edge Detection to Corner Detection

Vision Algorithm - Example Two Corner Detection to Vertical Lines

Vision Algorithm - Example Two

Corner Detection to Average Corners

Vision Algorithm - Example Two

Next Steps

Large Test Data Set Analysis

- OpenCV to control iRobot
 - Writing manifests within Microsoft Robotics Developers Studio (C#)
 - Utilizing OpenCV in C#
 - Wrapping my current functions (.cpp files)
 - Porting libraries and re-writing (.cs files)
- Netbook

Schedule – Spring Semester

Schedule of Milestones Spring Semseter		
Milestone	Description	Expected
9	Edge Detection	26-Jan-10
10	Blob Tracking	2-Feb-10
11	Obstacle Detection	9-Feb-10
12	Navigation Vectors	16-Feb-10
13	Navigation Algorithms	22-Feb-10
14	Real-Time	2-Mar-10
15	Real-Time	9-Mar-10
	Spring Break	16-Mar-10
16	Motion Detection	23-Mar-10
17	Motion Detection and Capture	30-Mar-10
18	Comparing and Recognizing Images	6-Apr-10
19	Mapping Hallway	13-Apr-10
20	Room Recognition	20-Apr-10
21	Complete Integration	27-Apr-10
	Wrap up - Conference papers	4-May-10
	Finals	11-May-10

Questions?

• VBASR by Kevin Farney

References

- [1] Shapiro, Linda G., Linda G. Shapiro, and George Stockman. Computer Vision. Upper Saddle River: Prentice Hall, 2001. Print
- [2] Kosinski, Robert J. "Literature Review on Reaction Time." Clemson University, Aug. 2009. Web. 10 Nov. 2009.
 http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm.
- [3] Cavallaro, Andrea. Image Analysis and Computer Vision for Undergraduates. Tech. ICASSP, 2005. IEEEXPLORE. Web. 20 Oct. 2009.
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1416369&isnumber=30654>
- [4] "iRobot Create Premium Development Package." IRobot. IRobot Corporation, 2009. Web. 10 Nov. 2009.
 http://store.irobot.com/product/index.jsp?productId=2591901&cp=2591511&pare ntPage=family>.
- [5] Sage, Kingsly, and Stewart Young. Security Applications of Computer Vision. Tech. IEEE AES Systems Magazine, 1999. IEEEXPLORE. Web. 20 Oct. 2009.
 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=756080&isnumber=16393>

Filters - Normal

Normal Blur

 Normalized box filter – summation of pixels over a neighborhood

$$\mathbf{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

$$\alpha = \begin{cases} \frac{1}{\text{ksize.width*ksize.height}} \\ 1 \end{cases}$$

when normalize=true otherwise

Filters – Gaussian

- Gaussian Blur
 - Convolution of source image with specified gaussian kernel

Matrix of ksize (parameter) x 1 with filter coefficients:

$$G_i = \alpha * e^{-(i - (\text{ksize} - 1)/2)^2 / (2 * \text{sigma})^2},$$
$$\alpha = \sum_i G_i = 1$$

Filters

Median Blur

 Returns median of pixel neighborhood into the destination image for each pixel

Canny Edge Detection

- Implements Canny Algorithm
 - First noise-reduction needed (filters)
 - Intensity Gradients $G = \sqrt{G_x^2 + G_y^2}$ $\Theta = \arctan Q$
 - 8 points
 - Non-Maximum Suppression
 - Hysteresis Thresholding
 - High discards noisy pixels
 - Low connects the edges into lines (binary)

 $\frac{\mathbf{G}_y}{\mathbf{G}}$

Corner Detection

Good Features To Track

- Calculates minimal eigenvalue per pixel
 - Covariation Matrix of derivatives
 - Then eigenvalues represent corners
- Non-maxima suppression (3x3 pixels)
- Rejection by quality level (parameter)

• qualityLevel•max(eigImage(x,y))

Rejection by distance (parameter)

Price Breakdown

iRobot Create Premium Development Package
 \$299

- Pioneer 3-DX
 - upwards of \$5000
- Microsoft Robotics Developers Studio R2
 - free download
- Visual Studio 2008
 - \$500 and up
 - Visual C# editor free download
- Small Netbook
 - Looking for around \$300

Microsoft Robotics Developer Studio

- CCR (Concurrency and Coordination Runtime)
- DSS (Decentralized Software Services)
- VPL (Visual Programming Language)
- VSE (Visual Simulation Environment)