

VBASR: The Vision System Vision Based Autonomous Security Robot

Bradley University - ECE Department Senior Capstone Project Sponsored by Northrup Grumman May 04, 2010 Student: Kevin Farney

Advisor: Dr. Joel Schipper

Presentation Outline

- What the project is...
- What has been completed...
- Results...

Project Summary

What is VBASR?

- Autonomous, Mobile, Security Camera
- VBASR is a computer vision project
- Primary Goals Using Computer Vision
 - Navigation
 - Obstacle Avoidance

Vision Algorithm

The Platform

Hardware
iRobot Create
Webcam
Software
OpenCV2.0

Vision Algorithm – Idea #1

Vision Algorithm – Idea #2

Vision Algorithm – Idea #3

Vision Algorithm – High Level

Vision Algorithm – Detailed

Feature Extraction

Testing OpenCV - Filters

Testing OpenCV - Filters

Testing OpenCV - Filters

Feature Extraction

Testing OpenCV - Edge

Why Filters?

Noise Reduction

Feature Extraction

Testing OpenCV - Corners

Feature Extraction

Testing OpenCV – Flood Fill

Vision Algorithm – Detailed

Lines Algorithm

Lines Algorithm

Vision Algorithm – Detailed

Corners Algorithm

Corners Algorithm

Vision Algorithm – Detailed

Colors Algorithm

Colors Algorithm

Vision Algorithm – Detailed

Vision Algorithm - Example One

Quantitative Results

	Lines	Corners	Colors	Resolved
Hard Left	33.3	13.3	93.3	93.3
Left	87.9	55.2	93.1	100.0
Slight Left	97.1	28.6	91.4	94.3
Straight	96.4	48.2	96.4	98.2
Slight Right	97.6	29.3	92.7	100.0
Right	57.1	46.9	96.9	95.9
Hard Right	26.3	21.1	100.0	94.7
Totals	70.8	34.7	94.8	96.6

Qualitative Results

Initial testing yields promising results!

- Two programs ran independently
 - Vision system
 - iRobot controls
- Verified quantitative results
- Exceeded expectations

Questions?

• VBASR by Kevin Farney

References

- Sage, K., and S. Young. "Security Applications of Computer Vision." *IEEE Transactions on Aerospace and Electronic Systems* 14.4 (1999): 19-29. Aug. 2002.
- DeSouza, G. N., and A. C. Kak. "Vision for Mobile Robot Navigation: A Survey." IEEE Transactions on Pattern Analysis and Machine Intelligence 24.2 (2002): 237-67. Aug. 2002.
- Davies, E. R. *Machine Vision: Theory, Algorithms, Practicalities.* San Francisco: Morgan Kaufmann, 2005.
- Forsyth, D., and J. Ponce. *Computer Vision: a Modern Approach.* Upper Saddle River, N.J.: Prentice Hall, 2003.
- Shapiro, Linda G., and George C. Stockman. *Computer Vision*. Upper Saddle River, NJ: Prentice Hall, 2001.

References

- Scott, D., and F. Aghdasi. "Mobile Robot Navigation In Unstructured Environments Using Machine Vision." *IEEE AFRICON* 1 (1999): 123-26. Aug. 2002.
- Argyros, A. A., and F. Bergholm. "Combining Central and Peripheral Vision for Reactive Robot Navigation." *IEEE CSC Computer Vision and Pattern Recognition* 2 (1999): 646-51. Aug. 2002.
- Shimizu, S., T. Kato, Y. Ocmula, and R. Suematu. "Wide Angle Vision Sensor with Fovea-navigation of Mobile Robot Based on Cooperation between Central Vision and Peripheral Vision." *IEEE/RSJ Intelligent Robots and Systems* 2 (2001): 764-71. Aug. 2002.
- Matsumoto, Y., K. Ikeda, M. Inaba, and H. Inoue. "Visual Navigation Using Omnidirectional View Sequence." *IEEE/RSJ Intelligent Robots and Systems* 1 (1999): 317-22. Aug. 2002.
- Orghidan, R., J. Salvi, and E. M. Mouaddib. "Accuracy Estimation of a New Omnidirectional 3D Vision Sensor." *IEEE/ICIP Image Processing* 3 (2005): 365-68. Mar. 2006.

References

- Kosinski, R. J. "Literature Review on Reaction Time." Clemson University, Aug. 2009. 10 Nov. 2009. http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm>
- Canny, J. "A Computational Approach to Edge Detection." *IEEE Transactions on Pattern Analysis and Machine Intelligence* PAMI-8.6 (1986): 679-98. Jan. 2009.
- Shi, W., and J. Samarabandu. "CORRIDOR LINE DETECTION FOR VISION BASED INDOOR ROBOT NAVIGATION." *IEEE CCECE* (2006): 1988-991. Jan. 2007.
- Marques, C., and P. Lima. "Multisensor Navigation for Nonholonomic Robots in Cluttered Environments." *IEEE Transactions on Robotics and Automation* 11.3 (2004): 70-82. Oct. 2004.
- Ohya, I., A. Kosaka, and A. Kak. "Vision-Based Navigation by a Mobile Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing." *IEEE Transactions on Robotics and Automation* 14.6 (1998): 969-78. Aug. 2002.

Quantitative Results

	Lines	Corners	Colors	Resolved
Hard Left	73.3	46.7	93.3	73.3
Left	79.3	89.7	93.1	98.3
Slight Left	100.0	68.6	91.4	97.1
Straight	100.0	69.6	96.4	100.0
Slight Right	97.6	51.2	92.7	100.0
Right	45.9	87.8	96.9	90.8
Hard Right	10.5	52.6	100.0	57.9
Totals	72.4	66.6	94.8	88.2

	Lines	Corners	Colors	Resolved
Hard Left	33.3	13.3	93.3	93.3
Left	87.9	55.2	93.1	100.0
Slight Left	97.1	28.6	91.4	94.3
Straight	96.4	48.2	96.4	98.2
Slight Right	97.6	29.3	92.7	100.0
Right	57.1	46.9	96.9	95.9
Hard Right	26.3	21.1	100.0	94.7
Totals	70.8	34.7	94.8	96.6

Lines Algorithm - Problems

Corners Algorithm - Problems

Colors Algorithm - Problems

Colors Algorithm - Solution

Filters - Normal

Normal Blur

 Normalized box filter – summation of pixels over a neighborhood

$$\mathbf{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

$$\alpha = \begin{cases} \frac{1}{\text{ksize.width*ksize.height}} & 1\\ 1 & \alpha \end{cases}$$

when normalize=true otherwise

Filters – Gaussian

Gaussian Blur

Convolution of source image with specified gaussian kernel

Matrix of ksize (parameter) x 1 with filter coefficients:

$$\begin{split} G_i &= \alpha * e^{-(i - (\texttt{ksize} - 1)/2)^2 / (2 * \texttt{sigma})^2}, \\ \alpha &= \sum_i G_i = 1 \end{split}$$

Filters

Median Blur

 Returns median of pixel neighborhood into the destination image for each pixel

Canny Edge Detection

- Implements Canny Algorithm
 - First noise-reduction needed (filters)
 - Intensity Gradients $\mathbf{G} = \sqrt{\mathbf{G}_x^2 + \mathbf{G}_y^2}$ $\Theta = \arctan$ • 8 points
 - Non-Maximum Suppression
 - Hysteresis Thresholding
 - High discards noisy pixels
 - Low connects the edges into lines (binary)

Corner Detection

Good Features To Track

- Calculates minimal eigenvalue per pixel
 - Covariation Matrix of derivatives
 - Then eigenvalues represent corners
- Non-maxima suppression (3x3 pixels)
- Rejection by quality level (parameter)
 - qualityLevel•max(eigImage(x,y))
- Rejection by distance (parameter)

Price Breakdown

iRobot Create Premium Development Package

- \$299
- Pioneer 3-DX
 - upwards of \$5000
- Microsoft Robotics Developers Studio R2
 - free download
- Visual Studio 2008
 - \$500 and up
 - Visual C# editor free download
- Small Netbook
 - Looking for around \$300

Microsoft Robotics Developer Studio

- CCR (Concurrency and Coordination Runtime)
- DSS (Decentralized Software Services)
- VPL (Visual Programming Language)
- VSE (Visual Simulation Environment)