

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 1

VBASR: The Vision System
Vision-Based Autonomous Security Robot

Kevin C. Farney, Joel D. Schipper

Bradley University
1501 West Bradley Avenue

Peoria, Il 61625
309-677-2260

kevin.farney@gmail.com, jschipper@bradley.edu

ABSTRACT

The goal of this project is to develop a computer vision system

that enables a robot to navigate the hallways of Bradley

University’s engineering building using a generic webcam as the

only sensor. OpenCV2.0 programmed in C++ is the primary tool

used to develop the vision system software.

Three algorithms were developed to identify the center of the

hallway and guide the robot in the correct direction. The first two

algorithms use a generic filter (normal, median, or Gaussian)

followed by edge detection and then corner detection on the edge-

detected image. The first algorithm identifies the strongest vertical

lines on an image. Averaging the horizontal coordinates of the

vertical lines indicates the location of the center of the hallway

relative to the robot. The second algorithm utilizes the trapezoidal

shape of the hallway formed where the floor meets the walls, as

seen from the perspective of the robot. The y-coordinates

associated with the trapezoid’s legs are then compared to estimate

robot orientation with respect to the walls. The third algorithm

uses color to segment the floor from the rest of the features in the

image (walls, ceiling, and obstacles). Once again, the trapezoidal

shape appears and the center of the hallway is determined based

on the location of the highest y-valued pixels identified as floor

pixels.

Test data indicates that none of these algorithms is singularly

sufficient; however, combining their results they can identify the

direction a robot must turn to remain in the center of the hallway

with 96.6% accuracy. Furthermore, leveraging the results of

multiple algorithms produces more robust navigation, where one

algorithm covers over the shortcomings of another. The vision

system architecture is designed to execute algorithms in parallel.

Such a structure enables the addition and removal of algorithms

without adversely affecting the system as a whole. Further

algorithms may be developed and easily added to improve

navigation. Additionally, the system may intelligently ignore

results from algorithms that are recognized as inappropriate for

certain situations.

KEYWORDS
Machine Vision, Image Processing, Mobile Robot Navigation,

Autonomous Vehicles

1. INTRODUCTION
VBASR (Vision-Based Autonomous Security Robot) is designed

to patrol the second floor hallway of the engineering building

during the after-hours of a regular school day. Essentially,

VBASR is a mobile, intelligent security camera able to locate and

navigate to specific rooms and photograph any intruders it

encounters. VBASR: The Vision System is a proof-of-concept for

the design and development of the machine vision system

necessary to implement VBASR. The primary goal for this project

is a robust, vision-based navigation system.

Sage et al. [1] performed similar work using computer vision to

detect motion for security systems. DeSouza and Kak [2] present

an exhaustive survey of computer vision techniques, which

provided inspiration for VBASR. Other excellent resources for

familiarization with foundational computer vision concepts and

terminology include [3], [4], and [5].

Figure 1. iRobot Create and accessories

1.1 Platform
VBASR is primarily a machine vision project; therefore, a chassis

that requires little modification is desirable. Figure 1 shows the

iRobot Create chassis selected as the robot platform. A simple

webcam mounted in the cargo bay and an onboard computer are

the only additional hardware necessary for VBASR. Microsoft

Robotics Developers Studio (MRDS) is used to control the iRobot

Create and OpenCV2.0 computer vision libraries programmed in

C++ are utilized to implement the vision algorithms. Since

VBASR is currently a proof-of-concept, no mountable onboard

computer was selected. Ideally, a single-board computer running

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 2

MRDS in a Windows environment should be employed. For

development, a generic HP laptop running the Windows 7 OS was

used.

1.2 Problem Description
Given an image of the hallway, such as the one shown in Figure 2,

how would a robot choose which direction to turn to travel down

the center of the hall? Humans can solve this problem using vision

intuitively without a concentrated effort. VBASR must make such

decisions using similar information, but must accomplish it within

the limitations of electronic circuitry.

Figure 2. Example image of hallway

One obvious difficulty with the image in Figure 2 is the lack of

depth perception. Stereoscopic vision could be used to ascertain

depth information [6], but VBASR is designed to use a single

webcam, making depth perception on a single image extremely

difficult. Other interesting methods include utilizing tri-nocular

(peripheral) vision [7] or wide-angle sensors in addition to

peripheral information [8]. Further research has been done

involving omnidirectional vision [9], [10], however, all these

methods are outside the scope of VBASR. Depth can also be

determined using infrared or ultrasonic sensors to measure the

distance to walls or the end of the hallway, but is it possible to

navigate only using machine vision?

Three different algorithms were developed to navigate using a

webcam as the only sensor. The compilation of those three

algorithms constitutes VBASR: The Vision System. Each

algorithm independently determines the direction VBASR should

navigate, selecting from one of seven general directions: Hard

Left, Left, Slight Left, Straight, Slight Right, Right, and Hard

Right. Each direction is given an integer representation: 0=Hard

Left through 6=Hard Right. A resolver function then considers

information from each individual algorithm and determines the

final direction of travel.

A library of three hundred hallway images was used to test the

accuracy of the VBASR’s vision system. These three hundred

images represent a cleaned data set where markedly similar

images were removed to prevent redundancy. Biasing the data

with such redundancy could lead to an overly optimistic or

pessimistic evaluation of the system. Additionally, images taken

within one foot of the wall were discarded. Given that VBASR is

successfully navigating its environment, VBASR should rarely

encounter situations where it is in close proximity to a wall. The

library was preprocessed to assign an ideal direction to each

image, which was encoded in the filename. Every image was

examined and the desired direction assigned by human

observation.

Each algorithm in the vision system was tested on all three

hundred images in the library. The results calculated by the

algorithms were then compared to the desired navigation results to

evaluate the success rate of each individual algorithm. The

algorithm’s final decision was considered successful if it was

within one step of the correct direction. For the image shown in

Figure 3, the ideal direction is Slight Right. However, if VBASR

decides to go Straight or Right, in this case it will still be

travelling in a proper direction. The resulting accuracy rating is

normalized by calculating the success rate for each direction and

then averaging the percentages. This prevents an unequal number

of images for each direction from noticeably influencing the

outcome.

A final requirement for VBASR is that it should be able to react

faster than humans so that it can function properly in its

environment. To do so, VBASR must be able to process an image

and begin responding within 190ms [11]. Currently, VBASR

processes about ten images per second which meets the

requirement.

Figure 3. Slight Right example

Figure 4. Lines algorithm theory

2. LINES ALGORITHM

2.1 Theory
The first approach attempted was to find the strongest vertical

lines in the image. Main vertical lines in a hallway include

windows, doors, pictures, etc. All of these are found on the walls.

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 3

Thus, if the wall locations can be determined on either side, then

the average of the wall locations should be the approximate center

of the hallway, as shown in Figure 4. (Note that the lines shown

on Figure 4 were added with an image editing program and are

not mathematically accurate. The lines were added solely to

demonstrate the theory of the lines algorithm.) Red lines represent

‘strong’ vertical lines and the maroon line represents the average

of the x-values of the red lines.

2.2 Feature Extraction
To find the strongest vertical lines of the image, a line (edge)

detection algorithm is required. A filter must be used on the image

as a prerequisite for the line detection algorithm. Without the use

of a blurring filter shown in Figure 5, the edge detection algorithm

detects many artifacts that are undesirable, as seen in Figure 6.

Example blurring filters are the normal blur, median blur, and

Gaussian blur. Each of these filters has a similar effect to the one

shown in Figure 5. The differences between the filters are simply

the mathematical methods utilized to achieve the desired end

result: a blurred image. For example, the normal blur shown in

Figure 5 uses a box filter to normalize the pixels over the given

neighborhood. The best overall VBASR algorithm utilizes a

median blur, which returns the median of the neighborhood of the

given pixel. Figure 7 shows the desired result when using edge

detection on a filtered image. In Figure 7, there are few artifacts

and the image is considerably clearer than Figure 6. The Canny

algorithm [12] is used for all the edge detection required by

VBASR.

Figure 5. Example of a normal blur (compare to Figure 2)

Figure 6. Edge detection on an un-blurred image

One major problem with the image in Figure 7 is that the

computer still has no simple way of identifying the strongest

vertical lines. Therefore, corner detection is used for the final

stage of feature extraction. Corner detection performed on the

edge-detected image enables the program to obtain data points on

the lines, which can be used to find the strongest vertical lines.

Figure 8 shows all of the corners detected by the algorithm

marked with small white circles. The x and y coordinates of each

corner is output to an array for further processing.

Figure 7. Edge detection on a blurred image

Figure 8. Corner Detection on image in Figure 7

2.3 Processing
The next step is to find the strongest vertical lines using the

corners identified in Figure 8. First, the image from the webcam is

split into sixteen vertical bins. These bins allow a histogram-like

transformation by counting the number of corners found within

the different bins. The result is a sum of the number of corners

located in each bin. The number of corners in each bin is

compared to a constant value, and, if the number of corners is

greater than that threshold, the bin is considered to have a strong

vertical line.

The image shown in Figure 9 is the same image used in all the

previous figures of this section. The thin white lines delineate

each bin, the black lines represent the strongest vertical lines (as

determined by the corners in Figure 8), and the thick white line

represents the x-value average of the strongest vertical lines.

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 4

Figure 9. Lines algorithm processing example

To determine the direction found by the lines algorithm, the

average of the strong vertical lines is found and compared to

seven equally distributed direction bins (hard left, left, etc.). If the

thick white line in Figure 9 were located on the left edge of the

image, then it would evaluate to Hard Left. Likewise, if it were in

the center of the image, it would evaluate to Straight. The

particular image shown in Figure 9 evaluates to Slight Left, as

shown in Figure 10.

Figure 10. Direction bins displayed

2.4 Results and Shortcomings
In practice, the optimized lines algorithm has an accuracy rating

of 79.3%. The algorithm performed worst on images requiring the

action of Hard Right, where it achieved a success rate of only

26%. However, the parameters used to optimize the entire vision

system did not optimize the lines algorithm, as explained in

Section 6.

One shortcoming with this method appears when vertical lines fall

directly on the separation line for a bin. When this happens, the

corners found on that line may be split in between two bins and

the line may be ignored completely. Notice the leftmost vertical

line in Figure 11. This line falls directly on a bin line marked in

Figure 12. The corners are split between the bins and the strong

vertical line is ignored.

Figure 11. Lines shortcoming example

Figure 12. Lines shortcoming results from Figure 11

A second shortcoming occurs when VBASR is oriented directly at

a wall (i.e. the image does not contain the center of the hallway at

all). In these cases, the algorithm generally finds only one or two

strong vertical lines. Depending on where these few lines are

found, it may determine a wildly inaccurate direction. If the lines

algorithm only detects one or zero strong lines, the algorithm fails

and the resolver function ignores the lines algorithm when

deciding the final direction for VBASR.

Incidentally, the lines algorithm did not work as originally

intended. In practice, most corners for an image are found in the

center of the hallway, not along the walls. As a result, the bins

near the center of the hallway are all marked as strong vertical

lines, which enables the lines algorithm to perform well regardless

of this unexpected outcome.

3. CORNERS ALGORITHM

3.1 Theory
After observing several images of the hallway, it was noted that

the floor in most images forms a trapezoidal shape, as outlined in

Figure 13. The trapezoid is created by the intersection between the

floor and the walls. Shi and Samarabandu [13] called these lines

corridor lines and used the intersection of the corridor lines to aid

navigation. VBASR utilizes the corridor lines differently to

develop the corners algorithm. If one corridor line is higher on the

image than the other, then VBASR is facing the longer, lower

corridor line’s wall and needs to adjust in the opposite direction.

In Figure 13, the corridor lines are marked in orange and the top

of the trapezoid is blue. In practice, the edge detection algorithm

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 5

actually finds the edge of the colored tile rather than the corner of

the floor and wall.

Figure 13. Corners algorithm theory

3.2 Feature Extraction
The feature extraction for the corners algorithm is similar to that

of the lines algorithm. First, a blur is used on the image to

eliminate artifacts from the Canny line-detection algorithm. After

the Canny algorithm, corner detection is performed on the line-

detected image. In Figure 14, the lower left and right-hand

sections of the image are boxed off to aid viewers in

understanding how the corners algorithm operates. These boxes

denote the regions where the algorithm searches for corridor lines.

Figure 14. Feature extraction for the corners algorithm

Figure 15. Extra vertical lines (compare to Figure 14)

Frequently, the lines detected by the Canny algorithm accurately

define the corridor lines, but the corner-detection algorithm fails

to find a corner (denoted by white circles) on the corridor lines.

(Note that the left-hand box in Figure 14 is an example of such a

case.) To aid the corners algorithm, two vertical lines are drawn

on the image frame on both sides of the image. The extra vertical

lines help the algorithm locate corners on the corridor lines, as

shown in Figure 15. (Interestingly, no corner was found at the

intersection of the lines in the right-hand box.)

3.3 Processing
Each of the corners found within the boxed-off sections of the

image are generally on the legs of the trapezoid (i.e. along the

border where the floor meets the wall). For each of the corners

within a box, the x and y-values are averaged to minimize the

effect of outliers. The average y-values are then compared and the

leg with the higher y-value indicates the direction VBASR should

turn. The distance between these final averages also indicates the

strength of the turn.

Figure 16 shows an example of the complete corners algorithm.

The target marks indicate the averages of the corners located in

each box. When y-values for the two target marks are compared,

Figure 16 evaluates to Slight Left.

Figure 16. Corners algorithm example

3.4 Results and Shortcomings
The corners algorithm has an accuracy rating of 66.6%. Even

though the percentage is low, the corners algorithm still improves

the overall performance of the system because it sometimes finds

the correct direction for images on which the other two algorithms

fail.

Surprisingly, the corners algorithm fails the most for Slight Right

and Slight Left images. Because the corners algorithm averages all

the corners found within the boxes it is more likely to find large

differences rather than smaller ones. As such, the corners

algorithm performs better for large misalignments and, thus,

complements the lines algorithm well, since the lines algorithm

tends to fail on the Hard Left and Hard Right turns.

An obvious shortcoming of this algorithm is that not all of the

corners found within the boxed-off regions of the image are

directly on the trapezoidal legs. As shown in Figure 17, extra

corners pull the target mark off of the desired position and effect

the decision made by the corners algorithm.

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 6

Figure 17. Corners algorithm shortcoming

The corners algorithm fails altogether if no corners are found

within either of the boxed-off regions. If the corners algorithm

fails, then the resolver function ignores the corners algorithm

when calculating the final direction for VBASR.

4. COLORS ALGORITHM

4.1 Theory
The third algorithm implemented takes advantage of the color

difference between the floor and the walls. In most buildings, the

floor color is distinguishable from the wall color. Bradley

University’s engineering building is no exception, as seen in

Figure 2. If the floor can be identified and marked, then the image

becomes a binary image of “floor” and “not-floor.”

Figure 18. Example of the flood fill command

4.2 Feature Extraction
An OpenCV library command called “flood fill” is used for the

colors algorithm. A single pixel is picked as the seed point and

then the neighborhood of that pixel is evaluated. If the

neighboring pixels are similar enough to the seed point then all of

the similar neighboring pixels are set to a predefined value, such

as the red shown in Figure 18. The command continues to expand

outward until no more similar pixels are found. Flood fill only

evaluates outward from the seed pixel and does not evaluate the

entire image. As a result, the ceiling is not painted red even

though it is a similar color to the floor. The seed pixel for

Figures 18 through 24 is shown as blue circles.

4.3 Processing
After a binary image is achieved the resulting image is scanned

from the top down. The first row with more than twenty red pixels

is selected and the x-values for those pixels are averaged. The

result is considered the center of the hallway, as shown in

Figure 19 where the thick pink line indicates the decision line.

Finally, the direction is determined by comparing the location of

the decision line with the seven direction bins, in the same manner

as the lines algorithm discussed above. This particular example

evaluates to Straight, as shown in Figure 20.

Figure 19. Example of the colors algorithm

Figure 20. Colors algorithm with direction bins

If the center of the hallway is not in frame, then the highest row of

red pixels still indicates the correct direction to navigate. In

Figure 21, a hard right is required and the colors algorithm finds

the correct direction successfully.

Figure 21. Colors algorithm for off-center images

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 7

4.4 Results and Shortcomings
Easily the best of the three algorithms, the colors algorithm has an

accuracy rating of 94.8%. This algorithm has no particular

category of images for which it performs poorly. Unfortunately,

many shortcomings still exist for this algorithm.

The first shortcoming is that the seed point cannot be adjusted

once it is set. It is possible for the seed point to fall on the wall

instead of the floor. If this occurs, the flood fill command will

paint the walls red, which is clearly undesirable. Due to the

mounting configuration of the camera on the robot platform and

the lack of inclines on the hallway floors, the horizon line for the

camera should not deviate significantly. If the camera is placed

such that the horizon line is approximately halfway up the image,

any red pixels found above the horizon line indicate that

something other than the floor has been marked red. In this case,

the colors algorithm fails and is ignored when the resolver

processes the final direction for VBASR.

The second shortcoming is that tiles of different colors can

confuse the algorithm. The orange tiles in Figure 22 are correctly

identified as not-white, however, they are still part of the floor.

Likewise, if the seed point falls on an orange tile, only the orange

tile is filled while the rest of the floor is ignored as “not-orange,”

see Figure 23.

Figure 22. Discolorations in the floor

Figure 23. Seed point location causing algorithm failure

Lastly, reflections on the floor pose another challenge. The flood

fill command may not recognize the reflections if they contrast

strongly with the neighboring pixels. Notice that in Figure 24

many reflections cause gaps in the red floor.

Figure 24. Colors algorithm and reflections

To work around these shortcomings several different seed points

are used. The pixel value at each seed point is identified and if

that point is either white or orange (to catch the occasional orange

tile) then it is evaluated using flood fill. Figure 25 shows the

benefit of adding extra seed points. (Note: Black seed points

indicate those evaluated using flood fill.)

Figure 25. Many seed points

5. RESOLVER
After all three algorithms independently determine a direction to

navigate, they are resolved into a single direction for the entire

system. The resolver ignores algorithms when it detects a failure

(e.g. the color algorithm is ignored if it paints the walls or ceiling

red). Since the resolver evaluates each algorithm in parallel, the

system architecture is such that algorithms can be added and

removed without compromising the integrity of the system as a

whole. Because of the parallel architecture, failed algorithms can

easily be ignored in the following computations.

The direction determined by each algorithm is given a numerical

value (0=Hard Left through 6=Hard Right). The numerical values

are then averaged to determine the final direction value. Normally,

integer division truncates, which biases the system towards the

left. To address this issue, VBASR’s averaging algorithm is

biased towards the center, favoring outcomes closer to driving

straight. If the average is greater than three (straight), then it is

rounded down. If the final average is less than three, it is rounded

up. Thus, the resolver biases VBASR to travel straight rather than

biasing in one direction or the other. Averaging the results of

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 8

several algorithms and favoring the center also buffers the robot

from erratic directional swings in its navigation decisions.

6. RESULTS
Resolving the lines algorithm, corners algorithm, and colors

algorithm enables VBASR to achieve an overall accuracy rate of

96.6%, as shown in Table 1. Table 1 also details the success rates

associated with each algorithm in the seven general navigation

directions. Individually, the colors algorithm outperforms both

lines and corners algorithms, however, if either of these

algorithms is eliminated then the resolver’s success rate decreases.

 Table 1. Final Vision System Results (%)

Due to the nature of the resolving function, the values for the lines

and corners algorithm shown in Table 1 are not the highest

percentages achieved for each individual algorithm. This

phenomenon occurs because of the interplay between the various

algorithms during resolution. The highest accuracy ratings for the

lines and corners algorithms are 79.3% and 66.6% respectively. If

the parameters are set to optimize the lines or corners algorithms,

the total resolved percentage decreases, as demonstrated in

Table 2. As stated above, when either of the lower percentage

algorithms is removed, the resolved accuracy rating lowers, which

demonstrates the benefit of using multiple algorithms in the vision

system’s parallel architecture.

Table 2. Optimized Corners Algorithm (%)

Initial testing of the vision system on the iRobot Create platform

yielded promising results. A webcam was mounted to the cargo

bay of the robot and the robot was manually controlled to follow

the real-time decisions of the resolver. Observing the resulting

navigation behavior, it was determined that with the addition of

control software VBASR will be capable of autonomously

navigating down the center of the hallway.

7. FUTURE WORK
The discussion in this paper focuses on navigation of a hallway

where obstacles are located only along the walls. Although not

generally observed in the halls of the engineering building, it is

possible that obstacles may be placed in the center of the hallway,

obstructing the path of the robot. To handle these situations,

obstacle avoidance will be implemented utilizing an algorithm

similar to the colors algorithm. Creating a binary image of “floor”

and “not-floor” enables simple detection of obstacles because the

obstacles should generally be a different color than the floor. The

orange tiles in Figure 22 that are not marked red give a general

feel for how the algorithm could identify obstacles. These orange

tiles also pose a challenge as they should be identified as “floor”

rather than “not-floor.” Using the more robust colors algorithm

shown in Figure 25, the floor can be identified, and, thus, the

obstacles will be isolated. The colors algorithm shown in

Figure 25 evaluates the seed points for either orange or white.

Any other color would be identified as an obstacle. Other

possibilities for obstacle avoidance have been explored by

Marques and Lima [14] as well as Ohya et al. [15]

After adding obstacle avoidance, the vision system will be

integrated with Microsoft Robotics Developers Studio to enable

autonomous control of the iRobot Create, completing VBASR’s

primary navigational requirements. From here, more sophisticated

work, such as motion detection (to locate intruders), will begin.

8. ACKNOWLEDGMENTS
The authors thank Bradley University’s Electrical and Computer

Engineering Department and Northrup Grumman for sponsoring

VBASR: The Vision System.

9. REFERENCES
[1] Sage, K., and S. Young. "Security Applications of

Computer Vision." IEEE Transactions on Aerospace

and Electronic Systems 14.4 (1999): 19-29. Aug. 2002.

[2] DeSouza, G. N., and A. C. Kak. "Vision for Mobile

Robot Navigation: A Survey." IEEE Transactions on

Pattern Analysis and Machine Intelligence 24.2 (2002):

237-67. Aug. 2002.

[3] Davies, E. R. Machine Vision: Theory, Algorithms,

Practicalities. San Francisco: Morgan Kaufmann, 2005.

[4] Forsyth, D., and J. Ponce. Computer Vision: a Modern

Approach. Upper Saddle River, N.J.: Prentice Hall,

2003.

[5] Shapiro, Linda G., and George C. Stockman. Computer

Vision. Upper Saddle River, NJ: Prentice Hall, 2001.

[6] Scott, D., and F. Aghdasi. "Mobile Robot Navigation In

Unstructured Environments Using Machine Vision."

IEEE AFRICON 1 (1999): 123-26. Aug. 2002.

[7] Argyros, A. A., and F. Bergholm. "Combining Central

and Peripheral Vision for Reactive Robot Navigation."

IEEE CSC Computer Vision and Pattern Recognition 2

(1999): 646-51. Aug. 2002.

[8] Shimizu, S., T. Kato, Y. Ocmula, and R. Suematu.

"Wide Angle Vision Sensor with Fovea-navigation of

Mobile Robot Based on Cooperation between Central

Vision and Peripheral Vision." IEEE/RSJ Intelligent

Robots and Systems 2 (2001): 764-71. Aug. 2002.

Florida Conference on Recent Advances in Robotics, FCRAR 2010 - Jacksonville, Florida, May 20-21, 2010 9

[9] Matsumoto, Y., K. Ikeda, M. Inaba, and H. Inoue.

"Visual Navigation Using Omnidirectional View

Sequence." IEEE/RSJ Intelligent Robots and Systems 1

(1999): 317-22. Aug. 2002.

[10] Orghidan, R., J. Salvi, and E. M. Mouaddib. "Accuracy

Estimation of a New Omnidirectional 3D Vision

Sensor." IEEE/ICIP Image Processing 3 (2005): 365-

68. Mar. 2006.

[11] Kosinski, R. J. "Literature Review on Reaction Time."

Clemson University, Aug. 2009. 10 Nov. 2009.

<http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm>

[12] Canny, J. "A Computational Approach to Edge

Detection." IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI-8.6 (1986): 679-98. Jan.

2009.

[13] Shi, W., and J. Samarabandu. "CORRIDOR LINE

DETECTION FOR VISION BASED INDOOR

ROBOT NAVIGATION." IEEE CCECE (2006): 1988-

991. Jan. 2007.

[14] Marques, C., and P. Lima. "Multisensor Navigation for

Nonholonomic Robots in Cluttered Environments."

IEEE Transactions on Robotics and Automation 11.3

(2004): 70-82. Oct. 2004.

[15] Ohya, I., A. Kosaka, and A. Kak. "Vision-Based

Navigation by a Mobile Robot with Obstacle Avoidance

Using Single-Camera Vision and Ultrasonic Sensing."

IEEE Transactions on Robotics and Automation 14.6

(1998): 969-78. Aug. 2002.

