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ABSTRACT 

The goal of this project is to develop a computer vision system 

that enables a robot to navigate the hallways of Bradley 

University’s engineering building using a generic webcam as the 

only sensor. OpenCV2.0 programmed in C++ is the primary tool 

used to develop the vision system software. 

Three algorithms were developed to identify the center of the 

hallway and guide the robot in the correct direction. The first two 

algorithms use a generic filter (normal, median, or Gaussian) 

followed by edge detection and then corner detection on the edge-

detected image. The first algorithm identifies the strongest vertical 

lines on an image. Averaging the horizontal coordinates of the 

vertical lines indicates the location of the center of the hallway 

relative to the robot. The second algorithm utilizes the trapezoidal 

shape of the hallway formed where the floor meets the walls, as 

seen from the perspective of the robot. The y-coordinates 

associated with the trapezoid’s legs are then compared to estimate 

robot orientation with respect to the walls. The third algorithm 

uses color to segment the floor from the rest of the features in the 

image (walls, ceiling, and obstacles). Once again, the trapezoidal 

shape appears and the center of the hallway is determined based 

on the location of the highest y-valued pixels identified as floor 

pixels. 

Test data indicates that none of these algorithms is singularly 

sufficient; however, combining their results they can identify the 

direction a robot must turn to remain in the center of the hallway 

with 96.6% accuracy. Furthermore, leveraging the results of 

multiple algorithms produces more robust navigation, where one 

algorithm covers over the shortcomings of another. The vision 

system architecture is designed to execute algorithms in parallel. 

Such a structure enables the addition and removal of algorithms 

without adversely affecting the system as a whole. Further 

algorithms may be developed and easily added to improve 

navigation. Additionally, the system may intelligently ignore 

results from algorithms that are recognized as inappropriate for 

certain situations. 
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1. INTRODUCTION 
VBASR (Vision-Based Autonomous Security Robot) is designed 

to patrol the second floor hallway of the engineering building 

during the after-hours of a regular school day. Essentially, 

VBASR is a mobile, intelligent security camera able to locate and 

navigate to specific rooms and photograph any intruders it 

encounters. VBASR: The Vision System is a proof-of-concept for 

the design and development of the machine vision system 

necessary to implement VBASR. The primary goal for this project 

is a robust, vision-based navigation system.  

Sage et al. [1] performed similar work using computer vision to 

detect motion for security systems. DeSouza and Kak [2] present 

an exhaustive survey of computer vision techniques, which 

provided inspiration for VBASR. Other excellent resources for 

familiarization with foundational computer vision concepts and 

terminology include [3], [4], and [5]. 

 

 

Figure 1. iRobot Create and accessories 

 

1.1 Platform 
VBASR is primarily a machine vision project; therefore, a chassis 

that requires little modification is desirable. Figure 1 shows the 

iRobot Create chassis selected as the robot platform. A simple 

webcam mounted in the cargo bay and an onboard computer are 

the only additional hardware necessary for VBASR. Microsoft 

Robotics Developers Studio (MRDS) is used to control the iRobot 

Create and OpenCV2.0 computer vision libraries programmed in 

C++ are utilized to implement the vision algorithms. Since 

VBASR is currently a proof-of-concept, no mountable onboard 

computer was selected. Ideally, a single-board computer running 
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MRDS in a Windows environment should be employed. For 

development, a generic HP laptop running the Windows 7 OS was 

used.  

1.2 Problem Description 
Given an image of the hallway, such as the one shown in Figure 2, 

how would a robot choose which direction to turn to travel down 

the center of the hall? Humans can solve this problem using vision 

intuitively without a concentrated effort. VBASR must make such 

decisions using similar information, but must accomplish it within 

the limitations of electronic circuitry. 

 

 

Figure 2. Example image of hallway 

 

One obvious difficulty with the image in Figure 2 is the lack of 

depth perception. Stereoscopic vision could be used to ascertain 

depth information [6], but VBASR is designed to use a single 

webcam, making depth perception on a single image extremely 

difficult. Other interesting methods include utilizing tri-nocular 

(peripheral) vision [7] or wide-angle sensors in addition to 

peripheral information [8]. Further research has been done 

involving omnidirectional vision [9], [10], however, all these 

methods are outside the scope of VBASR. Depth can also be 

determined using infrared or ultrasonic sensors to measure the 

distance to walls or the end of the hallway, but is it possible to 

navigate only using machine vision? 

Three different algorithms were developed to navigate using a 

webcam as the only sensor. The compilation of those three 

algorithms constitutes VBASR: The Vision System. Each 

algorithm independently determines the direction VBASR should 

navigate, selecting from one of seven general directions: Hard 

Left, Left, Slight Left, Straight, Slight Right, Right, and Hard 

Right. Each direction is given an integer representation: 0=Hard 

Left through 6=Hard Right. A resolver function then considers 

information from each individual algorithm and determines the 

final direction of travel.  

A library of three hundred hallway images was used to test the 

accuracy of the VBASR’s vision system. These three hundred 

images represent a cleaned data set where markedly similar 

images were removed to prevent redundancy. Biasing the data 

with such redundancy could lead to an overly optimistic or 

pessimistic evaluation of the system. Additionally, images taken 

within one foot of the wall were discarded. Given that VBASR is 

successfully navigating its environment, VBASR should rarely 

encounter situations where it is in close proximity to a wall. The 

library was preprocessed to assign an ideal direction to each 

image, which was encoded in the filename. Every image was 

examined and the desired direction assigned by human 

observation. 

Each algorithm in the vision system was tested on all three 

hundred images in the library. The results calculated by the 

algorithms were then compared to the desired navigation results to 

evaluate the success rate of each individual algorithm. The 

algorithm’s final decision was considered successful if it was 

within one step of the correct direction. For the image shown in 

Figure 3, the ideal direction is Slight Right. However, if VBASR 

decides to go Straight or Right, in this case it will still be 

travelling in a proper direction. The resulting accuracy rating is 

normalized by calculating the success rate for each direction and 

then averaging the percentages. This prevents an unequal number 

of images for each direction from noticeably influencing the 

outcome. 

A final requirement for VBASR is that it should be able to react 

faster than humans so that it can function properly in its 

environment. To do so, VBASR must be able to process an image 

and begin responding within 190ms [11]. Currently, VBASR 

processes about ten images per second which meets the 

requirement. 

 

 

Figure 3. Slight Right example 

 

 

Figure 4. Lines algorithm theory 

 

2. LINES ALGORITHM 

2.1 Theory 
The first approach attempted was to find the strongest vertical 

lines in the image. Main vertical lines in a hallway include 

windows, doors, pictures, etc. All of these are found on the walls. 
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Thus, if the wall locations can be determined on either side, then 

the average of the wall locations should be the approximate center 

of the hallway, as shown in Figure 4. (Note that the lines shown 

on Figure 4 were added with an image editing program and are 

not mathematically accurate. The lines were added solely to 

demonstrate the theory of the lines algorithm.) Red lines represent 

‘strong’ vertical lines and the maroon line represents the average 

of the x-values of the red lines. 

2.2 Feature Extraction 
To find the strongest vertical lines of the image, a line (edge) 

detection algorithm is required. A filter must be used on the image 

as a prerequisite for the line detection algorithm. Without the use 

of a blurring filter shown in Figure 5, the edge detection algorithm 

detects many artifacts that are undesirable, as seen in Figure 6. 

Example blurring filters are the normal blur, median blur, and 

Gaussian blur. Each of these filters has a similar effect to the one 

shown in Figure 5. The differences between the filters are simply 

the mathematical methods utilized to achieve the desired end 

result: a blurred image. For example, the normal blur shown in 

Figure 5 uses a box filter to normalize the pixels over the given 

neighborhood. The best overall VBASR algorithm utilizes a 

median blur, which returns the median of the neighborhood of the 

given pixel. Figure 7 shows the desired result when using edge 

detection on a filtered image. In Figure 7, there are few artifacts 

and the image is considerably clearer than Figure 6. The Canny 

algorithm [12] is used for all the edge detection required by 

VBASR. 

 

 

Figure 5. Example of a normal blur (compare to Figure 2) 

 

 

Figure 6. Edge detection on an un-blurred image 

 

One major problem with the image in Figure 7 is that the 

computer still has no simple way of identifying the strongest 

vertical lines. Therefore, corner detection is used for the final 

stage of feature extraction. Corner detection performed on the 

edge-detected image enables the program to obtain data points on 

the lines, which can be used to find the strongest vertical lines. 

Figure 8 shows all of the corners detected by the algorithm 

marked with small white circles. The x and y coordinates of each 

corner is output to an array for further processing. 

 

 

Figure 7. Edge detection on a blurred image 

 

 

Figure 8. Corner Detection on image in Figure 7  

 

2.3 Processing 
The next step is to find the strongest vertical lines using the 

corners identified in Figure 8. First, the image from the webcam is 

split into sixteen vertical bins. These bins allow a histogram-like 

transformation by counting the number of corners found within 

the different bins. The result is a sum of the number of corners 

located in each bin. The number of corners in each bin is 

compared to a constant value, and, if the number of corners is 

greater than that threshold, the bin is considered to have a strong 

vertical line. 

The image shown in Figure 9 is the same image used in all the 

previous figures of this section. The thin white lines delineate 

each bin, the black lines represent the strongest vertical lines (as 

determined by the corners in Figure 8), and the thick white line 

represents the x-value average of the strongest vertical lines.  
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Figure 9. Lines algorithm processing example 

 

To determine the direction found by the lines algorithm, the 

average of the strong vertical lines is found and compared to 

seven equally distributed direction bins (hard left, left, etc.). If the 

thick white line in Figure 9 were located on the left edge of the 

image, then it would evaluate to Hard Left. Likewise, if it were in 

the center of the image, it would evaluate to Straight. The 

particular image shown in Figure 9 evaluates to Slight Left, as 

shown in Figure 10. 

 

 

Figure 10. Direction bins displayed 

 

2.4 Results and Shortcomings  
In practice, the optimized lines algorithm has an accuracy rating 

of 79.3%. The algorithm performed worst on images requiring the 

action of Hard Right, where it achieved a success rate of only 

26%. However, the parameters used to optimize the entire vision 

system did not optimize the lines algorithm, as explained in 

Section 6. 

One shortcoming with this method appears when vertical lines fall 

directly on the separation line for a bin. When this happens, the 

corners found on that line may be split in between two bins and 

the line may be ignored completely. Notice the leftmost vertical 

line in Figure 11. This line falls directly on a bin line marked in 

Figure 12. The corners are split between the bins and the strong 

vertical line is ignored.  

 

 

Figure 11. Lines shortcoming example 

 

 

Figure 12. Lines shortcoming results from Figure 11 

 

A second shortcoming occurs when VBASR is oriented directly at 

a wall (i.e. the image does not contain the center of the hallway at 

all). In these cases, the algorithm generally finds only one or two 

strong vertical lines. Depending on where these few lines are 

found, it may determine a wildly inaccurate direction. If the lines 

algorithm only detects one or zero strong lines, the algorithm fails 

and the resolver function ignores the lines algorithm when 

deciding the final direction for VBASR. 

Incidentally, the lines algorithm did not work as originally 

intended. In practice, most corners for an image are found in the 

center of the hallway, not along the walls. As a result, the bins 

near the center of the hallway are all marked as strong vertical 

lines, which enables the lines algorithm to perform well regardless 

of this unexpected outcome. 

3. CORNERS ALGORITHM 

3.1 Theory 
After observing several images of the hallway, it was noted that 

the floor in most images forms a trapezoidal shape, as outlined in 

Figure 13. The trapezoid is created by the intersection between the 

floor and the walls. Shi and Samarabandu [13] called these lines 

corridor lines and used the intersection of the corridor lines to aid 

navigation. VBASR utilizes the corridor lines differently to 

develop the corners algorithm. If one corridor line is higher on the 

image than the other, then VBASR is facing the longer, lower 

corridor line’s wall and needs to adjust in the opposite direction. 

In Figure 13, the corridor lines are marked in orange and the top 

of the trapezoid is blue. In practice, the edge detection algorithm 
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actually finds the edge of the colored tile rather than the corner of 

the floor and wall.  

 

 

Figure 13. Corners algorithm theory 

 

3.2 Feature Extraction 
The feature extraction for the corners algorithm is similar to that 

of the lines algorithm. First, a blur is used on the image to 

eliminate artifacts from the Canny line-detection algorithm. After 

the Canny algorithm, corner detection is performed on the line-

detected image. In Figure 14, the lower left and right-hand 

sections of the image are boxed off to aid viewers in 

understanding how the corners algorithm operates. These boxes 

denote the regions where the algorithm searches for corridor lines.  

 

 
Figure 14. Feature extraction for the corners algorithm 

 

 

Figure 15. Extra vertical lines (compare to Figure 14) 

 

Frequently, the lines detected by the Canny algorithm accurately 

define the corridor lines, but the corner-detection algorithm fails 

to find a corner (denoted by white circles) on the corridor lines. 

(Note that the left-hand box in Figure 14 is an example of such a 

case.) To aid the corners algorithm, two vertical lines are drawn 

on the image frame on both sides of the image. The extra vertical 

lines help the algorithm locate corners on the corridor lines, as 

shown in Figure 15. (Interestingly, no corner was found at the 

intersection of the lines in the right-hand box.) 

3.3 Processing 
Each of the corners found within the boxed-off sections of the 

image are generally on the legs of the trapezoid (i.e. along the 

border where the floor meets the wall). For each of the corners 

within a box, the x and y-values are averaged to minimize the 

effect of outliers. The average y-values are then compared and the 

leg with the higher y-value indicates the direction VBASR should 

turn. The distance between these final averages also indicates the 

strength of the turn. 

Figure 16 shows an example of the complete corners algorithm. 

The target marks indicate the averages of the corners located in 

each box. When y-values for the two target marks are compared, 

Figure 16 evaluates to Slight Left. 

 

 

Figure 16. Corners algorithm example 

 

3.4 Results and Shortcomings 
The corners algorithm has an accuracy rating of 66.6%. Even 

though the percentage is low, the corners algorithm still improves 

the overall performance of the system because it sometimes finds 

the correct direction for images on which the other two algorithms 

fail.  

Surprisingly, the corners algorithm fails the most for Slight Right 

and Slight Left images. Because the corners algorithm averages all 

the corners found within the boxes it is more likely to find large 

differences rather than smaller ones. As such, the corners 

algorithm performs better for large misalignments and, thus, 

complements the lines algorithm well, since the lines algorithm 

tends to fail on the Hard Left and Hard Right turns. 

An obvious shortcoming of this algorithm is that not all of the 

corners found within the boxed-off regions of the image are 

directly on the trapezoidal legs. As shown in Figure 17, extra 

corners pull the target mark off of the desired position and effect 

the decision made by the corners algorithm. 
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Figure 17. Corners algorithm shortcoming 

 

The corners algorithm fails altogether if no corners are found 

within either of the boxed-off regions. If the corners algorithm 

fails, then the resolver function ignores the corners algorithm 

when calculating the final direction for VBASR. 

4. COLORS ALGORITHM 

4.1 Theory 
The third algorithm implemented takes advantage of the color 

difference between the floor and the walls. In most buildings, the 

floor color is distinguishable from the wall color. Bradley 

University’s engineering building is no exception, as seen in 

Figure 2. If the floor can be identified and marked, then the image 

becomes a binary image of “floor” and “not-floor.”  

 

 
Figure 18. Example of the flood fill command 

 

4.2 Feature Extraction 
An OpenCV library command called “flood fill” is used for the 

colors algorithm. A single pixel is picked as the seed point and 

then the neighborhood of that pixel is evaluated. If the 

neighboring pixels are similar enough to the seed point then all of 

the similar neighboring pixels are set to a predefined value, such 

as the red shown in Figure 18. The command continues to expand 

outward until no more similar pixels are found. Flood fill only 

evaluates outward from the seed pixel and does not evaluate the 

entire image. As a result, the ceiling is not painted red even 

though it is a similar color to the floor. The seed pixel for 

Figures 18 through 24 is shown as blue circles. 

4.3 Processing 
After a binary image is achieved the resulting image is scanned 

from the top down. The first row with more than twenty red pixels 

is selected and the x-values for those pixels are averaged. The 

result is considered the center of the hallway, as shown in 

Figure 19 where the thick pink line indicates the decision line. 

Finally, the direction is determined by comparing the location of 

the decision line with the seven direction bins, in the same manner 

as the lines algorithm discussed above. This particular example 

evaluates to Straight, as shown in Figure 20.  

 

 

Figure 19. Example of the colors algorithm 

 

 

Figure 20. Colors algorithm with direction bins 

 

If the center of the hallway is not in frame, then the highest row of 

red pixels still indicates the correct direction to navigate. In 

Figure 21, a hard right is required and the colors algorithm finds 

the correct direction successfully. 

 

 

Figure 21. Colors algorithm for off-center images 
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4.4 Results and Shortcomings  
Easily the best of the three algorithms, the colors algorithm has an 

accuracy rating of 94.8%. This algorithm has no particular 

category of images for which it performs poorly. Unfortunately, 

many shortcomings still exist for this algorithm. 

The first shortcoming is that the seed point cannot be adjusted 

once it is set. It is possible for the seed point to fall on the wall 

instead of the floor. If this occurs, the flood fill command will 

paint the walls red, which is clearly undesirable. Due to the 

mounting configuration of the camera on the robot platform and 

the lack of inclines on the hallway floors, the horizon line for the 

camera should not deviate significantly. If the camera is placed 

such that the horizon line is approximately halfway up the image, 

any red pixels found above the horizon line indicate that 

something other than the floor has been marked red. In this case, 

the colors algorithm fails and is ignored when the resolver 

processes the final direction for VBASR. 

The second shortcoming is that tiles of different colors can 

confuse the algorithm. The orange tiles in Figure 22 are correctly 

identified as not-white, however, they are still part of the floor. 

Likewise, if the seed point falls on an orange tile, only the orange 

tile is filled while the rest of the floor is ignored as “not-orange,” 

see Figure 23. 

 

 

Figure 22. Discolorations in the floor 

 

 

Figure 23. Seed point location causing algorithm failure 

 

Lastly, reflections on the floor pose another challenge. The flood 

fill command may not recognize the reflections if they contrast 

strongly with the neighboring pixels. Notice that in Figure 24 

many reflections cause gaps in the red floor. 

 

 

Figure 24. Colors algorithm and reflections 

 

To work around these shortcomings several different seed points 

are used. The pixel value at each seed point is identified and if 

that point is either white or orange (to catch the occasional orange 

tile) then it is evaluated using flood fill. Figure 25 shows the 

benefit of adding extra seed points. (Note: Black seed points 

indicate those evaluated using flood fill.) 

 

 
Figure 25. Many seed points 

 

5. RESOLVER 
After all three algorithms independently determine a direction to 

navigate, they are resolved into a single direction for the entire 

system. The resolver ignores algorithms when it detects a failure 

(e.g. the color algorithm is ignored if it paints the walls or ceiling 

red). Since the resolver evaluates each algorithm in parallel, the 

system architecture is such that algorithms can be added and 

removed without compromising the integrity of the system as a 

whole. Because of the parallel architecture, failed algorithms can 

easily be ignored in the following computations. 

The direction determined by each algorithm is given a numerical 

value (0=Hard Left through 6=Hard Right). The numerical values 

are then averaged to determine the final direction value. Normally, 

integer division truncates, which biases the system towards the 

left. To address this issue, VBASR’s averaging algorithm is 

biased towards the center, favoring outcomes closer to driving 

straight. If the average is greater than three (straight), then it is 

rounded down. If the final average is less than three, it is rounded 

up. Thus, the resolver biases VBASR to travel straight rather than 

biasing in one direction or the other. Averaging the results of 
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several algorithms and favoring the center also buffers the robot 

from erratic directional swings in its navigation decisions.  

6. RESULTS 
Resolving the lines algorithm, corners algorithm, and colors 

algorithm enables VBASR to achieve an overall accuracy rate of 

96.6%, as shown in Table 1. Table 1 also details the success rates 

associated with each algorithm in the seven general navigation 

directions. Individually, the colors algorithm outperforms both 

lines and corners algorithms, however, if either of these 

algorithms is eliminated then the resolver’s success rate decreases.  

 

 Table 1. Final Vision System Results (%)  

 

 

Due to the nature of the resolving function, the values for the lines 

and corners algorithm shown in Table 1 are not the highest 

percentages achieved for each individual algorithm. This 

phenomenon occurs because of the interplay between the various 

algorithms during resolution. The highest accuracy ratings for the 

lines and corners algorithms are 79.3% and 66.6% respectively. If 

the parameters are set to optimize the lines or corners algorithms, 

the total resolved percentage decreases, as demonstrated in 

Table 2. As stated above, when either of the lower percentage 

algorithms is removed, the resolved accuracy rating lowers, which 

demonstrates the benefit of using multiple algorithms in the vision 

system’s parallel architecture. 

 

Table 2. Optimized Corners Algorithm (%) 

 

 

Initial testing of the vision system on the iRobot Create platform 

yielded promising results. A webcam was mounted to the cargo 

bay of the robot and the robot was manually controlled to follow 

the real-time decisions of the resolver. Observing the resulting 

navigation behavior, it was determined that with the addition of 

control software VBASR will be capable of autonomously 

navigating down the center of the hallway. 

7. FUTURE WORK 
The discussion in this paper focuses on navigation of a hallway 

where obstacles are located only along the walls. Although not 

generally observed in the halls of the engineering building, it is 

possible that obstacles may be placed in the center of the hallway, 

obstructing the path of the robot. To handle these situations, 

obstacle avoidance will be implemented utilizing an algorithm 

similar to the colors algorithm. Creating a binary image of “floor” 

and “not-floor” enables simple detection of obstacles because the 

obstacles should generally be a different color than the floor. The 

orange tiles in Figure 22 that are not marked red give a general 

feel for how the algorithm could identify obstacles. These orange 

tiles also pose a challenge as they should be identified as “floor” 

rather than “not-floor.” Using the more robust colors algorithm 

shown in Figure 25, the floor can be identified, and, thus, the 

obstacles will be isolated. The colors algorithm shown in 

Figure 25 evaluates the seed points for either orange or white. 

Any other color would be identified as an obstacle. Other 

possibilities for obstacle avoidance have been explored by 

Marques and Lima [14] as well as Ohya et al. [15] 

After adding obstacle avoidance, the vision system will be 

integrated with Microsoft Robotics Developers Studio to enable 

autonomous control of the iRobot Create, completing VBASR’s 

primary navigational requirements. From here, more sophisticated 

work, such as motion detection (to locate intruders), will begin. 
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