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 

Abstract— A technique for improvement of ultrasonic B-mode 

imaging that uses coded excitation, pulse compression, and 

frequency compounding was recently developed. A coded 

excitation and pulse compression technique known as resolution 

enhancement compression is used to enhance the bandwidth of 

an imaging system by a factor of two. This bandwidth can be 

subdivided into smaller subbands through the speckle-reducing 

technique known as frequency compounding. Frequency 

compounded images that are generated using various subband 

widths were averaged to reduce speckle and to improve contrast 

while preserving resolution. Further improvements in contrast 

and reduction in speckle were obtained by applying post-

processing despeckling filters. The following post-processing 

despeckling filters were explored and analyzed in regard to 

contrast improvement, speckle reduction, and image feature 

preservation: median, Lee, homogeneous mask area, geometric, 

and speckle reducing anisotropic diffusion (SRAD). To evaluate 

the performance of each filter, metrics such as contrast-to-noise 

ratio, signal-to-noise ratio, mean squared error, and others were 

calculated for each result. Thirty tissue-mimicking phantoms and 

some experimental ultrasound images were obtained and filtered. 

Results indicate that SRAD provided the most improvement and 

may even improve the image. 

 
Index Terms— Coded excitation, contrast improvement, 

frequency compounding, pulse compression, speckle reduction, 

ultrasound 

 

I. INTRODUCTION 

 

LTRASONIC images are corrupted with system-

dependent imperfections called speckle. Seen as the 

granular or salt and pepper distortions, speckle is 

multiplicative noise that can mask small or low-contrast 

lesions. Speckle can be a problem in diagnostic ultrasound, 

especially in the area of early detection of cancerous lesions. 

These lesions are often either low-contrast or so small that the 

effects of speckle make the lesion imperceptible. It is desired 

to detect tumors as early as possible, and the effects of speckle 

may inhibit early detection. 

The overall quality of ultrasound (US) images can be 

improved through averaging methods or post-processing. 

Examples of an averaging method include the use of 
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frequency compounding [1], [2] or spatial compounding [3], 

[4]. A novel averaging scheme that makes use of coded 

excitation, pulse compression, and frequency compounding 

known as eREC-FC (discussed in section II) was used as the 

starting point for the implementation of post-processing 

nonlinear filtering because of its ability to improve contrast, 

reduce speckle, and preserve resolution in the image. Post-

processing methods include filtering the resulting image or 
radio frequency (RF) data. Many filters have been developed 

to effectively eliminate or reduce speckle in US images, 

including Lee [5], Kuan [6], and speckle reducing anisotropic 

diffusion [7]. 

This study focuses on improving US image quality of eREC-

FC (a technique discussed in section II) US images, through 

post-processing filtering techniques. 

 

II. BACKGROUND 

 

A. Conventional Ultrasonic Imaging 

US imaging begins with the excitation of a transducer with 

an impulse, which can be focused to a certain distance or 
unfocused. As the transducer is excited, it emits an ultrasonic 

pressure wave. This pressure wave is then propagated through 

a medium, such as tissue. While propagating through the 

medium, the wave will scatter from objects such as cells, 

fibers, etc. However, only the backscattered signal, known as 

the RF echoes, is used to construct the B-mode image. 

The constructive and destructive interference of the pressure 

waves forms speckle in the image. Thus, speckle is an inherent 

property of the US imaging system, not the subject being 

imaged. 

In conventional US (CP) imaging, a delta function is used to 

excite the transducer. 
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Fig. 1. Convolution equivalence results flow chart. 

  



ULLOM:  ULTRASOUND SPECKLE REDUCTION AFTER CODED EXCITATION AND PULSE COMPRESSION 2 

B. Resolution Enhancement Compression (REC) 

REC is a novel coded excitation method of US imaging that 

uses a pre-enhanced chirp [8]. To obtain a pre-enhanced chirp, 

convolution equivalence (CE) is used. CE adapts the 

transducer’s impulse response, 𝑕1(𝑛), to a more desirable 

impulse response, 𝑕2 𝑛 , by an appropriately constructed 

excitation signal. A linear chirp 𝑣𝐿𝐼𝑁 𝑛  is used to excite 

𝑕2 𝑛 , which has been designed to have twice the bandwidth 

of 𝑕1(𝑛). By using CE shown in (1), a pre-enhanced chirp, 

𝑣𝑃𝑅𝐸 (𝑛), is generated and the equivalence is shown in Fig. 1. 

 

𝑣𝐿𝐼𝑁 𝑛 ∗ 𝑕2 𝑛 = 𝑣𝑃𝑅𝐸  𝑛 ∗ 𝑕1 𝑛                          (1) 

 

The distinctive advantage of REC is the improvement in the 

resolution, as a direct result of 𝑕2(𝑛) having twice the 

bandwidth of 𝑕1(𝑛), and thus, the resulting transducer 

response has twice the bandwidth of a CP response. Fig. 2 
shows the convolution equivalence for two Gaussian impulse 

responses based on a real transducer. 

 

C. REC – Frequency Compounding (REC-FC) 

Frequency compounding (FC) was implemented on REC 

[9]. In FC, the spectrum of the RF echo data is subdivided 

using subband filters to generate partially uncorrelated RF 

echoes. Then, the generated RF echoes are compounded to 

reduce the speckle. In the REC-FC study, various subband 

widths were evaluated. As the subband width became smaller, 

the variance in the image was reduced but at the expenses of 

deteriorating the axial resolution. Therefore, the tradeoff in 

REC-FC was contrast resolution vs. axial resolution. 

 

D. Enhanced REC-FC (eREC-FC) 

Another technique known as enhanced REC-FC (eREC-FC), 

compounds several REC-FC images that were obtained at 

different subband widths [10]. There are three defining 

characteristics of eREC-FC. First, the axial resolution in the 

resulting image is comparable to CP. Second, the contrast 

resolution is improved over CP by a factor of about two. 
Finally, speckle in the image is reduced. 

 

 
 a)                 c)             e)             g) 

 

 
   b)                 d)             f)             h) 

 

Fig. 2. Simulated impulse responses, chirp functions, convolutions, and spectrums of convolution. (a) Gaussian pulse designed with 48% -3 dB bandwidth. (b) 

Gaussian pulse designed with 97% -3 dB bandwidth. (c) Pre-enhanced chirp used to excite the 48% bandwidth source. (d) Tapered linear chirp used to excite the 

97% bandwidth source. (e) Convolution of pre-enhanced chirp with the 48% bandwidth source. (f) Convolution of tapered linear chirp with the 97% bandwidth 

source. (g) Spectrum of part e). (h) Spectrum of part f). 
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III. METHODS AND PROCEDURES 

 
Images obtained with the eREC-FC technique were further 

processed with the despeckling filters listed in this section. 

Most of the following filters make use of a moving, 

overlapping window. This is defined as a window of size 
 𝑛 × 𝑛 , where 𝑛 is an odd integer that advances through the 

entire image one pixel at a time. The center pixel of the 

window is the location that will be adjusted in the filtered 

image. In the iterative techniques, after the first iteration 

(filtering of the original image), the filtered image becomes 

the input to the filter for each successive iteration. 

 

A. Filter Descriptions 

Median Filtering: Median filtering makes use of a moving, 

overlapping window. The median of the pixels in the window 

is the value of the pixel in the filtered image. Median filtering 

is used to smooth an image and minimize or eliminate noise 

spikes, with the idea that all pixels in a small region of an 
image should be similar. Since the computing the median is a 

simple calculation, it can also be implemented in a very 

efficient manner [11]. 

 

Local Statistics Filtering: Local statistics filtering also uses 

a moving, overlapping window. The filter uses statistics 

within that window such as mean and variance to adjust the 

center pixel of the window. Specifically, the Lee filter was 

investigated [5]. The equation that governs this filtering 

process is [12] 

 

𝑓𝑖 ,𝑗 =  𝑔 𝑖,𝑗 +  𝑘𝑖 ,𝑗 ∙  𝑔𝑖,𝑗 − 𝑔 𝑖,𝑗                             (2) 

 

where 𝑓𝑖 ,𝑗  is the filtered pixel at location (𝑖, 𝑗), 𝑔 𝑖,𝑗  is the mean 

of the pixel intensities in the window, 𝑔𝑖,𝑗  is the center pixel in 

the window, and 

 

𝑘𝑖,𝑗 =
1 − 𝑔𝑖,𝑗    𝜎2

 𝜎2 1 + 𝜎𝑛
2 

                                                 (3) 

 

where 𝜎2 is the variance in the window and 𝜎𝑛
2 is the noise 

variance in the whole image. This will result in 𝑘 ∈ [0 1]. 
Since the variance in noise, or speckle, is not known, it is 

estimated by 

 

𝜎𝑛
2 =  

𝜎𝑤𝑏
2

𝑤𝑏    
𝐼

                                                           (4) 

 

where 𝑤𝑏  is a window (that is 10 times bigger in this 

implementation) than the filtering window, 𝜎𝑤𝑏
2  and 𝑤𝑏     are the 

variance and mean of pixel intensity of the larger window, 𝑤𝑏 , 

respectively. This window moves through the entire image 𝐼. 
 

Homogeneous Mask Area Filtering: Two windows are used 

in homogeneous mask area filtering, a large main window, 
which determines the pixel location to filter, and a smaller 

subwindow within the main window [12]. For each 

subwindow, a speckle index is calculated as 

 

𝑠 =
𝜇

𝜎2
                                                                     (5) 

 

where 𝜇 and 𝜎2 are the mean and variance of the pixel 
intensity in the window, respectively. The mean of region with 

the smallest speckle index becomes the filtered pixel value. 

For this study, the subwindow was  𝑛 − 2 × 𝑛 − 2 . 
 

Geometric Filtering: Using a moving, overlapping window 

of size  3 × 3 , the geometric filter uses an iterative approach 

to make the center pixel of the window more like its 

neighboring pixels [13]. The idea behind the geometric filter is 

that a very small region of an image should be homogeneous. 

There are four directions the geometric filter iterates through – 

North-South, East-West, Northwest-Southeast, and Northeast-

Southwest, as defined in Fig. 3. In each case, a line of three 
pixels is created. 

The algorithm for computing the filtered pixel update is 

shown, where a is the pixel in the North or West direction, b is 

always the center pixel, and c is the pixel in the East or South 

direction [14] 

 

if a ≥ b+2,  b = b+1 

if a > b ≤ c,  b = b+1 

if c > b ≤ a,  b = b+1 

if c ≥ b+2,  b = b+1  

(6)     

if a ≤ b-2,  b = b-1 
if a < b ≥ c , b = b-1 

if c < b ≥ a,  b = b-1 

if c ≤ b-2,  b = b-1. 

 

Speckle Reducing Anisotropic Diffusion (SRAD): SRAD is 

an algorithm that smears the pixel intensities within 

homogenous regions while preserving edges by not smearing 

across inhomogeneous regions. SRAD is based on anisotropic 

diffusion and is used by solving the diffusion equation 

described as a nonlinear partial differential equation [7] 

 

 

𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣 𝑐 |∇𝐼| ∙ ∇𝐼 

𝐼 𝑡 = 0 = 𝐼0             

                                             (7) 

 

where 𝑑𝑖𝑣 is the divergence operator, ∇ is the gradient 

operator, 𝐼0 is the original image and is positive and never 

zero anywhere, and 
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Fig. 3. Geometric filtering directions. 
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𝑐 𝑥 =  
1

1 +  
𝑥
𝑘
 

2

 
                                                     (8) 

 

where 𝑘 is an edge magnitude parameter. 

For SRAD, a few adjustments are made to the anisotropic 

diffusion differential equation [7]. First, the diffusion 

coefficient is 

 

𝑐 𝑞 =  
1

1 +  
𝑞2 𝑖, 𝑗; 𝑡 − 𝑞0

2(𝑡)

𝑞0
2 𝑡 ∙ (1 + 𝑞0

2(𝑡))
  

                       (9) 

 

where 𝑞 is the instantaneous coefficient of variation and 𝑞0, 

the speckle scale function. 𝑞 is described by 

 

𝑞 𝑖, 𝑗; 𝑡 =  

1
2
 
∇𝐼
𝐼
 

2

−
1

16
 
∇2𝐼
𝐼
 

2

 1 +
1
4
 
∇2𝐼
𝐼
  

2                         (10) 

 

and 𝑞0 is based on statistics in a region of the image 

 

𝑞0 𝑡 =

 σz(t)
2

𝑧(𝑡)     2
                                              (11) 

 

where σz(t)
2  and 𝑧(𝑡)      are the variance and mean of pixel 

intensity over a homogeneous region at time 𝑡, respectively. 

The basis for the SRAD update function is the discrete 

isotropic diffusion update function, which is described by 

 

𝐼𝑖,𝑗
𝑡+∆𝑡 = 𝐼𝑖,𝑗

𝑡 +
∆𝑡

4
 𝐼𝑖+1,𝑗

𝑡 + 𝐼𝑖−1,𝑗
𝑡 + 𝐼𝑖,𝑗+1

𝑡 + 𝐼𝑖,𝑗−1
𝑡 − 4𝐼𝑖,𝑗

𝑡      

  (12) 

 

which can be viewed as  

 

𝐼𝑖,𝑗
𝑡+∆𝑡 = 𝐼𝑖,𝑗

𝑡 +
∆𝑡

4
𝑑𝑖,𝑗
𝑡                                              (13) 

 

where 𝑑𝑖 ,𝑗
𝑡  is the divergence function. In SRAD, the 

calculation of the divergence function in discrete 

implementation, with discretized spatial and temporal 
components 

 

𝑡 = 𝑛∆𝑡, 𝑛 = 0,1,2…          
𝑥 = 𝑖𝑕,     𝑖 = 0,1,2,… ,𝑀 − 1  
𝑦 = 𝑗𝑕,     𝑗 = 0,1,2,… , 𝑁 − 1. 

 

The gradient approximations and Laplacian approximation 

are computed as 

 

∇𝐿𝐼𝑖,𝑗
𝑛 =  

𝐼𝑖+1,𝑗
𝑛 − 𝐼𝑖,𝑗

𝑛

𝑕
,
𝐼𝑖,𝑗+1
𝑛 − 𝐼𝑖,𝑗

𝑛

𝑕
                      (14) 

 

∇𝑅𝐼𝑖,𝑗
𝑛 =  

𝐼𝑖,𝑗
𝑛 − 𝐼𝑖−1,𝑗

𝑛

𝑕
,
𝐼𝑖,𝑗
𝑛 − 𝐼𝑖,𝑗−1

𝑛

𝑕
                      (15) 

 

∇2𝐼𝑖,𝑗
𝑛 =

𝐼𝑖+1,𝑗
𝑛 + 𝐼𝑖−1,𝑗

𝑛 + 𝐼𝑖,𝑗+1
𝑛 + 𝐼𝑖,𝑗−1

𝑛 − 4𝐼𝑖−𝑗
𝑛

𝑕
  (16) 

 
having boundary conditions 

 

𝐼−1,𝑗
𝑛 = 𝐼0,𝑗

𝑛 ,   𝐼𝑀,𝑗
𝑛 = 𝐼𝑀−1,𝑗

𝑛  

𝑗 = 0,1,2,… , 𝑁 − 1      (17) 

 

𝐼𝑖,−1
𝑛 = 𝐼𝑖,0

𝑛 ,   𝐼𝑖,𝑁
𝑛 = 𝐼𝑖,𝑁−1

𝑛 , 

𝑖 = 0,1,2,… , 𝑀 − 1.      (18) 
 

The diffusion coefficient is a function of the instantaneous 

coefficient of variation, which is a function of the 

approximated image derivatives and Laplacian 

 

𝑐𝑖,𝑗
𝑛 = 𝑐  𝑞  

1

𝐼𝑖,𝑗
𝑛
  ∇𝑅𝐼𝑖,𝑗

𝑛  
2

+  ∇𝐿𝐼𝑖,𝑗
𝑛  

2
,

1

𝐼𝑖,𝑗
𝑛 ∇2𝐼𝑖,𝑗

𝑛   .    (19) 

 

The divergence of 𝑐 ∙ ∇𝐼 is computed as 

 

𝑑𝑖,𝑗
𝑛 =

1

𝑕2
 𝑐𝑖+1,𝑗

𝑛  𝐼𝑖+1,𝑗
𝑛 − 𝐼𝑖,𝑗

𝑛  + 𝑐𝑖,𝑗
𝑛  𝐼𝑖−1,𝑗

𝑛 − 𝐼𝑖,𝑗
𝑛  +  

 𝑐𝑖 ,𝑗+1
𝑛  𝐼𝑖,𝑗+1

𝑛 − 𝐼𝑖,𝑗
𝑛  + 𝑐𝑖,𝑗

𝑛  𝐼𝑖,𝑗−1
𝑛 − 𝐼𝑖,𝑗

𝑛               (20) 

 

having boundary conditions 

 

𝑑−1,𝑗
𝑛 = 𝑑0,𝑗

𝑛 ,   𝑑𝑀,𝑗
𝑛 = 𝑑𝑀−1,𝑗

𝑛  

𝑗 = 0,1,2,… , 𝑁 − 1      (21) 
 

𝑑𝑖 ,−1
𝑛 = 𝑑,   𝑑𝑖 ,𝑁

𝑛 = 𝑑𝑖 ,𝑁−1
𝑛 , 

𝑖 = 0,1,2,… , 𝑀 − 1.      (22) 

 

Finally, the approximation of the solved differential 
equation, the SRAD update function, is 

 

𝐼𝑖,𝑗
𝑛+1 = 𝐼𝑖,𝑗

𝑛 +
∆𝑡

4
𝑑𝑖,𝑗
𝑛                                             (23) 

 

In the SRAD implementation, 𝑛 is an artificial time value 

that increases by one for every iteration through the SRAD 

algorithm. The parameters 𝑕 and ∆𝑡 were 1 and 0.05, 
respectively as specified in [7]. 

The selection of a region 𝑧 could be automated to minimize 

subjectivity by using an appropriately-sized moving, 

overlapping window. The variance was calculated in every 

window, and the windowed region with the least variance 

would become 𝑧, being the region with the least noise. Also, 

for US images in which the distance represented by each pixel 

is different on each axis, the SRAD algorithm was scaled 

(sSRAD). 
This scaling alteration required knowing the actual size of 

the image in terms of distances. The change between pixels is 

then calculated for each direction 
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∆𝑗=
𝑖

𝑝𝑖
                                                                (24) 

 

where 𝑖 is the actual length of the image in the 𝑖-direction and 

𝑝𝑖  is the number of pixels along the 𝑖-axis, and ∆𝑖  is computed 

similarly. Then the scale factors are normalized based on the 

scale factor with the larger magnitude. The scaling is applied 

to the divergence equation 

 

𝑑𝑖 ,𝑗
𝑛 =

1

𝑕2
 𝑐𝑖+1,𝑗

𝑛  𝐼𝑖+1,𝑗
𝑛 − 𝐼𝑖,𝑗

𝑛  ∆𝑖 + 𝑐𝑖,𝑗
𝑛  𝐼𝑖−1,𝑗

𝑛 − 𝐼𝑖,𝑗
𝑛  ∆𝑖 +  

 𝑐𝑖,𝑗+1
𝑛  𝐼𝑖,𝑗+1

𝑛 − 𝐼𝑖,𝑗
𝑛  ∆𝑗 + 𝑐𝑖,𝑗

𝑛  𝐼𝑖,𝑗 −1
𝑛 − 𝐼𝑖,𝑗

𝑛  ∆𝑗  .        (25) 

 

 

B. Image Quality Metrics 

1. Contrast 

Contrast-to-Noise Ratio (CNR) quantifies the degree to 

which one region of an image is visible in comparison to 

another region. For this study, a region in the lesion is 

compared to a region in the background. CNR is described as 
[14] 

 

𝐶𝑁𝑅 =
 𝜇𝐵 − 𝜇𝑇 

 𝜎𝐵
2 + 𝜎𝑇

2
.                                                  (26) 

 

Because of attenuation, the CNR was calculated at the same 

depth for both regions. A larger CNR represents better 

contrast. 

 
2. Speckle 

The comparative signal-to-noise ratio (cSNR) is defined as 

[15] 

 

𝑐𝑆𝑁𝑅 = 10 log10

   𝑔𝑖,𝑗
2 + 𝑓𝑖,𝑗

2  𝑁
𝑗=1

𝑀
𝑖=1

   𝑔𝑖,𝑗 − 𝑓𝑖 ,𝑗  
2𝑁

𝑗=1
𝑀
𝑖=1

          (27) 

 

and peak SNR (PSNR) is given by [17] 

 

𝑃𝑆𝑁𝑅 = −10 log10

   𝑔𝑖,𝑗 − 𝑓𝑖 ,𝑗  
2𝑁

𝑗=1
𝑀
𝑖=1

𝑔𝑚𝑎𝑥
2

      (28) 

 

where 𝑔 is the unfiltered image, 𝑓 is the filtered image, and 

𝑔𝑚𝑎𝑥
2  is the maximum intensity of the unfiltered image.   
cSNR and PSNR are a comparative measure between the 

filtered and the unfiltered images. cSNR quantifies the amount 

of noise, or speckle, reduction from the unfiltered to the 
filtered image, with higher results representing a larger 

improvement. PSNR measures image fidelity, or the similarity 

of the filtered and unfiltered image. PSNR is larger for better-

transformed images, that is, images that better represent the 

original despite the alterations. 

 

3. Overall Image 

A few metrics were used to compute absolute changes in the 

filtered images. These provide easily-understandable 

measurements of the differences in the images resulting from 

filtering. Mean squared error (MSE) computes the mean 

squared difference of all pixels in the transformation 

 

𝑀𝑆𝐸 =
1

𝑀𝑁
   𝑔𝑖,𝑗 − 𝑓𝑖,𝑗  

2
𝑁

𝑗=1

𝑀

𝑖=1

                         (29) 

 

and root MSE (RMSE) calculates the precision of the 

transformation 

 

𝑅𝑀𝑆𝐸 =  
1

𝑀𝑁
   𝑔𝑖,𝑗 − 𝑓𝑖 ,𝑗  

2
𝑁

𝑗=1

𝑀

𝑖=1

.                  (30) 

 

When 𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸 = 0 there is no average difference 

between the filtered and unfiltered images. A filter resulting in 

zero MSE and RMSE could mean all regions of the image 

(target, background, etc.) were transformed to the mean of that 

region, or the images are the same. 

Additionally, the error summation in the form of the 
Minkowski metric [16] 

 

𝐸𝑟𝑟 =  
1

𝑀𝑁
   𝑔𝑖,𝑗 − 𝑓𝑖,𝑗  

𝛽
𝑁

𝑗=1

𝑀

𝑖=1

 

1/𝛽

               (31) 

 

is evaluated at 𝛽 = 3 (Err3) and 𝛽 = 4 (Err4). When 𝛽 = 2, 
the RMSE is computed. The Minkowski metric measures the 

norm of the dissimilarity between the original and despeckled 

images and is a further abstracted measure of the precision of 

the transformations. Again, 𝐸𝑟𝑟 = 0 means there was either 

no change from the filter or the filtered image was a result of 

the ideal filtering process. 

The universal quality index [17] represents image distortion 

as a combination of loss of correlation, luminance distortion, 

and contrast distortion. Universal quality index is defined as 

 

𝑄 =
𝜎𝑔𝑓
𝜎𝑓𝜎𝑔

∙
2𝑓 𝑔 

 𝑓  
2

+  𝑔  2
∙

2𝜎𝑓𝜎𝑔
𝜎𝑓

2 + 𝜎𝑔
2

                      (32) 

 

which can be rewritten as 

 

𝑄 =
4𝑓 𝑔 𝜎𝑔𝑓

 𝑓 2 + 𝑔 2  𝜎𝑓
2 + 𝜎𝑔

2 
                                    (33) 

 

where 𝑓  and 𝑔  are the mean of the filtered and unfiltered 

values, with standard deviations, 𝜎𝑓 and 𝜎𝑔 , and variances, 𝜎𝑓
2 

and 𝜎𝑔
2, respectively, and 𝜎𝑔𝑓  is the covariance between the 

original and despeckled windows. To compute Q, a sliding, 

non-overlapping  8 × 8  window was used. The average of 

each windowed region for the entire image was computed. Q 

is bounded such that −1 ≤ 𝑄 ≤ 1, where 𝑄 = 1 if 𝑔𝑖,𝑗 = 𝑓𝑖 ,𝑗  

and 𝑄 = −1 if 𝑓𝑖,𝑗 = 2𝑔 − 𝑔𝑖,𝑗 . 

Finally, the structural similarity index between two images 

[17], which is a generalized form of the universal quality 

index, is computed as 
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𝑆𝑆𝐼𝑀 =
 2𝑓 𝑔 + 𝑐1  2𝜎𝑔𝑓 + 𝑐2 

 𝑓 2 + 𝑔 2 + 𝑐1  𝜎𝑓
2 + 𝜎𝑔

2 + 𝑐2 
          (34) 

 

where 𝑐1 = 0.01𝑑𝑟 and 𝑐2 = 0.03𝑑𝑟, with 𝑑𝑟 representing the 

dynamic range of the ultrasound images. SSIM is bounded 

such that −1 ≤ 𝑆𝑆𝐼𝑀 ≤ 1, where 𝑆𝑆𝐼𝑀 = 1 for a good 

similarity and 𝑆𝑆𝐼𝑀 = −1 for a poor similarity between the 

filtered and unfiltered images. 

 

C. Computer Simulations 

Computer simulations were performed in MATLAB 

(MathWorks, Natick, MA) to generate all US images [11]. 

The simulations used the following received pulse-echo 

pressure field model [14] 

 

𝑔′ 𝑥, 𝑦, 𝑡 = 𝑕1 𝑡 ∗ 𝑓 𝑥, 𝑦 ∗ 𝑕𝑝𝑒  𝑦, 𝑡            (35) 

 

where 𝑥 is the axial spatial coordinate, 𝑦 is the lateral spatial 

coordinate, 𝑕1(𝑡) is the pulse-echo impulse response of the 

transducer, 𝑓(𝑥, 𝑦) is the scattering function, and 𝑕𝑝𝑒 (𝑦, 𝑡) is 

the modified pulse-echo spatial impulse response to take into 

account the geometry of the transducer in respect to the 

scattered beam field (beam diffraction). To generate the pulse-

echo impulse response 𝑕1(𝑡) in conventional imaging, a 

sinusoid of four cycles is gated with a Hanning window 

 

𝑤 𝑛 =  

1

2
 1 − cos 

2𝜋𝑛

𝐿𝐻 − 1
  , 0 ≤ 𝑛 ≤ 𝐿𝐻 − 1

0,                                      otherwise 

      (36) 

 

where n is an integer and  is the number of samples in the 

window. The parameters of the window and sinusoid were 

chosen to match the transducer used in experiments. The 

resulting pulse-echo impulse response generated is located at 

the focus of a 2.25 MHz single-element transducer (f/2.66) 

with a fractional bandwidth of 50% at –3 dB, with a 

corresponding window length of 𝑛 = 128. For REC, the 

desired impulse response function 𝑕2(𝑡) was constructed to 

have double the fractional bandwidth (100%) at –3 dB, which 

uses a window of length of 𝑛 = 64. The spatial response of a 
circular focused piston source can be simulated as a circular 

Gaussian beam defined as 

 

𝑕𝑝𝑒  𝑦, 𝑡 = 𝛿  𝑡 −
2𝑅𝑑
𝑐
 𝑒

−
𝑦2

𝜎𝑦
2
                            (37) 

 

where 𝑅𝑑  is the distance from the source to target in space, 𝑐 

is the speed of sound of the medium, and 𝜎𝑦  is the nominal 

lateral beamwidth of the source at –6 dB and is equal to 1.28 

mm. 
The transducer was laterally translated in increments of 0.1 

mm, and the received RF backscatter data were sampled at a 

rate of 100 MHz. The RF backscatter data have a size of 

4096 × 58 samples, axially and laterally. The object being 

imaged was a cylindrical target with a radius of 7.5 mm, 

located at the center of the simulated phantom, which was 20 

mm long, 30 mm wide, and 1.92 mm high. The amplitude of 

the scatterers in the target were twice that of those in the 

background in order to cause the target to have a contrast of 

approximately +6 dB. The phantom contains an average of 20 

point scatterers per resolution cell volume, in order to ensure 
fully developed speckle, and were uniformly distributed 

throughout the phantom. 

 

IV. SIMULATION RESULTS 

 

Thirty phantoms were simulated, imaged, and filtered using 

MATLAB. All filters described in section III-A were applied to 
each conventional and eREC-FC images. The window-based 

filters were all applied with window sizes of 𝑛 = 3, 5, 7, 9, and 

11. The geometric filter was applied in iterations of 1 through 

 

             

 
 

Fig. 4. An example of results of filtering simulation images. Top row – conventional and eREC-FC reference images. Bottom row – median filter (9), 

homogeneous mask area filter (7), Lee filter (7), geometric filter (5), sSRAD (3300). Parenthesis denote (n x n) window or n i terations. 
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9. sSRAD was applied in iterations of 300𝑛, for 𝑛 defined 
above. The performance of each filter was assessed by 

applying the image quality metrics described in section III-B. 

All filters showed qualitative smearing across the entire 

image except sSRAD, which did not smear across feature 

edges. Fig. 4 shows the effects of each filter qualitatively on a 

conventional image as well as on an eREC-FC image of the 

same phantom. The quantitative results of the metrics 

averaged over the 30 simulations are shown in Fig. 5. All 

results in this section are in terms of the average of the 30 

simulations. 
For every filter except geometric, the largest window or 

number of iterations resulted in the best CNR. The CNR 

improvement from geometric filtering peaks at 6 iterations. 

Furthermore, a larger window does not always significantly 

improve the CNR. The increase in CNR as a function of 

window size or iterations follows a logarithmic-like shape. 

Eventually, the benefit of increasing the window size or 

iterations will become minimal, in addition to the drawback of 

an increase in computational time. The eREC-FC technique 

exhibited 150% CNR improvement on CP images. The largest 

average percent improvement of CNR from each filter on top 

of the CNR eREC-FC image improvement was 95%, 100%, 
105%, 80%, and 165% for median, homogeneous mask area, 

Lee, geometric, and sSRAD, respectively. The largest total 

CNR improvement (from CP image to filtered eREC-FC 

image) for each filter was 388%, 400%, 413%, 350%, and 

563% for median, homogeneous mask area, Lee, geometric, 

and sSRAD, respectively. 

sSRAD exhibited an improvement in cSNR and PSNR for 
all iterations and geometric showed the improvement for all 

iterations after one. Every filter had a decreasing trend in SNR 

as the iterations or window size decreased, except geometric, 

which had an increasing trend. Based on this metric, the order 

of the filters in respect to improvement was sSRAD, Lee, 

median, then homogeneous mask area. The geometric filter 

was left out because its improving trend cannot be compared 

on the whole to the decreasing trend of the other filters. 

Again, sSRAD and geometric filters had better (lower) 

MSE, RMSE, Err3, and Err4 than the eREC-FC technique; 

however, the geometric filter was higher than eREC-FC in the 
case of one iteration. All filters except geometric showed a 

decreasing trend in performance in all of these metrics. The 

geometric filter improved as the iterations increased. A 

comparison of each filter was as follows: sSRAD, geometric, 

Lee, median, followed by homogeneous mask area. 

None of the filters end up improving Q or SSIM. The order 

of filters in respect to these metrics’ performance as a factor of 

the speed of degradation as window size or iterations 

increased was: sSRAD, geometric, median, Lee, homogeneous 

mask area. 

The axial profile through the center of the lesion from one of 
the tissue-mimicking phantoms of the ideal, CP, and sSRAD-

filtered images were compared as shown in Fig. 6. The CP 

profile varies greatly around each region (target, background) 

and is difficult to properly classify. sSRAD has a reduced 

variance in the target region. However, a bias was introduced 

in the background region. This would help explain the 

increases in CNR achieved with sSRAD. 

 

V. EXPERIMENTAL RESULTS 

 

Three images were obtained experimentally with a 

transducer with the specifications described in section III-C. 

Two of these images are of a +6 dB lesion, one having a target 

of 5 mm and the other with a target of 12 mm, and the third is 

of a +3 dB contrast, 12 mm lesion. All filters were applied to 

these experimentally-obtained images in MATLAB. Fig. 7 a) 

shows the effects of the filters on the 12 mm +6 dB lesion and 

b) shows the results on the 12mm +3 dB lesion. 

Just as in simulation, all filters resulted in smearing across 
the entire image, except sSRAD, which stopped at feature 

edges. Because the general trends of the experimental data are 

 eREC-FC  Med   HMA   Lee   Geo   sSRAD  
  3 7 11 5 7 11 3 7 11 1 5 9 900 2100 3300 

CNR 2.0 2.9 3.5 3.9 3.2 3.6 4.0 2.9 3.6 4.1 3.0 3.6 3.3 3.8 4.7 5.3 

SNR 10.4 10.2 9.9 9.7 10.1 9.9 9.6 10.3 9.9 9.7 10.3 10.9 11.4 17.7 17.3 17.0 

PSNR 16.2 16.1 15.8 15.5 15.9 15.7 15.5 16.1 15.8 15.5 16.1 16.5 16.8 18.7 18.2 17.8 

MSE 39.2 40.1 43.1 45.4 41.7 43.5 45.9 40.0 42.9 45.5 39.5 36.3 33.6 22.9 25.6 28.0 

RMSE 6.2 6.3 6.5 6.7 6.4 6.6 6.8 6.3 6.5 6.7 6.3 6.0 5.8 4.8 5.1 5.3 

Err3 7.8 7.9 8.2 8.4 8.1 8.2 8.4 7.9 8.2 8.4 7.9 7.7 7.4 6.0 6.4 6.6 

Err4 9.3 9.4 9.7 9.9 9.6 9.7 10 9.4 9.7 9.9 9.4 9.2 8.9 7.3 7.7 7.9 

Q 0.47 0.44 0.30 0.17 0.28 0.22 0.12 0.43 0.25 0.12 0.40 0.22 0.11 0.46 0.38 0.34 

SSIM 0.53 0.51 0.39 0.28 0.37 0.32 0.24 0.49 0.35 0.24 0.47 0.32 0.23 0.52 0.46 0.43 

 
Fig. 5.Quantitative simulation results of filtering techniques over the span of window sizes or iterations. The average CNR for the conventional image was 0.8. 

 

 
 

Fig. 6. Comparative axial profile of simulated data. Black, blue, and red 

denote ideal, conventional pulsing, and sSRAD axial profiles, with depth on 

the abscissa and magnitude on the ordinate. 
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similar to the simulation, highlights of the experimental results 

are divided into sections for each image below.  

 

1. 5 mm +6 dB lesion 

The best total CNR improvements in this experiment were 

seen with sSRAD and median filtering, with a CNR 
improvement of 460% and 453%, respectively, over CP. 

Geometric and sSRAD had the best results in terms of cSNR 

with 21% and 78% improvements over eREC-FC, 

respectively. The two filters with the best MSE results were 

geometric and sSRAD with 29% and 61% improvements over 

eREC-FC respectively. Fig. 8 shows quantitative results of all 

experimental data. 

 

2. 12 mm +6 dB lesion 

The best performing filters for CNR in this case were 

homogeneous mask area and Lee with 350% and 361% 

respective improvements over CP. Again, geometric and 

sSRAD had the best cSNR improvements over eREC-FC with 

15% and 110%, respectively. The best MSE improvements 
over eREC-FC were seen in geometric and sSRAD with a 

20% and a 59% decrease, respectively. 

 

3. 12 mm +3 dB lesion 

Again, CNR improvements were the greatest in 

homogeneous mask area and Lee, showing 280% and 285% 

increases over CP, respectively. cSNR results showed that 

geometric and sSRAD were the best with 20% and 87% 

             

 
a) 

 

 

            

 
b) 
 

Fig. 7. Qualitative experimental results. a) +6 dB contrast 12 mm data. b) +3 dB contrast 12 mm data. Top rows – conventional and eREC-FC reference images. 

Bottom rows – median filter (9), homogeneous mask area filter (7), Lee filter (7), geometric filter (5), sSRAD (3300). Parenthesis denote (n x n) window or n 

iterations. 
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increases over eREC-FC. Finally, the results of MSE analysis 

revealed that geometric and sSRAD performed the best with a 

respective 28% and 59% decrease as compared to eREC-FC. 

Fig. 8 shows the quantitative data on all experimental results. 

The axial profile through the center of the lesion from one of 

the tissue-mimicking phantoms of the ideal, CP, and sSRAD-

filtered images were compared for the experimental +3 dB 

contrast results to emphasize the need for the reduction of 

speckle, as shown in Fig. 9. The only difference between Fig. 

9 and Fig. 6 is that the contrast of the target is smaller. 

Consequently, speckle can mask the lesion background line. In 

Fig. 9, the CP profile varies greatly around each region (target, 
background) and is significantly difficult to properly classify. 

sSRAD has a reduced variance in the target region. However, 

a bias was introduced in the background region, which helps 

explain the increase in CNR achieved. It is still difficult to 

 eREC-FC  Med   HMA   Lee   Geo   sSRAD  
  3 7 11 5 7 11 3 7 11 1 5 9 900 2100 3300 

CNR 4.2 4.8 5.9 7.0 4.6 5.0 5.4 4.9 5.6 5.9 4.8 6.0 6.7 5.7 6.6 7.1 

SNR 8.7 8.6 8.6 8.6 8.8 8.7 8.6 8.7 8.7 8.7 8.8 9.6 10.5 15.2 15.4 15.0 
PSNR 14.8 14.8 14.7 14.7 14.9 14.8 14.8 14.8 14.8 14.8 14.9 15.5 16.3 16.8 17.0 16.7 

MSE 82.7 83.3 83.9 84.4 81.2 82.4 83.2 82.3 82.3 82.9 80.8 70.0 58.8 34.8 33.0 35.7 
RMSE 9.1 9.1 9.2 9.2 9.0 9.1 9.1 9.1 9.1 9.1 9.0 8.4 7.7 5.9 5.7 6.0 

Err3 10.7 10.7 10.7 10.8 10.6 10.7 10.7 10.7 10.7 10.7 10.6 10.0 9.4 6.7 6.6 6.8 
Err4 12.2 12.2 12.2 12.3 12.1 12.2 12.2 12.2 12.2 12.2 12.1 11.6 11.0 7.5 7.3 7.4 

Q 0.14 0.13 0.09 0.05 0.09 0.07 0.04 0.13 0.08 0.04 0.12 0.08 0.04 0.19 0.20 0.20 
SSIM 0.21 0.21 0.17 0.14 0.17 0.16 0.14 0.21 0.17 0.14 0.20 0.17 0.14 0.27 0.28 0.29 

 
a) 
 

 eREC-FC  Med   HMA   Lee   Geo   sSRAD  
  3 7 11 5 7 11 3 7 11 1 5 9 900 2100 3300 

CNR 1.6 1.7 2.0 2.3 2.1 2.3 2.5 1.8 2.3 2.6 1.8 2.1 1.8 1.7 1.8 1.9 

SNR 8.7 8.6 8.3 8.1 8.5 8.3 8.1 8.6 8.4 8.1 8.7 9.3 10.1 17.3 18.1 18.3 

PSNR 16.6 16.5 16.3 16.1 16.4 16.3 16.1 16.6 16.3 16.1 16.6 17.0 17.6 17.8 18.5 18.7 

MSE 54.2 55.6 59.1 61.8 56.6 58.8 61.5 55.0 58.5 61.2 54.3 49.3 43.6 27.4 23.3 22.3 
RMSE 7.4 7.5 7.7 7.9 7.5 7.7 7.8 7.4 7.6 7.8 7.4 7.0 6.6 5.2 4.8 4.7 

Err3 9.0 9.1 9.4 9.6 9.2 9.4 9.6 9.0 9.3 9.6 9.0 8.8 8.4 5.9 5.6 5.5 
Err4 10.6 10.7 11.0 11.2 10.8 11.0 11.2 10.7 11.0 11.2 10.7 10.5 10.1 6.5 6.3 6.3 

Q 0.40 0.36 0.21 0.10 0.22 0.17 0.08 0.35 0.18 0.08 0.32 0.16 0.06 0.53 0.50 0.48 
SSIM 0.45 0.42 0.29 0.20 0.30 0.25 0.18 0.41 0.27 0.18 0.39 0.25 0.17 0.59 0.57 0.55 

 
b) 
 

 eREC-FC  Med   HMA   Lee   Geo   sSRAD  

  3 7 11 5 7 11 3 7 11 1 5 9 900 2100 3300 

CNR 1.1 1.1 1.4 1.7 1.4 1.5 1.8 1.2 1.6 1.8 1.2 1.4 1.3 1.4 1.7 1.8 

SNR 9.1 9.0 9.0 9.1 9.2 9.2 9.2 9.1 9.2 9.2 9.2 10.0 10.9 14.9 16.4 16.9 
PSNR 15.8 15.8 15.8 15.8 16.0 15.9 15.9 15.8 15.9 15.9 15.9 16.5 17.2 16.1 17.3 17.7 

MSE 69.3 69.4 69.3 68.4 66.6 67.2 67.1 68.4 67.2 66.7 67.1 58.2 49.7 40.3 30.6 28.2 
RMSE 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.3 8.2 8.2 8.2 7.6 7.0 6.3 5.5 5.3 

Err3 10.0 10.0 10.0 10.0 9.9 9.9 9.9 10.0 9.9 9.9 9.9 9.4 8.8 7.3 6.5 6.4 
Err4 11.6 11.6 11.6 11.6 11.5 11.5 11.5 11.6 11.5 11.5 11.5 11.0 10.4 8.1 7.5 7.4 

Q 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.07 0.06 0.05 
SSIM 0.13 0.13 0.14 0.14 0.13 0.14 0.14 0.13 0.14 0.14 0.13 0.14 0.14 0.17 0.19 0.18 

 
c) 
 

Fig. 8. Quantitative experimental results of filtering techniques over the span of window sizes or iterations. a) +6 dB 5 mm lesion. The average CNR for the 

conventional image was 1.3. b) +6 dB 12 mm lesion. The average CNR for the conventional image was 0.6. c) +3 dB 12 mm lesion.  The average CNR for the 

conventional image was 0.5. 
  

 
 

Fig. 9. Comparative axial profile of +3 dB data. Black, blue, and red denote 

ideal, conventional pulsing, and sSRAD axial profiles, with depth on the 

abscissa and magnitude on the ordinate. 
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classify regions appropriately, but there is a small region 

where a threshold could be set. 

 

VI. DISCUSSION AND CONCLUSION 

 

In simulation and experimental applications, sSRAD 

resulted in the highest overall improvement. It did not result in 

the highest improvement in terms of CNR in the 12 mm +6 

dB, where it was second-to-last in performance, or 12 mm +3 

dB experimental results, where it was only 5% below 

homogeneous mask area. In all other measures, however, it 

outperformed the other filters, and often to a significant 

degree. It is of importance to note that the sSRAD algorithm’s 

improvements come at an increased cost in computational 
complexity and time. 

A possible extension of this work would be segmentation. 

The resulting image after eREC-FC and SRAD filtering could 

be used to detect edges more accurately than CP or even 

eREC-FC. With this benefit, segmenting techniques could be 

used to superimpose the edges of the object on the CP or 

eREC-FC image. 

Another route would be to implement SRAD in hardware 

[19], so that it would be a part of the US system. The system 

could be designed to switch between CP, eREC-FC, and 

SRAD-filtered, based on what is type of image is desired. This 
system could also be designed to include the segmentation 

discussed above. 

It is clear that the quality of US images obtained through the 

eREC-FC technique can be significantly improved through the 

application of post-processing despeckling filters. 
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