Shift Register and Seven Segment LEDs

2010-04-21 13:04:14 by Chris

The Door Widget requires controlling 10 seven-segment LED displays and one bi-color LED. My current design drives the LED anodes through eight 2N7000 MOSFETs and sinks each display anode (one at a time) through the NXP HEF4894B (Datasheet), a 12-stage shift register / LED driver (see Figure 1 for the pinout). I believe that this design is better suited for this project than Charlieplexing because:

- The firmware is easier to write and much-less taxing for the AVR
- The LEDs can be driven at a higher current that what the AVR I/O pins can provide (a necessity when each LED has a 1/10 duty cycle)

Sumbol	Parameter	Conditions		Min	Max	Unit
Von	supply willing			-0.5	+18	v
lac.	input stamping current	Vi < -0.5 V or Vi > Vop + 0.5 V			+10	mA.
Vi.	input voltage			-0.5	Vop + 0.5	ν
lax.	output clamping current	OSn outputs; V_{O} = -0.5 V or V_{O} = V_{DD} = 0.5 V		-	±10	mA
		OPn outputs; Vo < 0.5 V		-	-40	mA
4	input leakage current			-	±10	mA
ło	output carrent	QSn outputs			±10	mA.
		QPn cutputs		-	-40	mA
Tata	storage temperature			-65	+150	°C
Tamb	ambient temperature			-40	+125	*C
Plet	total power dissipation	Tamb = -40 °C to +125 °C				
		DIP20 package	19	-	750	πW
		8020 peckage	8		500	mW
		TSSOP20 package	13		500	mW
P	power dissipation				100	mW

The HEF4894B has certain features that make it well-suited for driving the LED segments. Firstly, it is a 12stage shift register which is *really* nice. Eight stages would have been too few, and 16 stages would have seemed wasteful. Secondly, it is capable of sinking 40 mA per channel with a total power dissipation limit of 750 mW (see Figure 2 for limiting values). I am only using ten of the output pins, and each one is only sinking 30 mA at the moment. It would be nice in the future to allow manual control of the LEDs' brightness, or to enable the door widget to adjust the brightness automatically by detecting the amount of ambient light. I will not have time to implement this feature by the end of the semester however.

	л
sinder input	_
Hote Laboration Laboratio Laboration Laboration Laboration Laboration Laboration Laborat	
	~
****C1C1C1C1C1C	7
internal G198	2
CP11 exper	_I
Herei (35)	5
Held 002	
Fig.5. Timing diagram	and and a

The shift register takes commands through an SPI bus (timing diagram shown in Figure 3). Its pins are connected as follows:

• STR (Strobe) - This pin synchronizes the data currently being held in the internal shift register portion

with the storage register portion. It is connected to pin B3 on the microcontroller.

- D (Data) This pin takes in serial data from the microcontroller representing the state of the QP1 through QP11 output pins. Because there are 12 outputs, two bytes must be sent to fully set the outputs (MSB first). It is connected to pin B5 (MOSI) on the microcontroller.
- CP (Clock) This is the serial clock and is connected to pin B7 (SCK) on the microcontroller.
- QP1 QP11 These are the parallel output pins and are connected to the gate pins of the MOSFETs.
- QS1 QS2 (not used) These are the serial out pins used for cascading multiple shift registers together.

Here is an excerpt from sevenseg.c that demonstrates sending data to the shiftregister through the SPI bus (light_up function) as well as the shift register initialization function (shiftreg_init) that appropriately sets up the SPI control register (SPI interrupt enable, Master select).

```
volatile unsigned char current display;
volatile unsigned char current char[] = {16,16,16,16,16,16,16,16,16,16};
void light next(void)
{
    if (current display++ > 9) current display = 0;
    light up(current display);
   return;
}
void light up(unsigned char j)
{
    unsigned char lsb=0,msb=0;
    const prog uint8 t* ch;
    ch = FONT_SEVEN_SEG + current_char[current_display];
    unsigned char b = pgm read byte(ch);
    switch (j)
    {
        case 0: lsb = (1<<0); break;</pre>
        case 1: lsb = (1<<1); break;</pre>
       case 2: lsb = (1<<2); break;</pre>
       case 3: lsb = (1<<3); break;</pre>
       case 4: lsb = (1<<4); break;</pre>
       case 5: lsb = (1<<5); break;</pre>
       case 6: lsb = (1<<6); break;</pre>
       case 7: lsb = (1<<7); break;</pre>
       case 8: msb = (1<<0); break;</pre>
       case 9: msb = (1<<1); break;</pre>
       default: lsb=0; msb=0;
    }
    // Turn off shift register outputs
    SR OUTPUT OFF;
    // Display is now off!
    // Set up port pins with correct outputs to display current digit
    SEGMENTS OUT = b_i
    //SEGMENTS OUT = FONT SEVEN SEG[17];
    // Transfer new values to shift register
    bit clr(SPSR, 7); // Clear SPI interrupt flag
    SPDR = msb; // Write out MSB to shift register
    // Wait for shift register to receive byte
    while(!(bit_get(SPSR,7))) { }
    SPDR = lsb; // Write out LSB to shift register
    // Wait for shift register to receive byte
    while(!(bit get(SPSR,7))) { }
    // Shift-in values
    SR STROBE ON;
    SR STROBE_OFF;
    // Turn on shift register outputs
    SR OUTPUT ON;
    // Display is now on (with new digit)
```

```
return;
}
void shiftreg_init(void)
{
    SR_STROBE_OFF;
    SR_OUTPUT_OFF;
    // Set SPI control register appropriately (SPI interrupt enable, Master select)
    //SPCR = 0b01010011;
    SPCR = 0b01010000;
}
```