
Articles of THAT Home Automation Topology

Shift Register and Seven Segment LEDs
2010-04-21 13:04:14 by Chris

The Door Widget requires controlling 10 seven-segment LED displays and one bi-color LED. My current design
drives the LED anodes through eight 2N7000 MOSFETs and sinks each display anode (one at a time) through the
NXP HEF4894B (Datasheet), a 12-stage shift register / LED driver (see Figure 1 for the pinout). I believe that
this design is better suited for this project than Charlieplexing because:

• The firmware is easier to write and much-less taxing for the AVR
• The LEDs can be driven at a higher current that what the AVR I/O pins can provide (a necessity when

each LED has a 1/10 duty cycle)

The HEF4894B has certain features that make it well-suited for driving the LED segments. Firstly, it is a 12-
stage shift register which is really nice. Eight stages would have been too few, and 16 stages would have
seemed wasteful. Secondly, it is capable of sinking 40 mA per channel with a total power dissipation limit of
750 mW (see Figure 2 for limiting values). I am only using ten of the output pins, and each one is only sinking
30 mA at the moment. It would be nice in the future to allow manual control of the LEDs’ brightness, or to
enable the door widget to adjust the brightness automatically by detecting the amount of ambient light. I will
not have time to implement this feature by the end of the semester however.

The shift register takes commands through an SPI bus (timing diagram shown in Figure 3). Its pins are
connected as follows:

• STR (Strobe) – This pin synchronizes the data currently being held in the internal shift register portion

http://busybot.org/that
http://www.nxp.com/documents/data_sheet/HEF4894B.pdf
http://busybot.org/that/2010/04/21/shift-register-and-seven-segment-leds/
http://busybot.org/that/wp-content/uploads/2010/04/HEF4894B-3.png
http://busybot.org/that/wp-content/uploads/2010/04/HEF4894B-2.png
http://busybot.org/that/wp-content/uploads/2010/04/HEF4894B-1.png

with the storage register portion. It is connected to pin B3 on the microcontroller.
• D (Data) – This pin takes in serial data from the microcontroller representing the state of the QP1

through QP11 output pins. Because there are 12 outputs, two bytes must be sent to fully set the
outputs (MSB first). It is connected to pin B5 (MOSI) on the microcontroller.

• CP (Clock) – This is the serial clock and is connected to pin B7 (SCK) on the microcontroller.
• QP1 – QP11 – These are the parallel output pins and are connected to the gate pins of the MOSFETs.
• QS1 – QS2 (not used) – These are the serial out pins used for cascading multiple shift registers

together.

Here is an excerpt from sevenseg.c that demonstrates sending data to the shiftregister through the SPI bus
(light_up function) as well as the shift register initialization function (shiftreg_init) that appropriately sets up
the SPI control register (SPI interrupt enable, Master select).

volatile unsigned char current_display;
volatile unsigned char current_char[] = {16,16,16,16,16,16,16,16,16,16};

void light_next(void)
{
 if (current_display++ > 9) current_display = 0;

 light_up(current_display);

 return;
}

void light_up(unsigned char j)
{
 unsigned char lsb=0,msb=0;
 const prog_uint8_t* ch;
 ch = FONT_SEVEN_SEG + current_char[current_display];
 unsigned char b = pgm_read_byte(ch);

 switch (j)
 {
 case 0: lsb = (1<<0); break;
 case 1: lsb = (1<<1); break;
 case 2: lsb = (1<<2); break;
 case 3: lsb = (1<<3); break;
 case 4: lsb = (1<<4); break;
 case 5: lsb = (1<<5); break;
 case 6: lsb = (1<<6); break;
 case 7: lsb = (1<<7); break;
 case 8: msb = (1<<0); break;
 case 9: msb = (1<<1); break;
 default: lsb=0; msb=0;
 }

 // Turn off shift register outputs
 SR_OUTPUT_OFF;
 // Display is now off!
 // Set up port pins with correct outputs to display current digit
 SEGMENTS_OUT = b;
 //SEGMENTS_OUT = FONT_SEVEN_SEG[17];
 // Transfer new values to shift register
 bit_clr(SPSR, 7); // Clear SPI interrupt flag
 SPDR = msb; // Write out MSB to shift register
 // Wait for shift register to receive byte
 while(!(bit_get(SPSR,7))) { }
 SPDR = lsb; // Write out LSB to shift register
 // Wait for shift register to receive byte
 while(!(bit_get(SPSR,7))) { }
 // Shift-in values
 SR_STROBE_ON;
 SR_STROBE_OFF;
 // Turn on shift register outputs
 SR_OUTPUT_ON;
 // Display is now on (with new digit)

 return;
}

void shiftreg_init(void)
{
 SR_STROBE_OFF;
 SR_OUTPUT_OFF;
 // Set SPI control register appropriately (SPI interrupt enable, Master select)
 //SPCR = 0b01010011;
 SPCR = 0b01010000;
}

