Satellite and Inertial Attitude and Positioning System

A presentation by Dan Monroe and Luke Pfister Advised by Drs. In Soo Ahn and Yufeng Lu

Outline

- Project Introduction
- Theoretical Background
 - Inertial navigation
 - GPS navigation
 - Kalman filter
- Equipment List
- Progress
 - Results
 - Future Work
- Conclusion

• Goal

 Fuse a GPS and an Inertial Measurement Unit using a Kalman Filter

Significance

 The final system will have the same functionality and cost less than traditional Inertial Navigation Systems

- Global Positioning System (GPS)
 - Absolute position
 - Accurate, but slow and prone to loss of signal

- Inertial Measurement Unit (IMU)
 - Provides acceleration, angular rates, and magnetic readings
 - Can generate attitude and relative position using strapdown algorithm
 - Fast, but noisy measurements.

- MEMS IMU Advantages
 - Low cost

• MEMS IMU Drawbacks

- Bias value
- Bias drift
- White noise

Strapdown Solution

- Inertial Navigation System (INS)
 - Dead reckoning with inertial measurement unit (IMU)
 - Strapdown navigation
 - Closed loop controls and integrators

Strapdown Solution

Local tangent plane navigation

- GPS navigation
 - Trilateration with satellite messages
 - Timing ambiguity: need at least 4 satellites

Kalman Filter Sensor Error Estimates Initial Refined Inertial **Estimates** Solution Data + Strapdown Kalman IMU Solution Filter Observables Error GPS Reciever

- Optimal linear state estimator
- Estimates system states through noisy measurements
- Need: system model and signal models

• System Model

- Position (3)
- Velocity (3)
- Acceleration Bias (3)
- Quaternion (Attitude) (4)
- Angular Rates Bias (3)

Observables

- GPS ENU Position(3)
- GPS ENU Velocity(3)

- Signal Model
 - First Order Model (Gauss Markov)
 - Requires signal variance and autocorrelation time constant

- Extended Kalman filter
 - Linearizes about an operating point
 - Can be inaccurate for highly nonlinear systems

- Unscented Kalman filter
 - Generates a finite number of sigma points which have the same mean and variance as the input
 - Evaluates the nonlinear function only on the sigma points
 - Robust to high nonlinearity

D. Simon, Optimal State Estimation. Hoboken, NJ: John Wiley & Sons, 2006.

Equipment List

- Vector Nav VN-100
 - Three sets of MEMS sensors
 - Magnetometers
 - Gyroscopes
 - Accelerometers
- uBlox EVK-5T
 - LEA-5T GPS module
 - Accurate up to 2 meters RMS

• Experimental Setup

• Strapdown Solution and Linear Kalman Filter

• Unscented Kalman filter

• Error between GPS and UKF INS solution

	Position		Velocity		
GPS Interpolation	Mean	Std Dev	Mean	Std Dev	Velocity Observables
Not	0.2083	0.8222	0.1442	0.1411	With
Not	0.2015	0.4930	8.2015	4.2729	Without
Interp.	0.0050	0.0029	0.1133	0.0501	With
Interp.	0.1256	0.0671	8.1268	4.2731	Without

• State Covariance Matrices: Interpolated and Not

• Bias Estimation Results

GPS Outages

Future Work

- Error Models
 - Find better Gauss-Markov parameters
 - 2nd Order ARMA sensor model
 - Model lever-arm effect
 - Tightly coupled system
- Timing Synchronization
- Attitude Initialization
- Real-Time Hardware Implementation

Conclusions

- Developed system model (strapdown)
- Developed signal model
- Implemented linear and Unscented Kalman filter

References

- A. Waegli and J. Skaloud, "Optimization of two gps/mems-imu integration strategies with application to sports, GPS Solutions", Available: <u>http://dx.doi.org/10.1007/s10291-009-0124-5</u>.
- D.H. Titterton and J.L. Weston, "Strapdown Inertial Navigation Technology", 2nd Edition, The Institution of Electrical Engineers, 2004.
- C. Hide and T. Moore, "GPS and Low Cost INS Integration for Positioning in the Urban Environment", In Proceedings of the Institute of Navigation GNSS 2005, Long Beach, CA, September 2005.
- J.L. Crassidis, "Sigma-point Kalman filtering for integrated GPS and inertial navigation," IEEE Transactions on Aerospace and Electronic Systems, vol. 42, pp 750-755, Dec. 2006.
- D. Simon, "Optimal State Estimation," Hoboken, NJ: John Wiley & Sons, 2006.
- R. Brown and P. Hwang, "Introduction to Random Signals and Applied Kalman Filtering", New York City, NY: John Wiley & Sons, 1992.

- Gauss-Markov Process
 - Gaussian Distribution
 - Markov Process
 - Autocorrelation:

$$R_x(\tau) = \sigma^2 e^{-\alpha_{|\tau|}}$$

• PSD: $S_x(jw) = \frac{2\sigma^2\alpha}{\omega^2 + \alpha^2}$

- Modeling Process
- Remove mean
- Focus on a 'quiet' portion of data
- Separate into small segment of data
- Calculate the variance of each segment
- Use the mean variance and PSD to find time constant

State Equations

 $\dot{p} = v$ $\dot{v} = C(f - f_{bias}) - \begin{bmatrix} 0 & 0 & g(h, \lambda) \end{bmatrix}^{T}$ $\dot{f}_{bias} = diag(\alpha)f_{bias} + n_{f}$ $\dot{q} = \frac{1}{2}q \otimes p$ $\dot{\omega}_{bias} = diag(\beta)\omega_{bias} + n_{\omega}$

Interfacing Issues

Interfacing Issues

