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Project Introduction

• Goal

▫ Fuse a GPS and an Inertial Measurement Unit 
using a Kalman Filterusing a Kalman Filter

• Significance

▫ The final system will have the same functionality 
and cost less than traditional Inertial Navigation 
Systems



Project Introduction

• Global Positioning System (GPS)

▫ Absolute position

▫ Accurate, but slow and prone to loss of signal▫ Accurate, but slow and prone to loss of signal



Project Introduction

• Inertial Measurement Unit (IMU)
▫ Provides acceleration, angular rates, and magnetic 
readingsreadings

▫ Can generate attitude and relative position using 
strapdown algorithm

▫ Fast, but noisy measurements.



Project Introduction

• MEMS IMU Advantages

▫ Low cost

• MEMS IMU Drawbacks• MEMS IMU Drawbacks

▫ Bias value

▫ Bias drift

▫ White noise
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Strapdown Solution



Theoretical Background

• Inertial Navigation System (INS)

▫ Dead reckoning with inertial measurement unit 
(IMU)(IMU)

▫ Strapdown navigation

� Closed loop controls and integrators



Theoretical Background

• Strapdown Solution



Theoretical Background

• Local tangent plane navigation



Theoretical Background

• GPS navigation

▫ Trilateration with satellite messages

▫ Timing ambiguity: need at least 4 satellites▫ Timing ambiguity: need at least 4 satellites



Kalman Filter



Kalman Filter

• Optimal linear state estimator

• Estimates system states through noisy 
measurementsmeasurements

• Need:  system model and signal models



Kalman Filter

• System Model

▫ Position  (3)

▫ Velocity  (3)▫ Velocity  (3)

▫ Acceleration Bias (3)

▫ Quaternion (Attitude) (4)

▫ Angular Rates Bias (3)

• Observables

▫ GPS ENU Position(3)

▫ GPS ENU Velocity(3)



Kalman Filter

• Signal Model

▫ First Order Model (Gauss Markov)

▫ Requires signal variance and autocorrelation time ▫ Requires signal variance and autocorrelation time 
constant



Kalman Filter

• Extended Kalman filter

▫ Linearizes about an operating point

▫ Can be inaccurate for highly nonlinear systems▫ Can be inaccurate for highly nonlinear systems



Kalman Filter

• Unscented Kalman filter

▫ Generates a finite number of sigma points which 
have the same mean and variance as the inputhave the same mean and variance as the input

▫ Evaluates the nonlinear function only on the 
sigma points

▫ Robust to high nonlinearity



Kalman Filter

D. Simon, Optimal State Estimation. Hoboken, NJ: John Wiley & Sons, 2006.
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Equipment List

• Vector Nav VN-100

▫ Three sets of MEMS sensors

� Magnetometers� Magnetometers

� Gyroscopes

� Accelerometers

• uBlox EVK-5T

▫ LEA-5T GPS module

▫ Accurate up to 2 meters RMS



Experimental Results



Experimental Results

• Experimental Setup



Experimental Results

• Strapdown Solution and Linear Kalman Filter



Experimental Results

• Unscented Kalman filter



Experimental Results

• Error between GPS and UKF INS solution

Position VelocityPosition Velocity

GPS
Interpolation Mean Std Dev Mean Std Dev

Velocity
Observables

Not 0.2083 0.8222 0.1442 0.1411 With

Not 0.2015 0.4930 8.2015 4.2729 Without

Interp. 0.0050 0.0029 0.1133 0.0501 With 

Interp. 0.1256 0.0671 8.1268 4.2731 Without



Experimental Results

• State Covariance Matrices: Interpolated and Not



Experimental Results

• Bias Estimation Results



Experimental Results

• GPS Outages



Future Work

• Error Models

▫ Find better Gauss-Markov parameters

▫ 2nd Order ARMA sensor model▫ 2nd Order ARMA sensor model

▫ Model lever-arm effect

▫ Tightly coupled system

• Timing Synchronization

• Attitude Initialization

• Real-Time Hardware Implementation



Conclusions

• Developed system model (strapdown)

• Developed signal model

• Implemented linear and Unscented Kalman • Implemented linear and Unscented Kalman 
filter
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Kalman Filter

Form initial estimates of 

states and error covariances

Update Kalman Gain

Predict system states and 

error covariances

Take measurement and 

create refined state estimate

Use refined measurements to 

update error covariance

Generate Sigma Points



Kalman Filter



Sensor Modeling

▫ Gauss-Markov Process

� Gaussian Distribution

� Markov Process� Markov Process

� Autocorrelation: 

� PSD:



Sensor Modeling

• Modeling Process

▫ Remove mean

▫ Focus on a ‘quiet’ portion of data▫ Focus on a ‘quiet’ portion of data

▫ Separate into small segment of data

▫ Calculate the variance of each segment

▫ Use the mean variance and PSD to find time 
constant



Sensor Modeling
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State Equations



Interfacing Issues



Interfacing Issues


