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Inertial navigation systems (INS) can provide sensitive and
fast updates in real-time for precision navigation. Recent
advances in fabrication methods allow inertial sensors to
be built using micro electromechanical systems (MEMS)
which reduce the cost of an INS. A drawback of MEMS
sensors is that they are prone to significant sources of
error which include white noise and a random sensor bias.
These will cause a spinning motion in the processed
attitude information and an estimated position that
rapidly deviates from the vehicle’s true position. These
errors can be mitigated by combining INS and GPS
measurements with a Kalman filter.

Due to the nonlinearity of the INS error sources a
nonlinear Kalman filter must be employed. The goal of
this project is to implement and test an Unscented
Kalman filter (UKF) to achieve real-time estimates of the
position, velocity, and attitude of the vehicle.

The inertial system estimates its navigation solution with a dead-reckoning/control algorithm called the strapdown solution. The
algorithm is so-named because the inertial sensors are rigidly attached to the vehicle of interest so that the sensors and vehicle

experience identical forces and rotations. For intuitive simplicity, the solution is computed with respect to a local tangent plane to
the earth’s surface.
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The combined solution will be a closed-loop system. The
GPS and INS solution will be differenced, generating an
error signal. The error will be processed by the Kalman
filter to estimate the IMU biases so they can be corrected.

Overall System Block diagram

Sensor Error
Estimates

il Initial Refined

Inertial o |
IMU Data + Strapdown | —>" 2> ["Kalman |Solution
Solution > Filter
GPS Observables
Reciever
Data Collection System
Inertial

Measurement
Unit ;

Serial Data AATTAS 1)
Logger :
Processing
Global 1
Positioning
System

A statistical model of the inertial navigation system was created that allows the Kalman filter to estimate each inertial sensor’s
bias and noise in the system. Using this information, the filter can correct for these sources of error to produce more accurate
estimates of position and velocity
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Both sensors are connected to the laptop via USB cables. To take driving data, the sensors are securely placed in the vehicle
near the center of gravity. The GPS antenna is placed on the outside of the vehicle. In the future, a platform will be
constructed to hold the sensors.
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With much manual tuning, the linear Kalman filter can find a more accurate solution than the

standard INS, but the nonlinearity of the syster
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The unscented Kalman filter consistently finds an accurate estimate of the GPS solution for a
single parameter set. The position is accurate up to within a few millimeters of the GPS and the
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velocity is accurate up to just over 10 centimeters of the GPS velocity.
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