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Project Summary  

The Multi Robot Navigation and Mapping for Combat Environment project will safely 

enable a robot to navigate through an indoor or outdoor urban combat environment. The 

first robot, which would be inexpensive or expandable, will be in charge of mapping the 

environment and any obstacles or dangers. The second robot, which represents supply 

caravans or troops, will then use the map generated by the first robot and use a path 

finding algorithm to determine the best path through the environment that avoids all 

obstacles and threats. The overall goal of this project is to guide autonomous supply 

caravans or troops safely through a combat zone. 

 

Detailed Description 

The robots that will be used for this project are the Pioneer 3D-X series robots.  The 3D-

X model has 8 sonar sensors in the front and sides that can get readings from + 90 

degrees to -90 degrees.  It has two wheels up front that allow the robot to move in any 

direction and an additional wheel in the back for stability. Each robot is connected to a 

laptop via a USB port.  The laptop runs the actual C++ program (created in Visual 

Studio) that will control the robot.  A program called ARIA then interfaces the C++ 

program with the robot. Our program is divided into two modes, one for each robot. 

Mode 1 is responsible for mapping the unknown/combat environment and relaying that 

map to the server via a laptop with a wireless network connection.  Mode 2 is responsible 

for retrieving the map through a wireless laptop connection, and safely navigating 

through the environment.  Another PC is connected to the server in case manual override 

would ever be required.  Additional sensors (IR and metal detection) will be added later 

and connected to a Silicon labs 8051 microcontroller, which will then send the 

information to the ARIA program. 

 

Current Project Goals  

 Robot Navigating 

o Find and travel to closest wall/object 

o Position robot in a specific position to wall(s)/object(s) 

o Left/right wall following 

o Determine if sensors more accurate than sonar sensors will be 

necessary.  If so, integrate the sensors into ARIA if possible. 

o Identify appropriate sensors for combat-like environment. 

o Acquire and integrate sensors for simulated combat-alike environment 

(metal detector?) 

o Develop communication framework, allowing server/central command 

to override local control algorithms and remote control robot 

 Environment Mapping 

o Research and develop algorithms to map an unknown environment 
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o Research available ARIA or Pioneer robot compatible software for 

mapping 

o Develop framework to contribute maps to server/central command and 

update maps from the server 

o Research and develop algorithms to locate robot by matching its 

current map with the global map available on the server/central 

command 

 Other Tasks 

o Create digital maps of the real-life-alike environments for computer 

simulation 

o Setup the infrastructure server for multiple robot 

cooperation/coordination 

o Weekly website update on project progress 

 

  

Figure 1: High Level System Block Diagram 
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The high level system block diagram is divided into three main subsystems: mode 1, 

server, and mode 2.  The first subsystem is the mode 1 subsystem. This subsystem’s 

prime responsibility is to map an unknown/combat environment and send the map to a 

central server for storage.  The second subsystem is the server subsystem which receives 

and stores the map from mode 1.  When the map is completed, the server then sends that 

information to mode 2.  The last subsystem is the mode 2 subsystem, which reads the 

map sent from the server.  Based on the map received, mode 2 determines a safe route to 

the destination and then navigates through the environment.  These three subsystems are 

all explained in better detail in Figure 2.   

 

 

Figure 2: Subsystem Block Diagrams 
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Software 

Mode 1: Wall Following 

 
Mode 1, or wall following, was the first subsystem to be created for this project.  To start, 

we had the robot use all eight sonar sensors to find the closest wall within 180 degrees 

ahead.  The robot would then turn 180 degrees and scan again to see if there wasn’t a 

closer wall behind the robot.  Once the closest distance was recorded, the robot would 

turn in a counter-clockwise direction until the front two sonar sensors found the exact 

distance within plus or minus 2%.  When the robot was finished turning to the closest 

distance, it would then drive in that direction until the robot was within 600 millimeters 

of the wall.  At this point the robot would turn parallel to the wall and begin its wall 

following algorithm. 

 

 Dr. Malinowski required that our robot stay at least 600mm away from the wall to ensure 

accurate sonar sensor readings which would be needed to create an accurate map of the 

environment. Our first attempt at wall following just had the robot rotate itself a certain 

number of degrees based on how far away it was from the wall.  For example, if the robot 

was at 800mm at one point in time and 1100mm at another point in time, the robot would 

turn more at the 1100mm distance  to correct itself.  This code was all completed with a 

large amount of if and else if statements that used distance as a determining factor for 

how much to turn.  This code was later revised, and the 16 conditional statements were 

replaced with an error formula which can be seen below. 

 

error = (((xr90 + ideal_distance)/2)-xr90); 

if(xr50 <= (xr90+.3*xr90) && d_diff<50) angle_v=3; 

else if(xr50 >= (xr90+.3*xr90) && d_diff>-50) angle_v=-3; 

else if (error > 100){ 

angle_v = .025 * error; 

slow_speed = .75 *speed; 

} 

else { 

angle_v = .025 *error; 

slow_speed = speed; 

} 

 

The first line in the formula determines the error which is related to how far away the 

robot is from its desired location of 600mm from the wall.  The second and third lines 

check the sonar sensors at 90 degrees and 50 degrees and compares their values to one 

another.  These lines were necessary to prevent the robot from over-correcting itself on 

faster turns which would cause a great deal of oscillation along the wall.  Angle_v was 

the angle velocity of the robot which determined how fast the robot would turn.  The 

error would be multiplied by a constant (.025) to set the speed that the robot should turn.  

This effectively implemented proportional control on the robot.  Also, if the error was 
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greater than 100, the robot slowed down to 75% of its normal speed to help prevent over-

correction.  In the case where the 90 degree sensor didn’t detect a wall or was too far 

away from the wall it was following, the robot would turn 90 degrees over a period of 3 

seconds and then head straight for 2 seconds unless a wall was up ahead in which case it 

would turn and face parallel to the wall.  This allowed the robot to turn into other rooms 

and to correct itself with very little oscillation if for some reason it got too far away from 

a wall (ex. wall suddenly drops off).  A picture of an environment mapped with this 

algorithm can be found in figure 3.  Note that on the map, blue represents the robot trail, 

green represents an area the robot hasn't been before but because of the sonar sensor 

readings it is known to be clear, orange represents obstacles, and black is an unknown 

area. 

 

Figure 3: Initial Wall Following 

 

 
 

 One of the problems with the map shown in figure 4 is how the wall following algorithm 

handles  ramps or slight depressions from the wall.  If a ramp or temporary depression 

occurs, the robot oscillates for a while until it can eventually reach stability provided it is 

traveling along a straight wall.  Up to this point, most of our environments were 

rectangular with straight lines and very few slopes (as in figure 3).  Our current wall 

following algorithm could handle straight lines and turns well, but it would oscillate more 

on slopes which would make our map of the environment less accurate. 

 

In order for our robot to safely map more complex environments, our wall following 

algorithm had to be improved to better handle slopes and wall depressions. The improved 

wall following algorithm that we implemented was developed by Mike Mensinger for Dr. 

Malinowski’s robotic navigation course.  The new algorithm was basically derived from 

figure 4 which uses the law of sines and cosines to determine the angle A, the robot needs 

to turn to position itself parallel with the wall.   
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Figure 4: Robot Trigonometry 

 

 

 

In figure 4, variables a and b were replaced with the robot's 90 degree and 50 degree 

sensors.  The necessary angle to turn was then calculated in figure 5 below.  Turnang 

(turn angle) was then set to 50 - turnang to place the robot parallel with the wall.  The 

angle velocity of the robot (how much to turn) was then set to negative turnang plus 1.  

The negative part was added because the robot software has the x-plane in the reverse 

direction.  Plus 1 was added through experimentation since it appeared to make the robot 

more stable. 

  

Figure 5: Final Wall Following Algorithm 

 
The maps in figure 6 were used as a test course for the two wall following algorithms to 

prove that the newly designed algorithm was better at navigating through non-standard 

environments.  In figure 6, the map on the left hand side demonstrates the initial wall 

following algorithm, while the map on the right shows the newly developed algorithm.  

In areas where the angle of the slope is high, the initial wall following algorithm will over 

correct itself and take longer to stabilize as opposed to the new method.   
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Figure 6: Initial and Final Wall Following 

 

 

 

After the wall following algorithm was optimized, the interior of the environment needed 

to be mapped.  While the robot was mapping the parameter of the environment, it would 

check to see if it's ever been at its current location before.  If the robot detects its already 

been at a certain location before (meaning it reached its start point again), the robot 

would then randomly navigate the rest of the environment unless it runs into an unknown 

obstacle.  If this occurs, the robot will navigate around the obstacle and then randomly 

navigate throughout the environment again once it is finished mapping the obstacle.  To 

test this process out, we ran the robot during the night and generated the map seen in 

figure 7. 

 

Figure 7: Environment Completely Mapped 

 

 

 



9 | P a g e  

 

In figure 7, the a complete map of the environment can be seen including obstacles not on 

the parameter.  Overtime the map becomes distorted or rotated due to wheel slippage 

since the robot only determines its current location based off its onboard odometer.   

 

Mode 2: Path Planning 
 

For mode 2, we developed two path planning methods for navigating to a destination 

while avoiding all obstacles.  The first method that was developed was the grassfire 

technique which when given a complete map of the environment, can guarantee the 

shortest trajectory to the goal point. 

 

With the grassfire technique, the goal position is the lowest number with wavefront 

expansion from the goal position outward.   This wavefront expansion marks on each cell 

its distance to the goal.  For a true grassfire technique, this process would continue until 

the starting position was reached.  However, for this project, every cell is numbered even 

after the starting point has been reached.  From the starting point, the robot will then 

continue to go to the next lowest numbered cell until the goal position is reached.  

Obstacles are set to a value of 32,000 to ensure they will never be the next lowest cell and 

therefore will always be avoided.  See figure 8 below for an example of how the grassfire 

technique works. 

 

Figure 8: Sample Grassfire Approach 

 
 

Note: for this project we modified the grassfire technique from the picture above and 

changed the goal coordinate to a 1 value, and unreachable areas to a 0 zero value.   

 

To test the newly developed grassfire path planning technique, we created a test course 

on an environment where we had completely mapped the parameter and all obstacles in 

the interior.  Figure 9 shows the test course we created.   
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Figure 9: Grassfire Test Course 

 

 
 

The grassfire algorithm would have to navigate to each of the numbered destinations 

starting from the start point and then finishing back at point 7 (start point).  With the way 

the grassfire technique is currently setup, the robot will go to its first destination 

(destination 1) and stop within four cells of the actual goal point.  There it will wait for 

the user to enter in the next coordinates.  Figure 10 shows the generated map from the 

simulation we ran on the test course. 

 

Figure 10: Grassfire Path Planning 

 
 

From figure 10 above, it is clearly evident that the robot traveled to each destination in 

the shortest distance possible without crashing into any obstacles.  It also returned to its 

origin and awaited there for further instruction. 

 

It's worth pointing out that the grassfire technique was used for this project because of the 

relatively low computational complexity of path planning compared to other methods.  

The main disadvantage of this method is the amount of memory that is used to create and 

store the grid.  For large environments, the grid must be represented in its entirety.  

However, due to the falling prices of computer memory, this isn’t really a concern for our 

project. 
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The second path planning technique that we developed for this project was the potential 

field algorithm.  With potential field path planning, you have attractive forces such as a 

goal point, and repulsive forces such as objects.  The attractive force equation used for 

this project was found in the course book, “Introduction to Autonomous Mobile Robots” 

as shown in figure 11. Katr is a positive scaling factor and x-xgoal and y-ygoal are the x 

and y distances from the robot to the goal point.   

 

The repulsive force equation was also found in our book, but wasn't derived with respect 

to x and y like the attractive force equations were.  This derivation is necessary since our 

robot is operating in the x and y plane and needs attractive and repulsive forces from both 

x and y directions to correctly navigate.  We went ahead and derived the repulsive 

equation in MatLab with respect to x and y and obtained the repulsive force equations 

shown in figure 11.  In figure 11, krep is a scaling factor and dist is the distance from the 

robot to the obstacle defined as dist=sqrt((x-xo)^2+(y-yo)^2).  Here, xo and yo are the 

coordinates of the robot and x and y are the coordinates of the obstacle.  Minus Rradius 

(robot radius) was later added to increase the distance of the repulsive force to decrease 

the chance of the robot crashing into an unknown obstacle or wall. 

 

Figure 11: Potential Field Forces 

 

 

 
With the potential field equations in place, we ran a simulation where we set a goal point 

that had a single obstacle in the way (see figure 12).  From the map shown in figure 12, 

you can clearly see that the robot is attracted to the goal coordinate and then is 

immediately repulsed once it detects an obstacle in the way with the sonar sensors.  

However, once the robot navigates around the obstacle, it then reaches its destination and 

stops. 
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Figure 12: Potential Field Working 

 

 
 

Even though the results in figure 12 look promising, one of the largest drawbacks of 

potential field path planning is the occurrence of local minimas which appear when 

multiple repulsive forces neutralize the attractive forces, causing the robot to either come 

to a standstill or circle indefinitely in a certain region (see figure 13).  When a robot 

reaches a local minima, it’s attractive forces are reduced to zero, giving the appearance 

that it has reached the lowest part on the map (goal).  For this project, to determine 

whether the robot was trapped in a local minima, we relied on the odometry of the robot 

as well as its current speed which we denoted as velocity coefficient.  Once detected, we 

then temporarily deploy our grassfire technique to extract the robot from the local 

minima. 

Figure 13: Local Minima 

 

 
 

To detect whether the robot is in a local minima as opposed to the goal, we check the 

robot’s current velocity coefficient and compare that with its current destination value.  If 

the velocity coefficient is less than four, meaning it has slowed down considerably, and 

the odometer on the robot verified it hadn’t reached its goal yet, then a local minima had 
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been detected.  Also, in the case where the robot doesn’t slow down, and continues to 

loop in a circle indefinitely, we would check the odometer on the robot to determine 

whether the robot was making progress towards the goal.  We created a counter called 

old_value that would return to zero if the robot had traveled a certain distance to the goal.  

If for twenty five consecutive times the current distance value of the robot is greater than 

or equal to old_value minus ten or less than or equal to old_value plus ten, then a local 

minima has been detected.  We also added a condition where the velocity coefficient has 

to be above five, so that when the robot is closer to the actual goal and slows down 

considerably, the robot won’t think it is in a local minima since it hasn’t moved far in the 

last twenty five cycles. 

 

After a local minima is detected, we would switch all control of the robot over to the 

grassfire approach.  With the grassfire approach deployed, the robot would be able to 

navigate out of the local minima regardless whether or not a complete global map of the 

environment was provided.  While the grassfire approach is running, we also run the 

potential field technique in the background since the grassfire approach can’t determine 

when it has exited a local minima.  When the potential field has determined that for thirty 

consecutive cycles it has continued to get closer to the goal, the grassfire approach exits 

and all control is returned back to the potential field technique.  From here on out the 

potential field path planning technique will continue to the goal unless another local 

minima is detected in which case the entire process will start all over again.  In figure 14, 

the robot escapes from the first local minima depicted in figure 13, and then enters and 

leaves another local minima before reaching its destination. 

 

Figure 14: Local Minima Correction 

 

 
 

With the potential field and grassfire techniques both fully operational, it's worth pointing 

out why we decided to implement them both into this project as opposed to just sticking 

with one.  The grassfire technique works best in a situation where you have a complete 

map of the environment with no or very little changes occurring in real time.  With a 

complete map the grassfire approach will always guarantee the fastest time to the goal 
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point since it will take the shortest path possible.  However, if a complete map of the 

environment is not available, anytime the robot encounters an unknown obstacle, it will 

have to recompute the entire map at every unknown point along that obstacle until it 

eventually passes the obstacle. 

 

The potential field technique, on the other hand, doesn't read a map of the environment 

but instead calculates forces on the fly whenever the sonar sensors pick up obstacles 

along the way.  The potential field in most cases won't take the shortest trajectory, but it 

will usually reach a given destination faster than the grassfire approach if a map of the 

environment isn't given or is incomplete.  The potential field technique is also faster at 

maneuvering around obstacles that suddenly appear in the robot's trajectory.   

 

Overall, both path planning techniques have their advantages and disadvantages.  We 

decided to keep both techniques for this project because depending on the situation, one 

technique will have a clear advantage over the other.  Since this robot is designed to be as 

safe and efficient as possible, multiple path planning options is a necessity for this 

project. 

 

 

Server/Central Command: 

 
The last software subsystem that was created for this project was the server 

framework/central command.  This framework allows to setup a centralized server where 

one robot could scan an environment and create a map, while another robot could then 

use that map to safely navigate to a destination within that same environment.  In setting 

up the server we used Dr. Malinowski's initial multicast framework program as a base 

and added options and features on top of that. 

 

The server is able to view all the robots connected to its network and their current status 

which consists of x, y, and theta coordinates and how many seconds it has been since the 

last good connection.  The server can save the map at any time by simply typing the word 

"save" into the terminal.  The server also has a control mode with five basic options: map 

environment (wall following), path planning (choose grassfire or potential field), manual 

override (joystick), random movement, and quit.  With the implementation of the server 

framework came a change in the startup process of a robot.  From now own, anytime a 

robot is turned on, it asks for the robot ID (any name without spaces) that the server can 

use to identify the robot.  The server will then use that robot ID when sending various 

control commands.   

 

Any control mode command can be turned on by typing "m robotID mode_number."  

The joystick program was created by Dr. Malinowski and runs in its own thread.  To 

active the joystick program turn the joystick on (j robotID) and then run its control 

command (m robotID mode_number_for_joystick).  The other control commands work 

in the same way except they don't need to be turned on since they don't run in a separate 

thread.   
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When using one the of the path planning techniques, the coordinates have to be entered 

first or else the robot will just travel to its starting point.  To set a goal coordinate, type 

the following command: "g x_coordinate y_coordinate theta_coordinate."  Once the 

coordinate is set, a user could even manually switch in between the two modes halfway 

through the travel, and it will still reach its destination.  An example of the server in 

operation can be found in figure 15.   

 

 

Figure 15: Server/Central Command 

 

 
 

In figure 15, the window on the left is the server running which is currently listing the x, 

y, and theta coordinates of the robot was well as the last time the robot was active (0 

means that robot has always been active).  The windows on the right show the robot 

performing mode 1 wall following which the server executed with the following 

command: "m robotID mode1_number." 

 

With the server infrastructure setup, the software subsystems portion of this project is 

now complete.  

 

Hardware 

Metal Detectors: 
 

 

The first part of the hardware for this project was building the metal detectors. The metal 

detectors arrived as kits, and needed to be soldered. The initial metal detector schematic 

depicted in figure 16, shows that the detectors run off of a 9 volt source. Circuit analysis 
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was employed to change the circuit to running off of a 5 volt source as shown on figure 

17. An optical isolator was also added to the circuit, giving the microcontroller protection 

from any possible issues emanating from the metal detectors. 

 

Figure 16: Initial Metal Detector Schematic 

 

 
 

Figure 17: Modified Metal Detector Schematic 
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Infrared Sensors: 

 
The robot has a total of 14 IR sensors mounted, 7 digital bump sensors, and 7 analog 

distance sensors. Figure 18 below shows the interfacing of both sensors to the 

microcontroller. For the analog sensors, a 10K resistor was placed between the sensor 

and the microcontroller A/D. This was added just for extra protection for the board.  

As for the digital sensors, their output was sent to the LM311 comparator which placed 

the voltage in the right range, and acted as a bump sensor. The distance chosen was 4 

inches, but this distance can be edited by simply changing the resistor values. 

 

Figure 18: IR Sensors Integration 

 

 
 

 

 

Voltage Regulator: 

 
All of the hardware that was installed on the robot was designed to run on a 5V source. 

The internal battery on the robot is a 12V source, which needed to be regulated to 5V. 

The LM2576 Switching Regulator steps down the voltage from 12V to 5V and has a limit 

of a 3A current. Figure 19 depicts the regulator used for the robot. This regulator can also 

be adjusted to output values other than 5V, by modifying the resistor values VR-R1 and 

VR-R2. 
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Figure 19: Voltage Regulator 
 

 

 
 

 

Completed Circuitry: 
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Metal Detector Holder: 

 

 
 
Results/Conclusions 

All three subsystems (mode 1, mode 2, and server) for this project are complete.  The 

robot can successfully map an environment using mode 1 wall following and navigate to 

a given destination within the environment using the path planning techniques provided 

in mode 2.  The server infrastructure is also successfully setup and the server has 

complete control of all the robots operating on its network.  All of the hardware and 

circuitry for the metal detectors, IR sensors and voltage regulator has been completed. 

The software for integration of the metal detectors and IR sensors to the robot is 

approximately 70% complete. 
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Equipment List 

 
 Pioneer 3D-X 

 Metal detector – Electronics123.com Product #  Velleman K7102  

 IR sensors - Sharp GP2Y0A02YK0F 

 LM2576 Voltage Regulator 

 Force Feedback Joystick 

 Silicon Labs 80C51F120 + UART/USB adaptor  

 Space in Jobst as testing environment 

 
 


