

USB Virtual Reality HID

Final Report

Students:

Weston Taylor

&

Christopher Budzynski

Project Advisor:

Dr. Malinowski

May 11, 2009

USB HID
P a g e | 1

ABSTRACT
Modern video game controllers for the Nintendo Wii and PlayStation 3 use MEMS sensors for

motion sensing. However, these controllers sense only basic and simplified motions and many

users are not satisfied with them and desire more realism. The purpose of this project is to create

a USB Human Interface Device (HID) motion sensing controller using low-cost MEMS inertial

sensors. The primary goal is to show that MEMS inertial sensors are capable of supplying

sufficient position data to provide a complex interactive experience.

The USB HID controller interfaces with a personal computer and its programs by emulating a

USB gamepad. The HID handheld device translates user movements into on-screen actions to

provide a realistic and lifelike interactive platform for PC games and other virtual

environments. This project shows that MEMS inertial sensors are capable of providing accurate

position data suitable for a complex interactive experience. However, it also shows that the

abundance of software layers inherent to the USB protocol can cause interpretation problems

when sending the position to the PC. In order to fully utilize the inertial sensors’ position data,

the software must be written to accept absolute position data from the controller.

USB HID
P a g e | 2

TABLE OF CONTENTS

ABSTRACT ... 1

INTRODUCTION... 3

GOALS... 3

PREVIOUS WORK .. 3

FUNDAMENTAL ANALYSIS .. 4

SYSTEM DESCRIPTION ... 5

System Requirements.. 5

System Block Diagram ... 5

CONTROLLER / INERTIAL SUBSYSTEM .. 7

Our MEMS Sensors .. 7

Inertial Sensor Problems and Solutions .. 7

POSITION CALCULATION .. 9

Calculation Theory.. 9

Feedback Theory ... 10

Position Calculation in Software .. 10

USB SUBSYSTEM.. 13

Basics .. 13

Problems ... 13

Software .. 14

WIRELESS (ZIGBEE) ... 15

ANALYSIS OF RESULTS... 16

CONCLUSION ... 16

REFERENCES .. 17

APPENDIX A: EQUIPMENT LIST ... 18

APPENDIX B: HARDWARE SCHEMATICS .. 19

APPENDIX C: REPORT DESCRIPTOR .. 20

USB HID
P a g e | 3

INTRODUCTION
Motion sensing is an important and developing sector of the electrical engineering industry.

Microelectromechanical system (MEMS) and other motion sensing devices are being used in the

medical rehabilitation of partially paralyzed patients, in vehicles to deploy airbags and detect

vehicle rollover, in industrial equipment for balance monitoring, and in motion sensing video

game controllers. All of these applications use cost-effective MEMS inertial sensors to detect

simple and uncomplicated motions, but some systems use expensive and more accurate inertial

navigation sensors to sense absolute position and complex motions. Inertial navigation units

(INU), which use costly and extremely accurate inertial sensors, are used in civilian and military

aircraft to help stabilization and control during flight. The military also uses them to control

missiles and provide more accurate GPS locations for its vehicles.

Currently, the video game industry is moving towards providing users with an increased level of

realism and interaction with their virtual environments by providing motion sensing capable

controllers. However, only basic motion sensing is provided. For example, the Wii controller

cannot detect the difference between a swift flick of the wrist and a full baseball swing, and this

disappoints many users who desire a realistic experience. Much research has been dedicated to

investigating whether MEMS devices are capable of providing this increased realism at a

practical and affordable cost.

GOALS
The overall goal is to use low-cost MEMS inertial sensors to translate user movements into on-

screen actions to provide a more realistic in-game experience for the user. Here are our sub-

goals to help us attain our overall goal:

 Translate inertial sensor readings into a 3-D position.

 Send 3-D position to PC using USB, emulating a USB gamepad.

 Process data and USB communication using low-cost 8-bit embedded systems.

 All embedded programming done using the C programming language, to provide

portability and reusability of code.

 Establish wireless communication between subsystems (ZigBee, Bluetooth, etc.).

PREVIOUS WORK
Figure 1, next page, lists the patents and standards that are applicable to the design of the final

product. No patent was found that exactly matched this project’s proposed system design but

there are multiple patents on similar motion sensing controllers. However, no patent seemed to

restrict the final design of our project if it were to become a consumer product after further

development. The standards that are listed correspond to the proposed standardized

communications protocols that will be utilized in the final design.

USB HID
P a g e | 4

Patent/Standard Number Patent/Standard Description

USB 2.0 Universal Serial Bus (www.usb.org)

IEEE 802.15.4 ZigBee Wireless Network Protocol

US Patent 5139261 Foot-actuated computer game controller serving as a joystick

US Patent 6545661
Video game system having a control unit with an
accelerometer for controlling a video game

US Patent 4514600 Video game hand controller

US Patent 6902483 Handheld electronic game device having the shape of a gun

11/313,050 (application
number) Advanced video controller system

Figure 1: Related Patents and Standards

FUNDAMENTAL ANALYSIS
This project’s motion sensing HID is essentially a stationary Inertial Navigation System (INS).

An INS is a computer based platform that uses motion-sensing devices to continuously calculate

velocity and position by integrating the data received from the motion sensors. For our

stationary platform, no linear accelerations will need to be integrated because the user’s position

is assumed to be a fixed location. However, angular accelerations such as pitch and yaw will be

very important to the on-screen pointer location. Since gyroscopes measure angular acceleration,

a 2-axis gyroscope will be used to measure the pitch and yaw of the HID controller system (roll

will be ignored in this project).

Figure 2: Rotational Axes

Source: Wikipedia [2]

Gyroscopes measure angular acceleration in degrees/second, so in order to find information

about the system’s angular position the data must be integrated once. This integration will

introduce integration drift, which means that small errors in the measurement of angular

acceleration will accumulate over time and eventually compound into a large error in position.

This position measuring technique is open loop (no position feedback) and the loop must be

closed through some sort of augmentation to compensate for the accumulated error. Since our

inertial system is operating around a fixed equilibrium position, the linear acceleration

components are not being used. This means that true angular measurements can be made using a

USB HID
P a g e | 5

2-axis accelerometer (when the system is relatively stable) which can be used to close the loop

and compensate for drift on the pitch axis. This technique cannot be used for the yaw axis

because it is parallel to the acceleration vector of gravity of the reference system. So in order to

make the yaw axis’ position measuring system closed loop, we will use an electronic compass

that provides absolute heading information. If the compass is not tilt compensated, then yaw

axis drift can only be corrected when the HID controller is relatively level in the reference

system (parallel to the floor).

Finally, in order to measure angles relative to the reference system (the earth’s surface), the

gyroscope data must be mathematically transformed from the controller’s co-ordinate system to

the earth’s three dimensional reference co-ordinate system. This will involve trigonometric

functions and math intensive routines. However, if the roll axis is ignored then the only axis that

needs to be transformed is the yaw axis (note: this is a valid assumption because almost all

games ignore the roll axis). For example, when the controller is not completely level (has some

pitch angle), the yaw axis gyroscope will no longer read the full yaw component. The yaw

component is now [yaw / cos(pitch angle)].

SYSTEM DESCRIPTION
This section introduces our system and some of the essential design requirements that we

developed.

System Requirements
The first step in the design process was to determine what restrictions and designs limitations we

needed to fill. We ran a few experiments to find a human’s maximum movement velocity. First,

we moved our arms through 90° and 180° without weight or hindrance. We found we could

move around 350°/s to 400°/s. When we held something comparable to the controller, we found

our speed decreased to about 300°/s. Another concern was the position calculation time of the

system. Human reaction time is around 100 ms (10 Hz) so in order to ensure that all movements

are captured and no lag occurred between user movement and screen position movement, we

needed a system that calculated position at least every 10 Hz. Another consideration we took

into account was the average screen refresh rate of video games. Most monitors and televisions

refresh at 60 – 80 Hz; therefore, to ensure that our position calculation was current, we wanted to

update it at least once for every 80Hz screen refresh (every 12.5ms).

Here is a short list of the system requirements outlined above:

- Inertial sensors must measure up to 400°/s without saturating.

- Position calculation must be faster than the human reaction time (100ms, 10Hz).

- Position calculation and transmission to the PC over USB must be faster than monitor

refresh rates (80Hz, 12.5ms).

System Block Diagram
Our project consists of two main subsystems. The first subsystem is the handheld controller

which translates the user’s movements into a 3-D position. The second subsystem is the USB

communication board which sends the position to the host PC. See Figure 3, on the next page,

for a basic representation of how data flows through our system.

USB HID
P a g e | 6

Handheld Device

Human

Movement

Analog DataAnalog Data

Analog DataI2C Data

Serial Data

USB Device

Analog DataSerial Data

Wireless

ZigBee

(Send Position)

Personal

Computer

USB

Communication

(Send Position)

C8051F120

5DOF

Compass

ZigBee

ZigBee

PIC18F14K50

Figure 3: System Block Diagram

The handheld controller takes human movements as an input. The 5DOF inertial sensor (which

has a 2-axis gyroscope and a 3-axis accelerometer) and the electronic compass convert those

movements into analog / I2C signals for the Silicon Lab’s C8051F120’s 8-bit microcontroller.

The F120 converts the signals into a 3-D angular position and then sends this position to the

USB board using serial UART communication. The ZigBee chips convert UART serial

transmissions into the ZigBee protocol for easy wireless implementations.

USB communication with the host PC was established using Microchip’s LPC USB

Development Kit. This board receives the position data from the handheld controller subsystem

as UART data from the ZigBee chip, and translates it into data that is compatible with the USB

protocol. Finally, it sends the position over USB when it is polled by the host PC.

USB HID
P a g e | 7

CONTROLLER / INERTIAL SUBSYSTEM
The inertial subsystem is the actual handheld controller that the user manipulates to interact with

the game. In this section, we will outline the sensors that we chose and the problems they

presented.

Our MEMS Sensors
The final sensor we chose was the IMU 5 Degrees of Freedom from www.sparkfun.com. This

sensor came prepackaged with a 2-axis gyroscope (no roll) and a 3-axis accelerometer. The

gyroscopes can measure up to 500°/s, which is high enough to measure any movement the

controller would experience and small enough that high resolution was available. The 3-axis

accelerometer can measure ± 3g, which is sufficient because it only needs to be able to measure

gravity (up to 1g) on two of the axes (just used to calculate pitch). Both the gyroscope and the

accelerometer had analog outputs with low pass filters already soldered to their output pins.

We did not get the electronic compass working for yaw feedback, but we chose the HMC6352 a

cheap electronic compass. It has a 20Hz update rate and communicates using the I2C protocol.

It was not tilt compensated so we were unable to use it while the system was not level.

Inertial Sensor Problems and Solutions
While selecting our sensors, we found several projects that used similar technology, and they

warned about some common problems associated with MEMS gyroscopes and accelerometers.

The three major problems were variations in sensor rate scales, high frequency noise, and offset

voltage fluctuations (leading to drift).

The first problem we encountered was variations in sensor rate scales from what the datasheet

listed. Scale factor variation was an issue in the gyroscopes because the positive and negative

axes read different voltages for the same rotational velocity. These variations lead to an

accumulation of error in our position calculation, but only while the sensor was moving. If the

sensor was not moving, then scale factor variations did not cause any drift error. In the end, we

decided to use what the datasheet listed for the scales and provided position feedback methods to

get rid of the accumulated position error.

The second problem was the large noise to signal ratio involved in angular rate sensors. It was

suggested that a 100 Hz low pass filter be applied to the analog output to remove noise yet still

allow information into the system. Our final sensor package included a pre-designed 80 Hz low-

pass filter (LPF) on the gyroscope outputs and a 500 Hz LPF on the accelerometer outputs.

These filters eliminated our system’s high frequency noise problem. Figure 4, next page, shows

the raw analog signal that the F120 was receiving from a stationary gyroscope (after the LPF).

The signal is still fairly noisy and it has a voltage offset of about 1954 A/D steps.

USB HID
P a g e | 8

Figure 4: Raw Sensor Data

The final problem was offset, zero-rate, voltage fluctuations that caused the center voltage to

vary even if the sensor was not moving. Offset variations caused drift problems for both our

gyroscopes and accelerometers. Our solution was to create calibration routines for each axis that

accounted for individual variations by taking a 1024 sample average. We also used an adaptive

filter that accounted for long term changes in the sensors’ zero-rate voltage by computing a

running average. The results can be seen in Figure 5 below.

Figure 5: Sensor Data after Calibration and Adaptive Zero-Rate

0 1 2 3 4 5 6 7 8 9 10
1950

1951

1952

1953

1954

1955

1956

1957

1958

Time (s)

A
/D

 s
te

p
s

Raw Data

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

1

2

3

Time (s)

A
/D

 s
te

p
s

After Moving Average

USB HID
P a g e | 9

From Figure 5, we see that the offset is now gone, but the signal is still fairly noisy which would

lead to position drift error over time if the data was integrated. To eliminate a majority of this

noise, a window filter was used that ignored all data with an amplitude of less than 3 A/D steps,

which is equivalent to ±1.6mV or ±0.8°/sec. The signal after the window filter can be seen in

Figure 6 below. The signal is now extremely clean and only leads to a drift of approximately 0.1

degrees over the 10 second interval shown.

Figure 6: Sensor Data after Window Filter

POSITION CALCULATION
One of the most important goals of the project was to calculate a position in 3-D space using our

MEMS inertial sensors.

Calculation Theory
For our design, we decided to calculate the absolute position of the controller, because it would

allow the game to position the cursor exactly where the player aimed the controller. Since video

games only allow the user to move the cursor in two directions, pitch and yaw, we only needed

to calculate two absolute position angles. Gyroscopes are designed to measure rotational

velocity, but we need to calculate our angular position. To do this, we needed to perform an

integration on the velocity data measured by the sensor. We analyzed several approaches to

taking a software integration. Initially, we looked at the different z-transforms of a mathematical

integration. Next, we looked at the mathematical proofs and discrete representations for

integrations. Eventually, we decided to use the Backward Rectangular Rule (Figure 7 next page)

because it provided the simplest equation. Our equation approximates an integration by

summing the rate data divided by the time interval between measurements. This equation is

widely used in control applications, and the other more complex equations did not add any extra

capabilities to our design.

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

1

2

3

Time (s)

A
/D

 s
te

p
s

After Window Filter

USB HID
P a g e | 10

Figure 7: Backward Rectangular Rule

Source: www.control.aau.dk/~jsat/Teaching/AnaDig1/AnaDig1mm3.ppt

Feedback Theory
Our gyroscopes accurately calculated position from the controller’s movement, but because the

noise was accumulated in our summation alongside the pure data, our position drifted slowly

over time even while the sensor was at rest. To fix this problem, we needed to find a way to

calculate our angular position that did not rely on angular velocity information from the

gyroscopes. We needed a method to determine absolute pitch and yaw angles using forces that

were external to our system. For pitch we decided to use Earth's gravity as a constant, and for

yaw we used Earth’s magnetic field. Accelerometers are capable of measuring an absolute pitch

angle when a system is at rest, because it can measure how gravity is affecting its axes.

Therefore, we used two axes of an accelerometer to calculate an absolute pitch angle with an arc

tangent function. For yaw we used a compass, which would read exactly where the controller

was aimed, and could correct the position. However, the compass readings could only be used if

the system was relatively level, parallel with the earth’s surface.

Position Calculation in Software
We decided to write all of our embedded software in C for clarity and portability of code. Our

sensor platform had two main sections of code; the first was serial communication with the USB

microprocessor, and the other was the 12-bit analog-to-digital converter (A/D) interrupt. We

also had to calculate constants and conversion factors in order to be able to perform the software

integrations. The actual code is not shown below, but we provided all of the code on a CDROM

submitted with the report.

Main Function Loop

Figure 8, on the next page, shows the flowchart for the main() function loop. The program starts

with its initialization routines. Next, the program checks for a flag that is set inside the interrupt

that indicates when all sensors have been read and the position calculation has been completed.

If the flag is set, the position data is converted to its ASCII equivalent and placed in the UART

buffer to be sent to the USB board. Interrupts are disabled for a short period of time while the

data is being collated to ensure that all the data is from one position calculation instead of two

separate ones. The program then sends the data over UART and waits until the next position

calculation is complete.

USB HID
P a g e | 11

Program Start

Initialize System

Turn on ADC0

Turn on UART 1

Has position data

been updated

Send data to PIC

development

board

Update UART

Stack
Disable interrupts

Re-enable

interrupts

Yes

No

Figure 8: Main Loop Flowchart

A/D Interrupt

The A/D interrupt routine contains all of our calculations for position as well as our feedback

error corrections. The 12-bit A/D on the Silicon Lab’s F120 board has 8 analog inputs, and we

used four of them by continuously switching between channels on every interrupt. The interrupt

routine runs at 800 Hz, but only one channel is collected each time so all of the sensor data is

collected and the position is calculated at 200 Hz (every 5ms).

The design of the A/D interrupt was complex because we had to ensure that the data was

collected in the correct order so that all functions had the proper data to complete calculations.

Figure 9, on the next page, is the flowchart for our A/D interrupt routine. The first data collected

was gyroscope data, specifically pitch, so subsequent functions would be able to use pitch

position data to fix yaw frame of reference. The second data collected was accelerometer and

compass information for feedback. The data from the accelerometers is saved until the next

cycle. After all the data is collected, the program checks if the controller was still for 10 cycles.

If so, the newest accelerometer and compass data is collected and used to correct the drift error

that the gyroscope data has accumulated. Once all the data is collected and the position is

calculated, the program exits the interrupt and returns to the main module.

USB HID
P a g e | 12

ADC0 Interrupt

Start

Obtain Gyro Data

Calculate new

position

Has controller been

still for 10 cycles

Obtain data from

Accelerometers

and compass

Update Position

data from

feedback

Set flag for main

program

Yes

No

Exit Interrupt

Figure 9: A/D Interrupt Flowchart

Software Integration

To use the gyroscopes properly and calculate a position we needed to find two calculations. The

first was the constant used to convert from sensor voltage to º/sec/step. Figure 10 below shows

the constants we combined to find the proper conversion factor. On the left is the conversion

from the 12-bit A/D with a reference voltage of 3.3 V. Next is the scale factor from the

gyroscope’s data sheet. The two values on the right are the final constants used in the code.

Figure 10: Conversion Constant – Voltage to º/sec/step

The second calculation we needed was the integration to find position from the angular velocity

that the gyroscopes measure. Figure 11, next page, shows the mathematical formula we used to

approximate an integration in software. The indefinite integral on the left is the exact equation,

but it is impossible to use on a microprocessor with sampled data. So we used an approximation

known as the backward rectangular rule that adds each new sample to a sum and multiplies it by

the time between samples. Because we used the timer to sample the sensor at 200 Hz, ∆t is .005,

and multiplying ∆t with the conversion constant produces 1/496. The final result on the right

shows that the value added to the sum is the data sample divided by 496.

USB HID
P a g e | 13

Figure 11: Integration and Summation Representation

Throughout most of the project, we were running the Silicon Labs F120 board at 98MHz to

ensure that the trigonometric and position calculations would be completed before the next

interrupt. However, at the end we ran tests to see how much of the CPU time was actually being

used and if we could slow the clock speed to save power. We discovered that the position

calculation did not take very much CPU time and we were able to successfully turn the clock

down to 6MHz (see lab book for more details).

USB SUBSYSTEM
The sections below describe how we used USB to send our 3-D position to the computer and the

problems we encountered.

Basics
We decided to use USB to communicate our position data to the computer for several reasons.

First, USB is a widely used standard and it comes on all modern personal computers and video

game systems. Also, most PC video game controllers use USB because it allows them to use

Window’s standard device drivers to communicate with video games.

We decided to create a USB gamepad which is part of the Human Interface Device (HID) class.

We could have setup our system to emulate both a mouse and a keyboard, but if we had done this

movement of the controller would have led to movement of the mouse even when a video game

was not running. By emulating a gamepad, the cursor location is only altered by the controller

inside the video game’s virtual environment.

The USB HID device class is a very flexible class. The developer of a HID device gets to decide

the data that he or she will send to the computer. This class uses what is called a report

descriptor to tell the computer what data it will send and how the computer should use it. For

our report descriptor, we told the computer that we would be sending Rx, Ry, and 6 buttons. Rx

corresponds to rotation around the computer’s x-axis, which is pitch for us, and Ry is rotation

around the computer’s y-axis, which is our yaw. Our report descriptor is shown in Appendix C.

Problems
USB presented us with many problems throughout this project. From our initial research, we

believed that it would be possible to send an absolute position to the computer. However, as we

began testing this theory, we quickly discovered that an abundance of software layers was

distorting the absolute position and the way it was being interpreted. Figure 12, next page, is a

visual representation of all the software layers that the position data must travel through.

USB HID
P a g e | 14

Embedded

USB Software

Windows

Driver
Direct Input Video Game

Figure 12: Software Layers

Eventually, we discovered that Direct Input was transforming the absolute position data into its

derivative. Instead of sending an absolute position, it was sending the absolute number of units

that we wanted to move from our current location. We made some adjustments to our software

to handle this, but the problem was that we no longer had any feedback from the computer as to

where the cursor was positioned. Without this feedback, there was no way to correct the error

that was accumulated by sending the derivative of absolute position.

Another problem we encountered was that Direct Input only polled the Windows driver for our

gamepad position data every 50ms. However, our Microchip USB board device was being

polled by the computer every 10ms, so we had to program our USB board to send the same

position 5 times in a row to ensure that the computer received the new position change. This

also significantly increased the delay of the system since the on-screen cursor location could not

update faster than 20Hz (50ms).

The final problem was that Direct Input has a resolution of only about 1.75 degrees, which is

much less than our position data with a resolution of 1 degree. If the position change was less

than this amount, Direct Input would ignore the cursor position movement. Because of this, we

had to implement a routine in our USB code that accumulated the change in cursor position data

until this threshold was met, and then we would send the new position to the computer.

Software
The USB module was another complex program that required a very specific series of events.

The flowchart, Figure 13 next page, shows the steps used to send the data to the PC. Once the

system is initialized, the program begins the standard USB communication through Microchip’s

USB API. Because the API runs in the background, the user only has to update the USB buffers

and call a function that sends those buffers over USB. In order to properly collate the data, the

program runs through a state machine that collects the bytes sent over UART, and converts the

ASCII values back to integers. Then the program calculates the derivative for pitch and yaw and

updates the USB buffers accordingly. A temporary buffer is updated each time the program

runs, but the USB buffers only change if the previous position data has been sent to the PC five

times.

USB HID
P a g e | 15

USB

Communication

Start

Initialize system

Turn on USB

Turn on UART

Obtain data from

sensor board

Has the previous

data been sent to

the PC 5 times

Calculate change

in position

Update USB stack

Discard information

Retain USB Stack

Yes

Send data

No

Figure 13: USB Flowchart

WIRELESS (ZIGBEE)
One of the goals of the project was to establish wireless communication between the handheld

controller and the USB board. The wireless functionality provided freedom to the controller and

the user by eliminating all of its wires.

The XBee chips that we used converted UART communication data into the ZigBee protocol.

This conversion was completely transparent to the controller and USB boards. To the

subsystems, it appeared as if they were communicating over a UART cable at 9600 baud. This

allowed us to quickly and easily establish a wireless communication method.

We only encountered one problem. Initially, we wanted to change the XBee chips’ default

setting of 9600 baud to the 115200 baud that we had been using all semester. We were unable to

correctly reconfigure the XBee chips’ settings, but we realized that 9600 baud was sufficient for

our communication needs. At 9600 baud, our communication would be completed within 10ms,

and Direct Input was only accepting position updates every 50ms.

USB HID
P a g e | 16

ANALYSIS OF RESULTS
Our project was a success because we were able to show that low-cost MEMS inertial sensors

and 8-bit microcontrollers are capable of providing accurate 3-D position data. We were able to

design a system that had no drift at rest, and accurate position to within a degree for both pitch

and yaw. We also confirmed that even if drift becomes noticeable, absolute information can be

used as feedback to eliminate accumulated error.

Our inertial subsystem was working correctly as described above, but we had problems sending

this position data to the video game. We could send it to the computer easily, but the abundance

of software layers was causing the position data to be translated incorrectly. We were eventually

able to overcome this obstacle by sending the derivative of the absolute angular position, but by

doing this we lost all positional feedback from the computer and video game. The computer

would accumulate position error over time inside the video game, even though the controller was

still sending correct position data.

CONCLUSION
We hope that this project is an inspiration for future senior projects to continue perfecting our

motion sensing controller. We believe that the software layer problems could be fixed by writing

a specialized Windows driver that is designed to properly collect and transmit absolute position

data. Also, it may be necessary to create patches to video games or Direct Input to ensure that

they use the absolute position data correctly. Finally, our current system does not allow for

spatial movement throughout the environment. Integrating a footpad subsystem would add much

needed functionality that allows the user to walk throughout the virtual environments while they

use our controller to look around. Our project provided a major step towards creating a fully

interactive system.

USB HID
P a g e | 17

REFERENCES

[1] “C8051F34x Data Sheet,” Silicon Labs,

https://www.silabs.com/products/mcu/usb/Pages/C8051F34x.aspx

[2] “Inertial Navigation System,” Wikipedia,

http://en.wikipedia.org/wiki/Inertial_navigation_system

[3] “Inertial Sensors and Systems an Introduction,” GeneSys Engineering Department,

http://www.genesys-offenburg.de/genesyse.htm

[4] EE565 Fall 07 Lectures Notes 20 – 24, D. Schertz, Bradley University

[5] Device Class Definition for Human Interface Device (HID) Version 1.11

http://www.usb.org/developers/hidpage/

[6] HID Usage Tables Version 1.12

http://www.usb.org/developers/hidpage/

[7] Churavy, C., et al. “Effective Implementation of a Mapping Swarm of Robots.” IEEE

Potentials July/Aug. 2008: 28-33.

[8] “Sensor Comparison.” Motus Bioengineering. 22 Feb. 2009

http://www.motusbioengineering.com/

https://www.silabs.com/products/mcu/usb/Pages/C8051F34x.aspx
http://en.wikipedia.org/wiki/Inertial_navigation_system
http://www.genesys-offenburg.de/genesyse.htm
http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/
http://www.motusbioengineering.com/

USB HID
P a g e | 18

APPENDIX A: EQUIPMENT LIST

Figure A-1 is a list of materials used in the project:

Equipment Part Description Quantity ≈ Cost Supplier

Personal Computer With USB and Half-Life 2 1 $0.00 Personal Laptop

USB Board Microchip LPC USB Dev. Kit 1 $60.00 www.microchip.com

Main Board Silicon Labs C8051F120 Dev. Kit 1 $99.00 In Lab

Gyro +
Accelerometer

IMU 5 Degrees of Freedom SEN-
00741 1 $100.00 www.sparkfun.com

Electronic Compass
Compass Module - HMC6352 SEN-
07915 1 $60.00 www.sparkfun.com

Level Converter Logic Level Converter BOB-08745 1 $2.00 www.sparkfun.com

Wireless / ZigBee XBee 1mW Chip Antenna WRL-08664 2 $25.00 www.sparkfun.com

Total
Price: $346.00

Figure A-1: Equipment List

http://www.microchip.com/
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.sparkfun.com/

USB HID
P a g e | 19

APPENDIX B: HARDWARE SCHEMATICS

Figure B-1: Inertial Board Schematic

Figure B-2: USB Board Schematic

USB HID
P a g e | 20

APPENDIX C: REPORT DESCRIPTOR

Figure C-1 is the report descriptor that we used for our USB HID Gamepad.

Figure C-1: USB Gamepad Descriptor

