USB Virtual Reality HID

by

Weston Taylor and Chris Budzynski Advisor: Dr. Malinowski

Agenda

- Project Summary
- Analysis
- Block Diagram
- Hardware
- Inertial Sensors
- Position Calculation
- USB
- Results
- Questions

Project Summary

 Purpose: To create a USB HID that translates user movements into onscreen actions to provide a realistic interactive platform for PC games and other virtual environments.

• <u>Why?</u>: To show that low-cost MEMS inertial sensors capable of providing accurate position data for a complex interactive experience.

Previous Work

MetaMersion Immersive Gaming System

Goals

List of project goals:

- Translate sensor readings into a 3-D position
- Send 3-D position to PC using USB (gamepad)
- Use low-cost 8-bit embedded systems
- Embedded programming = C language
- Wireless communication between subsystems

Analysis

Stationary INS (Inertial Navigation System)

 No Linear Movement
 Only Angular Movement (Pitch, Yaw)
 Gyroscopes measure angular velocity

Analysis

- Gyroscopes
 - Measure °/sec
 - 1 integration to get position (absolute angle)
- Frames of Reference
 - Mathematical Transformations (Trig Functions)
 - Yaw \rightarrow Dependent on Pitch
 - Cosine Lookup Table

System Specs

- System Requirements
 - Hardware
 - 300-400 °/second \rightarrow do not want saturation
 - Temperature Range \rightarrow 0°C to 40°C
 - Software
 - Position calculation every 10ms
 - Human Reaction Time (100ms)
 - Monitor Refresh Rate = 60 Hz (16.7ms)

USB Communication

Personal Computer

• System Diagram

Software

• HL Software Flowchart

• IMU 5 DOF

- 2-axis gyroscope = 500 °/sec
- -2-axis accelerometer = $\pm 3g$
- Analog Outputs
- Electronic Compass
 HMC6352
 - I2C Interface

Inertial Board - Silicon Labs C8051F120

 – 8-bit processor → 98MHz
 – 12-bit A/D

Wireless ZigBee - XBee 1mW Chip Antenna

- UART to ZigBee Conversion
- 2.4 GHz
- Range = 300ft
- Baud = 9600 bits/sec
- Transparent Mode
- Problem
 - Interference with analog

USB Board – Microchip LPC USB Dev. Kit

• PIC18F14K50 → 8-bit, 48MHz

Parts List

• Parts List Table:

Equipment	Part Description	Quantity	≈ Cost	Supplier
Personal Computer	With USB and Half-Life 2	1	\$0.00	Personal Laptop
USB Board	Microchip LPC USB Dev. Kit	1	\$60.00	www.microchip.com
Main Board	SiLabs C8051F120 Dev. Kit	1	\$99.00	In Lab
Gyro +				
Accelerometer	IMU 5 Degrees of Freedom SEN-00741	1	\$100.00	www.sparkfun.com
	Compass Module - HMC6352 SEN-			
Electronic Compass	07915	1	\$60.00	www.sparkfun.com
Level Converter	Logic Level Converter BOB-08745	1	\$2.00	www.sparkfun.com
Wireless / ZigBee	XBee 1mW Chip Antenna WRL-08664	2	\$25.00	www.sparkfun.com
		Total		
		Price:	\$346.00	

Schematic

• Inertial Board Schematic

Schematic

• USB Board Schematic

Inertial Sensors

Inertial Sensor Inherent Problems

 High Frequency Noise
 Scale Factor Variations
 Offset → causes Drift (significant)

Noise

• Problem \rightarrow High Frequency Noise

- Solution \rightarrow LPF
 - Gyroscopes \rightarrow 80Hz
 - Accelerometers \rightarrow 500Hz

Scale Factors

Problem → Scale Factor Variations

 Datasheet = not exact
 + and - directions different
 Accumulated error = drift

 Solution → Feedback

Offset

Problem → Offset, zero-rate voltage

Causes drift from integration

Solution →

Calibration routine = 1024 sample average
Adaptive zero-rate voltage
Window filter

Feedback

Sensor Data

HyperTerminal (.txt) → MATLAB
Raw A/D Data

Sensor Data

Data after calibration and adaptive zero-rate

Sensor Data

Data after window filter → no drift at rest – 2 A/D steps = ±1.6mV → ±0.8°/sec

Position

- Basics

- Gyroscopes measure °/sec
- A/D reads \rightarrow steps
- Find conversion factor \rightarrow (°/sec)/step
- Want an absolute angle in degrees (°)
- Calculation
 - _ Position = ∫ [A/D steps] [(°/sec)/step] dt

Ζ.

- / Position = ∫ [°/sec] dt
- <u>/</u> Position = #°

Position

- Software Conversion Factors / Constants
 - Conversion from A/D Value to °/s:

$$\frac{3.3 \text{ V}}{4096 \text{ steps}} \text{X} \frac{1^{\circ/\text{s}}}{2.0 \text{ mV}} = \frac{1500^{\circ/\text{s}}}{4096 \text{ steps}} = .402832$$

Summation As Approximation of Integration

 $-\Delta T = 1/200$ Hz = 0.005 so Position Approx. is:

Angular Position = Previous Position + (Current ADC/496)

Code

Integration Summation Backward Rectangular Rule

238 // Integration
239 pitch_integration = pitch_integration + pitch;

Code

- Window Filter
- Adaptive Zero-Rate Offset

 Only runs inside Window Filter

201	
232	// Window Filter - gets rid of worst noise causing drift
233	if(pitch < 3 && pitch > -3) {
234	pitch = $0;$
235	
236	<pre>pitch_zrc_sum += pitch;</pre>
237	<pre>pitch_zrc = pitch_zrc_sum >> 10;</pre>
238	}
220	

Feedback

- Integration of error → Drift
 Open Loop System
- Feedback
 - Pitch Drift Correction (accelerometer)
 - Yaw Drift Correction (electronic compass)

• USB Basics

- Master / Slave \rightarrow Polling (choose interval)
- Human Interface Device (HID)
 - Mouse + Keyboard or Gamepad
 - Flexible \rightarrow Report Descriptor
- Our Report Descriptor
 - Rx Rotation around x-axis \rightarrow Pitch
 - Ry Rotation around y-axis \rightarrow Yaw
 - Buttons (6)

Silicon Labs C8051F340 = USB Dev. Kit
 – Mouse and Keyboard Working
 – Gamepad → Error Code 10

USB

Microchip LPC USB Dev. Kit – Gamepad working in one week

Problems

- Direct Input
 - Cannot actually send absolute position
 - Absolute # of units / axis \rightarrow Translate to angle
 - Needs derivative = send Δ position

Multiple software layers / interpretations

Results

- MEMS = good / accurate position
- Software limitations
 - No absolute position
 - No software feedback

Results

Future Suggestions Write own Windows driver Patch to game → Direct Input

- Step pad / Buttons for spatial movement

References

[1] Silicon Labs, C8051F34x Data Sheet, https://www.silabs.com/products/mcu/usb/Pages/C8051F34x.aspx

[2] Wikipedia, Inertial Navigation System, <u>http://en.wikipedia.org/wiki/Inertial_navigation_system</u>

[3] GeneSys Engineering Department, Inertial Sensors and Systems An Introduction, <u>http://www.genesys-offenburg.de/genesyse.htm</u>

[4] D. Schertz, EE565 Fall 07 Lectures Notes 20 – 24, Bradley University

[5] Device Class Definition for Human Interface Device (HID) Version 1.11 http://www.usb.org/developers/hidpage/

[6] HID Usage Tables Version 1.12 http://www.usb.org/developers/hidpage/

Questions

Test Platform

SW Flowcharts

void main(void)

SW Flowcharts

ADC0 Interrupt

SW Flowcharts

• USB Board

