

© Scott Adams, Inc./Dist. by UFS, Inc.

Intelligent Guide Robot

Joe Buckner & Nir Chezrony

Advisors: Dr. Joel Schipper & Dr. James Irwin, Jr.

Sponsored By: Northrop Grumman

Presentation Overview

Project Summary

- Fall 2008 Accomplishments
- Components Removed
- Sonar Sensor Failure
- Barcode Scanner
- Kiosk Monitor
- Wall Follow Simulation
- ADC to USB
- Current and Future Work
- Workflow and Gantt Charts

Project Summary

Autonomous Tour Robot – Pioneer 3
 2nd and 3rd floor of ECE Department
 Utilize Elevator
 Localization - Barcodes
 Navigation – Topological Decomposition

Fall 2008 Accomplishments

Selected Robot Platform
 Built ModelSim Environments
 Developed Flowcharts

 Path Planning Algorithm
 Navigation Algorithm

 Interfaced Development HID - Joystick

Fall 2008 Accomplishments

Selected Localization & Navigation Sensors
Native Sonar Sensors
Barcode Reader
Digital Compass
IR Sensors

Components Removed

Compass / Gyro
Rear Sonar Sensors
Touchscreen

Sonar Sensor Failure

Firing Order & Firing Rate
Gain Potentiometer
Simple Software Fix
Complex Algorithm

Left 90 Degree Sonar Sensor Data - Gain Pot Full Counter-Clockwise

Left 90 Degree Sonar Sensor Data - Gain Pot Full Clockwise

Left 90 Degree Sonar Sensor Data - Gain Pot Full

Left 90 Degree Sonar Sensor Data - Gain Pot Full Counter-Clockwise

Left 90 Degree Sonar Sensor Data - Gain Pot Full Clockwise

Barcode Scanner

Sent Fuzzy Logic Scanner
Verified Read Range
Integrated into Software Release
Resolving Hands-Free Operation

Kiosk Monitor

Overvoltage Protection Circuitry Operating Range 8 – 13.2 VDC

Wall Follow Simulation

Uses L50 and R50 Sonar
'Center of Hall' Threshold
Proportional Turning Rate
Rate Limit Turning Rate
Integrated into Software Release

Direction of Travel

ADC to USB

Integrated into Software Release
Universal Software Module
IR and Bump Sensors

Current Work

Barcode Scanner – Hands-Free Operation
Monitor Overvoltage Protection
IR Sensor Functionality
Obstacle Detection / Avoidance Algorithm

Future Work

Mounting Components
Bump Sensors
Navigation / Localization Algorithm
Video Recording
GUI
Video Playback

ID	Task Name -		Feb 2009					Mar 2009				Apr 2009					
		2/1	2/3	8 2	/15	2/22	3/1	3/8	3/1	5 3/22	3/29	4/5	4/12	4/19 4	/26	5/3	
1	Sonar Sensor Software Fix (Joe)																
2	Bump Sensor Software Interface (Joe)																
3	Wall Follow Algorithm Test – Simulation (Joe))												
4	Voltage Regulator Hardware Interface - IR (Joe)																
5	IR Hardware Interface (Joe)					۵											
6	Wall Follow Algorithm Test – Experimental (Joe)																
7	Obstacle Detection / Avoidance Algorithm Test - Simulation (Joe)						I										
8	Obstacle Detection / Avoidance Algorithm Test – Experimental (Joe)																
9	Filming / Audio Prep (Joe & Nir)																
10	Final Run (Joe & Nir)																
11	Navigation / Localization Algorithm Test - Experimental (Nir)																
12	Barcode Read Test (Nir)																
13	Barcode Software Interface (Nir)						0										
14	ADC-USB Software Interface (Nir)																
15	Monitor GUI Software Interface (Nir)																
16	Monitor Software Interface (Nir)																

Acknowledgments and Questions

Dr. Joel Schipper
Dr. James Irwin, Jr.
Dr. Aleksander Malinowski
Dr. Gary Dempsey
Mr. Steve Gutschlag

End of Presentation: Supplemental Slides Follow

Map Representation: Decomposition (6)

System Block Diagram

Barcode Found

Subsumption vs. Blackboard Architecture

Subsumption

Blackboard

High Level Goals

Successfully navigate the ECE Department
Identify key points throughout a tour
Provide accurate information to the user
Provide a means for user input

Full Requirements (1)

• Must reach intended goal within a 4' radius

Avoid all obstacles, moving or stationary

 Must detect when battery is at 10% of max charge

 Additional range sensors added to the Pioneer 3 must have a minimum range from 6" to 10'

Full Requirements (2)

- Additional range sensors added to the Pioneer 3 must have a measurement accuracy of 5"
- Must allow user to select one of 28 locations or one of 3 complete floor tours
- Additional compass sensor added to the Pioneer 3 must provide an accurate magnetic bearing within 10°
- Must have a complete software loop faster than 180 ms 31

Full Requirements (3)

Must have a complete software loop faster than 180 ms
Must maintain an average speed of 31.5 in/sec during transit