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An Engine Control Workstation was designed to simulate the thermal 
environments found in liquid-based cooling systems. The control workstation consists of 
a PC liquid cooling system, a motor-generator set for the engine, two Texas Instruments 
Control DSP boards, hardware interface circuitry, and a user friendly GUI for precision 
temperature and engine control. Software packages used for implementation include 
MATLAB, Simulink, Real-Time Workshop, and Code Composer Studio. These packages 
provide auto-code generation from a Simulink model of the control system and allow 
users to design, implement, and test controllers to more precisely regulate the thermal 
dissipation of the engine with the goal of reducing energy use.  
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1.1 Introduction 

Cooling control systems used in vehicles have become more sophisticated in 
recent years due to demands for lower fuel or energy consumption. A thermostat has 
been the common control element but better accuracy, system speed, and 
minimization of fan and pump energy can be achieved with a proportional actuator. 
Multiple temperature sensors can also improve system performance. 
 

An Engine Control Workstation will be designed to simulate the thermal 
environments found in liquid-based cooling systems. The workstation will allow users to 
design, test and implement controllers to more precisely regulate the thermal 
dissipation of a motor-generator system with the goal of reducing energy use. A user 
friendly GUI for temperature and engine control will be designed using MATLAB and 
Simulink software. Workstation controller and monitoring application software will be 
auto-code generated within the same program with the processing of the data being 
done on a DSP board. 

 
 
1.2 Functional Description 
 

The system will interface with the user via a GUI developed using Simulink and 
MATLAB. There will be several parameters that the user will be able to input and 
simulate, with the hopes of designing an engine due to the user�s desired specifications. 
These inputs are, but not limited to: command velocity, controller parameters, controller 
types � proportional, integral, derivative, (P, PI, PID) and their perspective values for Kp, 
Ki, and Kd, and load changes to the system. Based upon these inputs, system 
identification can be performed to obtain a mathematical model of the system.  

 
The developed closed-loop controller for velocity and acceleration will be 

active for load and no load conditions on the system. This will be implemented using 
auto-code generation and real-time control in Simulink interfaced with a fixed-point 32-
bit TMS320F2812 DSP Evaluation board (See Figure 1-1). The outputs of the system are, 
but not limited to: output velocity, motor current, SS error, transient response � analyzing 
down to overshoot percentage, settling time, and time to first peak, PWM percentage, 
and controller signal. These outputs will be organized on a GUI that group these 
outputs in order to analyze desired specifications or continue design iterations. From a 
hardware level, the system will also require a DSP to motor interface utilizing similar 
design techniques as in the 2008 Mini Project. Also, a deliverable of this project is to 
explore all areas of Simulink and DSP Evaluation board interfacing and document 
controller limitations and performance. From this another goal was created, to minimize 
both C code and its execution time � down to an assembly level to ensure there are no 
possible real-time execution constraints created by the Simulink auto-code generation. 
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Figure 1-1 Texas Instruments 2812 DSP Board 

Board was chosen for its easy integration into a Simulink model and capability of Auto-
Code Generation. Two DSP Boards were used in the Workstation: one drives the engine 
controls while the other drives the thermal control. 

The Thermo control portion of the project will focus on developing controllers for 
the pump and the fan of the system. Multiple types of controllers are to be developed 
and implemented. These controllers will then be used to control the temperature of the 
coolant and/or the plant to a specific value. In order to develop controllers to control 
temperature it is crucial to develop a transfer function and model of the thermo portion 
of the project by system identification.  
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Figure 1-2 Overall System 

Above is a picture of the system at the end of the project. Note: 
left side is engine control system, while the right side contains the 
thermal control system.  

 
Figure 1-2 shows the overall integration of the plant and 

external hardware. The proposed engine control workstation will 
consist of a total of 5 subsystems: (1) motor-generator system to 
mimic an engine, (2) an active thermal load for the engine, (3) a 
liquid cooling system consisting of a pump, tank, radiator, fan, 
cooling block, flow meter, and multiple temperature sensors, (4) a 
fixed-point DSP evaluation board and software for controller 
implementation, and (5) interfaced electronics. A close up of the 
cooling system can be seen in Fig 1-3 and is further described by 
Fig 2-1 through Fig 2-5. 
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Figure 1-3 Plant  and Thermal System 

1.3 Necessity of liquid cooling 

  

Fig 1-4 shows the thermal ratings for the Pittman 
DC motor that is being used in this project. The 
maximum temperature and thermal impedance 
ratings were taken from the datasheet. The 
current data was gathered by measuring from the 
motor when the generator was short-circuited for 
maximum load.  

 The resulting temperature far exceeds the 
maximum rating and shows the necessity of liquid 
cooling for this motor/generator set. 

 

                                                            
Figure 1-4 Thermal Comparison 

2.1 Overall Plant 
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Figure 2-1 Plant System 

2.2 Motor / Generator Set 

 

 

 

 

Figure 2-2 Motor/Generator Set 

The motor/generator set consists of 2 DC Pittman motors as shown in Fig 2-2. One 
motor is arranged as a DC generator. The voltage to that motor will be controlled by 
the engine portion of the workstation. The rotary encoder is used to monitor the 
velocity. This motor is mechanically coupled to the generator. The generator�s voltage 
terminals are connected to an active load to control the loading placed on the driving 
motor. Cooling blocks encompass the motor and generator to allow for use of liquid 
cooling.  Mounted in the cooling block is a thermistor that measures the temperature of 
the plant. 
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2.3 Active Load 

 

Figure 2-3 Active Load 

The active load show in Fig 2-3 is used to vary the load placed on the generator. 
This circuit uses a change in PWM duty cycle to vary the load. More detail on pg 28. 

 

 

 

 

 

 

2.4 Flow meter 

 

     Figure 2-4.1 Flow meter 

 

         Figure 2-4.2 Flow meter 
Response 

The flow meter show in Fig 2.4.1 is a mechanical device that had a paddlewheel 
within the coolant flow. This device can be used to measure the flow rate within the 
system. The flow rate conversion is shown in Fig-2-4.2. The device was tested to be 
working but was not implemented into this system. 
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2.5 Pump / Reservoir 

 

                         Figure 2-5 Pump/Reservoir 

 The pump, shown in Fig 2-5 is a brushless DC motor that is used to provide 
coolant flow to the cooling system. Voltage is manipulated to control the velocity of the 
pump. The pump is contained in a reservoir that houses extra coolant for the cooling 
system. 

 

 

 

 

 

2.6 Fan/Radiator 

 

 

Figure 2-5 Radiator/Fan 

 Figure 2-5 shows the radiator and fan configuration. The coolant flows through 
the radiator which has numerous fins to transfer heat to the ambient environment. The 
fan increases the cooling effect by moving air across the radiator. There are two 
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thermistors here, one at the inlet and one at the outlet of the coolant flow of the 
radiator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Engine Side 

Project Goals 
 
 

(1) Learn software packages for auto-code generation and real-time control 
via Simulink/DSP interface. A major focus will be minimization of C-code 
and execution time. 

 
(2) Design DSP/motor hardware interface � will build off 2008 Mini Project 

 
(3) Design software for PWM generation and velocity calculation from rotary 
encoder. 

 



 COOLECW Final Report | Page - 11 

(4) Design closed-loop controllers for velocity and acceleration control. 
 

(5) Determine the limitations of the Simulink/TMS320F2812 DSP interface in 
terms of real-time execution and program memory. 

 
(6) Evaluate controller performance based on system accuracy, speed, and 
energy use. 

 
(7) Design Simulink/MATLAB GUI for controller parameter modification. This 
will include ability to graph critical output data for controller design 
evaluation. 

 

 

 

 

 

 

 

Controller Design 

 As stated in project goals, controllers for both velocity and acceleration were 

designed. The implemented controllers were: proportional, proportional�integral, and 

feed forward. Using both the 2008 Mini-Project and both EE431 and 432 Control Theory 

class, design began. All controllers were designed in the s-plane, and then converted to 

the z-plane with the Bilinear Transformation function in MATLAB. The sampling rate in the 

models and within the implemented system was 1mS. The transfer function for the plant 
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was in the simulation model and had a system crossover frequency of 899 rad/sec, 

found in EE432 Design Project 1. The equation: Gp = 17.1/(s/146+1)(s/776+1) 

 The first implemented controller was Proportional control. As seen on the system 

model, the controller loop is closed by the summation of the comment signal and the 

negative feedback implemented by the DSP board�s Quadrature Encoder block (Fig 3-

2). This error signal is then sent to a Kp value that was tuned to be .08, which resulted in 

a ess = 75 at 350 RPM step input. Once this was tested in simulation, it was assembled to 

the model and only needed a data conversion to work properly with the GUI � this was 

necessary, otherwise the GUI would freeze. Implementation into the GUI proved to be a 

great troubleshooting tool to tune all Gain values and achieve real-time results.  

Once the GUI was working with proportional control, proportional-integral 

control was tested and implemented. The integral controller used in the Mini-Project 

was used. Again, as in the last controller, data type conversions were necessary. Kp was 

tuned once implemented into the system model and found to be .005 and ess = 3 at 

350 RPM step input, the controller was now within the specified range for ess spec. 

The next controller deliverable was to implement feed forward in order to 

decrease response time and control overshoot. From EE432 Control Theory class, a 

practical feed forward controller takes the general form of the inverse of the plant with 

the lowest plant pole placed a decade out from the zero. Also, to eliminate any gain 

here, it was compensated for by the inverse of the plant gain of 17.1, thus 1/17.1. The 

placement of this controller is branched off the initial step input and runs in parallel to 

the proportional-integral. The idea is to let the proportional-integral controller take care 

of the steady state error, while the feed forward controller controls the acceleration. 
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Once tested for in the s-plane, significant improvement was seen in the motor response. 

As shown in Fig 3-6, for a 100 RPM step input, response time was decreased by 20mS 

and overshoot was eliminated, as well as time to first peak reduced to 25mS from 45mS. 

For conversion into the discrete world, the Bilinear Transformation function in MATLAB 

was used. Testing within the GUI showed similar resulted to simulation as show in both 

the GUI and MATLAB axis in Fig 3-4 and Fig 3-5.  

 

Simulink Modeling 

 The simulation model for Simulink started at the finishing point of the 2008 Mini-

Project model. This model takes into account the engine model, as well as PWM 

conversion, system H-Bridge, and closed loop control via the quadrature encoder (Fig 

3-3). The actual Simulink model used for the system included command conditioning, 

and closed-loop control, before sending signals to the PWM output (Fig 3-7). Data is 

also captured for the GUI from here, which adds an out-channel (ochan) to the system. 

These blocks consist of data buffers and conversions to allow for board to GUI 

communication. Once data is sent here, it can be referenced in the GUI code. Another 

element of the Simulink model is the DSP Board�s Quadrature Encoder (QEP) at Port 8: 

Pins 6 and 7. This was implemented in the system to allow for our project specification of 

ess =±5 RPM, as opposed to an ess =±20 RPM if only one channel is implemented. The 

QEP block in Simulink brings in the motors inner shaft velocity, this number was 

converted to outer shaft RPM for the GUI. 

 Also in the model were several data conversions. Some of the blocks in Simulink 

require specific data types in order to be used, for example the Discrete Transfer 
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Function block only allows for a double, so data conversion appears before and after 

this block. Trial and error was the main way to discover blocks of this nature. The starting 

point always came in knowing int32 was being sent out of the board. As detailed in the 

�Controller Design� section, three types of control were achieved: proportional, 

proportional-integral, and feed forward. As seen on the model, these were 

implemented into the system in a parallel fashion in order to allow different controllers 

to be implemented within the GUI and no changes to the model are necessary. The 

user controller portion of the gain comes from an in-channel (ichan). Same as an 

ochan, these are used for DSP to GUI communication. Specifically ichan are GUI data 

to DSP motor commands. It is also of value to note that the DSP Board�s blocks are in its 

own Simulink library � they are obtained in the software that the board was purchased 

with.   

GUI Design 

One of the main goals of this project was to design a nice Graphical User Interface 

(GUI) that would allow for real-time feedback of motor control, as well as user 

interaction for: input RPM, controller selection, and controller design. The MATALB GUI 

creator, Guide, is accessed by entering �guide� into the command window. From here, 

several components can be added and interfaced in the accompanying .m file code 

including: buttons, sliders, axis, tables, menus, and ActiveX control. The implementation 

of this began with a template built into the development kit. This template was 

specifically designed for our target system because it included a basic Simulink model 

to run a motor from the 2812 DSP Board. Much time was spent with this model learning 

how auto-code generation from the GUI to Simulink to DSP Board was created. The 
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understanding can be aided by looking at Fig 3-1. Also note that auto-code generation 

only allows for the designed system to run on the board correctly and do not replace 

any design steps; the GUI .m code and Simulink models are where the system is really 

created.  

 The best development of the GUI came in small steps, just as in any other 

programming language. At several stages throughout the project, adding as little as 

one line of code resulted in a frozen GUI. This was pinpointed to two common problems: 

incorrect data types between the DSP Board and Simulink, or the MATLAB object 

handler in the GUI�s object handler was not being used before being sent to grab 

another object. The data type problems occurred from trial and error troubleshooting. 

MATLAB GUI return parameters in several different data types � integer, strings, and 

doubles most commonly, these must be converted properly to and from data types 

within the code for the GUI to respond correctly. Also, one must keep note on what 

data type they are sending to GUI due to the heavy amount of data conversions 

required in the Simulink models, all due to block-specific data types. All in all, slow 

implementation is the best starting with remembering int32 (floating point processor) is 

coming out of the board. 

 The final version of the GUI, seen in Fig 3-8, allowed for several plots of control 

data, these include: Engine RPM, PWM duty cycle percentage, transient response, PI 

controller output, and feed forward controller output. These made use of the 

aforementioned ochan blocks from the Simulink model that allow for Board to GUI 

interaction. All data was plotted on a 0 to 5 sec axis over its operation range: RPM 0 to 

834 RPM. Specifically transient response was the hardest to implement and was done 
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using counters inside the code that only allowed for a few cycles of code to be plotted, 

instead of constant real-time updating. From here, max RPM data is show in a text box, 

important for a percent overshoot calculation.  

The most controls oriented part of the GUI lies in the adjustability of the systems 

control type. A user can interact with all three gain types (P, PI, and FF) via radio 

buttons to select their desired types, and use a slider to take the Kp gain to a range of 0 

to 1 � adjustable to a .001 precision; this produces a noticeable range of variation in the 

system. With that, steady state error is displayed next to the current RPM and duty cycle 

percentage.  

 

 

 

Figure 3-1 Engine Side Software Flowchart 

The flowchart shows the role each piece of software and hardware plays within the 

engine system. Also the same for the thermal system, but has multiple outputs. 
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Figure 3 - 2 Quadrature Encoder Simulink Block 

The QEP Simulink block brings in inner shaft RPM into the model. This value must be 

converted to outer shaft via a gain block. Available from the DSP 2812 Simulink 

library.

 

Figure 3 -3 Simulation Simulink Model 

Above is the Simulink model used in the 2008 Mini-Project. This was the starting point for 

controller design. All controllers were tested in both the s-plane and z-plane before 

being brought into the system Simulink model. 
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Figure 3-4 Simulation FF Controller Output 

Axis: RPM vs. mS.  

MATLAB Data gathered from the Feed Forward Controller Output during Simulation. 

There is an impulse with length of 2mS show with a steady-state value of 17 RPM.  

 

Figure 3-5 GUI FF Controller Output 

Axis: RPM vs Sec. 

 GUI Data gathered from the Feed Forward Controller Output during Testing. The 

impulse is not seen here due to the 1mS sampling rate for the GUI. Steady-state value of 

17 RPM. 
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Figure 3-6 Controller Testing 

Axis: RPM vs. mS. Input: 100 RPM Step command. 

MATLAB Data gathered from Simulation of both FF and PI Control. Note: decreased 

response time, no overshoot, and smaller time to first peak for FF Controller.  
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Figure 3-7 System Simulink Diagram 

The Simulink model for the DSP Board contains three types of control and sends data to 

the GUI. All controllers are in the discrete world. QEP and PWM blocks are from the DSP 

2812 Simulink library. 
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Figure 3-8 Final Engine Graphical User Interface 

The final implemented GUI displays several control specifications and graphs crucial 

system data. 
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Thermal Side 

Project Goals 

 
(1) Design closed-loop controller for temperature regulation of cooling system. 

 
(2) Design Simulink/MATLAB GUI for controller parameter modification. This 
will include ability to graph critical output data for controller design 
evaluation. 

 
(3) Design energy management control system in Simulink to regulate 
voltage/current to each subsystem based on its energy usage. 

 
(4) Evaluate controller performance based on system accuracy, speed, and 
energy use. 

 
(5) Determine the limitations of the Simulink/TMS320F2812 DSP interface in 
terms of real-time execution and program memory. 
Functional Description 
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4.1 Hardware Interfacing 

 

Figure 4-1 Hardware Interface Block Diagram 
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Thermistor Hardware Interface 

 

              Figure 4-2 Thermistor Interfacing Circuit 

The thermistor is a variable resistance that responds to changes in temperature. 
The thermistor is placed in series with a resistance to create a voltage divider. This 
voltage divider is fed into a LMC6482A operation amplifier which is used as a unity gain 
buffer. A capacitance is placed on the input of the LMC6482A to reduce the amount 
of aliasing/reduce noise. Due to the positioning of the capacitance the location of the 
filter pole moves as the thermistor resistance changes. The pole is located at S=(200K + 
Rt)/(100uF*200K*Rt).  For 60 ºF  to 130 ºF the pole will move from 29mHZ to 117mHZ 
respectively. Note that Rt does not change linearly with respect to temperature (see Fig 
� ) 

Fan Drive Circuit 
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                     Figure 4-3 Fan Drive Circuit 

 The DSP board provides PWM outputs for use in velocity control. This signal is fed 
into a 4N25 opto-isolator. The opto-isolator is used to isolate the multiple grounds of the 
system to prevent electrostatic damage of the DSP board. The PWM leaves the opto-
isolator (note the duty cycle is reversed) to be used with the TIP 120 Darlington pair 
power transistor. The TIP120 is used as a switch for full on/off operation based on a 
high/low of the PWM signal. The TIP120 is connected to the negative lead of the fan. 
The positive lead is connected to its voltage source from the 12-volt regulator. 

Pump Drive Circuit 

 

                              Figure 4-4 Pump Drive Circuit 

 The pump response was to slow to use PWM directly. The same opto-isolator setup is 
used for isolation purposes.  The PWM is filtered (pole at 1.59Hz) to a voltage level. Control of 
pump velocity is achieved by controlling the voltage seen by the pump. The location of the 
feedback path for the operational amplifier allows for the voltage at the non-feedback input of 
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the operational amplifier to be the same voltage seen by the pump. With this setup we drive the 
TIP120 on the linear portions of its voltage/current curve instead of the on/off operation for the 
fan. 

12 Volt Regulator Enhancement 

 

               Figure 4-5 12 volt regulator circuit 

The voltage output has been increased to compensate for the 13.5volt maximum of the 
fan/pump and to overcome the Vce of the TIP120. Note the diode from Pin2 to Gnd is in the 
configuration for a zener diode. 

Active Load 

 

            
Figure 4-5.1 Active Load Circuit                                   Figure 4-5.2 Active 
Load Performance 

  The Active Load circuit (Fig 4-5.1) uses the same idea as the pump drive circuit. 
The opto-isolator is used to isolate the separate grounds.  In Fig 4-5.2 a plot of 
voltage into the op-amp vs. the current allowed by the TIP120 for 3 sets of resistances. 
Poor grounding resulted in those curves being shifter to much lower voltages, 2 volts 
being the max value. With this in mind our PWM signal not only needs to be �smoothed� 
into a voltage level but a voltage division needs to occur to be the range from 0 to 2 
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volts from the 5 volt regulator. The .11 ohm configuration was chosen since the 2 ohm 
resister would not fit in the breadboard.       

4.2 Simulink Modeling 

 

                                        Figure 4-6 12 Overall Simulink Model for the Thermal System 

 

Thermal Model 

 

 

           Figure 4-7 Thermal Model 

The thermal model was developed used techniques from EE431. There are a 
total of six first order models with time delay, as seen in Fig 4-7. Three of the models are 
associated with the temperature response with respect to the pump, while the other 
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three model the response associated with the fan. Each of those model pairs is 
associated with the temperature of the inlet, outlet and plant thermistor.  

One switch shown in the model is used to account for the pumps lack of ability 
to move fluid below a 60% PWM.  The other switch turns off the temperature response of 
the fan when the pump in not flowing.  If there is no fluid flow then the cooling ability of 
the fan will not be seen by the thermistor. 

  

Noise 

 

Figure 4-8 Noise Model 

 Initial data logging with no filtering has shown a constant +/-  3 degrees F due to 
noise levels. The noise block in Fig 4-8 simply models that behavior. 

 

 

 

Anti-Aliasing hardware 

 

Figure 4-9 Anti-Aliasing 
Model 
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 The Low-pass anti-aliasing filter is modeled and is show in figure 4-9. Even though 
the pole location will move due to the variable resistance the pole location always 
remains extremely low. It has been decided to model it as a fix location. The pole 
location seen above would be associated with a temperature of 90 degrees F. 

 

 

Software Conversion and Moving Average 

 

                                                                                                       Figure 4-10 Software 
Conversion Model 

 

 The software conversion block (Fig 4-10) models the conversion of the 
temperature data as it enters the DSP board. The ZOH block (which models sampling) is 
placed in front of the thermal model to add the affects of phase lag from the sampling. 
The moving average filtering of the GUI is also modeled here even though its output it 
not used in the control scheme of the energy management. 

 

 

Energy Management 
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                         Figure 4-10.1 Energy Management 

 The Energy Management Block shown in Fig 4-10.1 is where the closed loop controllers 
for both the fan and pump velocity are contained. It was decided to have a trigger system upon 
initial turn on of the temperature control. A trip temperature is set (this system uses 5 degrees F 
above the operating point), once this trip temperature is seen at the outlet the trigger system 
begins to operate. The trigger system sends a 100% PWM duty cycle to the pump to circulate 
the fluid around the thermal system to move  heat around the system that has been localized to 
the plat/generator. This system operates for 20 seconds before it sends a high-bit to the closed 
loop controllers for both the fan and pump. This high bit signifies to engage the operation of 
closed loop control.  Fig 4-10.2 show the trigger and controller subsystems. 

 

 

Figure 4-10.2 Trigger/Controller Subsystem 
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Power Calculation 

 

              Figure 4-11 Power Conversion 

 The Power Conversion Block monitors the PWM for the fan/pump and calculates the 
power (in watts) for data-logging and display on the GUI interface.  

 

 

 

 

 

Heat Addition 

 

          Figure 4-12 Disturbance Block 

 The Heat Addition model is used to test the disturbance rejection potential of the closed 
loop controllers. Heat is added/subtracted from the system is an exponential change. This is 
summed with the output of the thermal model of the plant. The plants temperature is fed in and 
multiplied by a gain (3/4 to model the heat loss from the coolant path) then past to a delay to 
model the coolant transport delay to the inlet and outlet. 
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 This model is not a precise model of the heat generation of our system (time constraints) 
but it does accurately portray the temperature disturbance process. 

Model vs. Actual 

 

 

                                                          Figure 4-13 Model Data vs. Actual Data 

 Fig 4-13 shows the model data vs. the actual data.  The response is shown for 
both a step of 0% to 100% for the pump PWM and a 0 to 100% step change for the fan 
PWM. 
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4.3 Simulink Implementation/Results 

Conversions 

 

Figure 4-14.1 ADC Value to Temp F Conversion                      Figure 4-14.2 Duty Cycle to 
Power Conversion 

 

 Figure 4-14.1 shows the multiplier needed to convert the ADC value into the 
corresponding temperature in degrees F. The function was created from the datasheet 
data on the thermistor resistance values for a given temperature. The graph also shows 
the strong non-linearity of these devices. 

 Figure 4-14.2 shows the function to convert the PWM duty cycle for both the 
pump and fan into its power usage in watts. The functions were created to measure the 
voltage drop and current for each of the devices in 10% PWM steps.  Notice that the 
Excel generated functions do not directly use the PWM %. The first entry on the x-axis 
,100%, corresponds to 1 , 90% corresponds to 2 etc. The functions used in Simulink also 
needed to have a conversion to compensate for this. 
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Controller Types and Results 

Bang Bang Control 

 Bang Bang control is simply a controller which abruptly changes between two states. For 
state one the fan and pump are at 0 % PWM. State 2 the fan and pump are at 100% PWM. 

Improved Bang-Bang 

 Improved Bang Bang control uses the same concept as bang bang with the exception 
that state one now keeps the pump PWM at 60%.  

 

 

 

     Figure 4-15 Simulink Auto-Code Implementation 

 Fig 4-15 shows the Simulink diagram for auto-code generation onto the DSP board. Both 
bang bang and improved bang bang use this same diagram. The only change is to the constant 
block for pump PWM from 0% (shown in Fig 4-15) to 60%. The temperature threshold can be set 
within both switches which monitor the plant temperature. 
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 Figure 4-16.1 Bang-Bang Control Data (300Watts/Min) 

 

                            Figure 4-16.2 Improved Bang-Bang Control Data 
(211Watts/Min) 

Fig 16 shows the performance of the two bang bang style controllers. Both were set with 
a threshold temperature of 85 degrees F. The power consumption was found by integrating the 
power usage and dividing out the sample number to determine power usage per minute. 
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P-Control 

 Proportional Control is a feedback controller that generates an error signal which is 
multiplied by a determined constant to change the behavior of the monitored system. This 
system monitors the plant temperature. The pump controller error signal is generated by the 
difference in plant temperature from the desired temperature. This error is multiplied by a 
constant (Kp) to change the behavior of the pump velocity. The fan error signal is based off the 
error between the pump pwm and a desired pump pwm (set to 65%). This error, multiplied by 
a constant is used to change the velocity of the fan. 

PI � Control 

 PI control uses the same scheme as P-control however an integration is added into the 
error signal. This is done to reduce the steady state error of the thermal system. 

 

 

Figure 4-17 Simulink Auto-Code Implementation 

 

Fig 4-15 shows the Simulink diagram for auto-code generation onto the DSP board. Both P  and 
PI use this same diagram. The only change is a discrete integrator is added to both the pump 
and fan controllers.  Notice that the monitoring of outlet and inlet temperature has been moved. 
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They had to be removed since the auto-code generation generated more than 8k of C-code (on-
chip default setting).  

 

 

 

 

 

 

Figure 4-18.1 P Control Data (62Watts/Min) 

 

      Figure 4-18.1 PI Control Data (143Watts/Min) 

Fig 18 shows the performance of the two feedback controllers. Both were set with a 
threshold temperature of 85 degrees F. The power consumption was found by integrating the 
power usage and dividing out the sample number to determine power usage per minute. 
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5.1 Future Additions 

 Working on the development of the workstation has been essential in 

understanding the full potentials this system can have. With that, there are several 

additions that would continue to enhance the capabilities of this platform. These were 

not implemented in the system due to time constraint and because these were thought 

of at different points in the project. 

 The most significant addition to the workstation would be to use the Controller 

Area Network (CAN) interface that the boards have. The idea of this vehicle bus is to 

allow microprocessors to talk to each other without a host computer. With that, data 

can be sent between the DSP Boards to use anywhere. What would be ideal is for the 

thermal system to send information to display on the engine side GUI to allow full access 

to the system from one location.  

 Another addition to the project would be the ability to change the input 

command type. Currently the only type is step, but ramp and parabolic would be 

useful to see the effects of the load, but also how steady state error would be effected. 

The different command inputs can simulate different road conditions for the engine � 
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load going up a hill, etc. In addition to this, the implemented feed forward control can 

adjust the acceleration of the engine.  

 Future control students could be able to use this workstation on an EE431 or 432 

homework or design project if a data logging feature were added to the engine side 

GUI. Ideally a user would be given control specifications and design a controller to 

meet those specs. So, to make use of this a necessary addition is a table on the GUI 

that records all control specs, which the user could load into the MATLAB workspace 

and plot their results. Also, any root locus information would be useful, too.  

 

 

Appendix A 

Cooling System Components 
 
Fan: http://www.koolance.com/water-cooling/product_info.php?product_id=684 
Radiator: http://www.koolance.com/water-cooling/product_info.php?product_id=555 
Cooling Block: http://www.koolance.com/water-cooling/product_info.php?product_id=678 
Reservoir and Pump: http://www.koolance.com/water-cooling/product_info.php?product_id=296 
Pump: http://www.koolance.com/water-cooling/product_info.php?product_id=334 
Flow meter: http://www.koolance.com/water-cooling/product_info.php?product_id=288 
Coolant: http://www.koolance.com/water-cooling/product_info.php?product_id=491 
Code Cathode: http://www.koolance.com/water-cooling/product_info.php?product_id=125 
Temp Sensor: http://www.koolance.com/water-cooling/product_info.php?product_id=702 


