

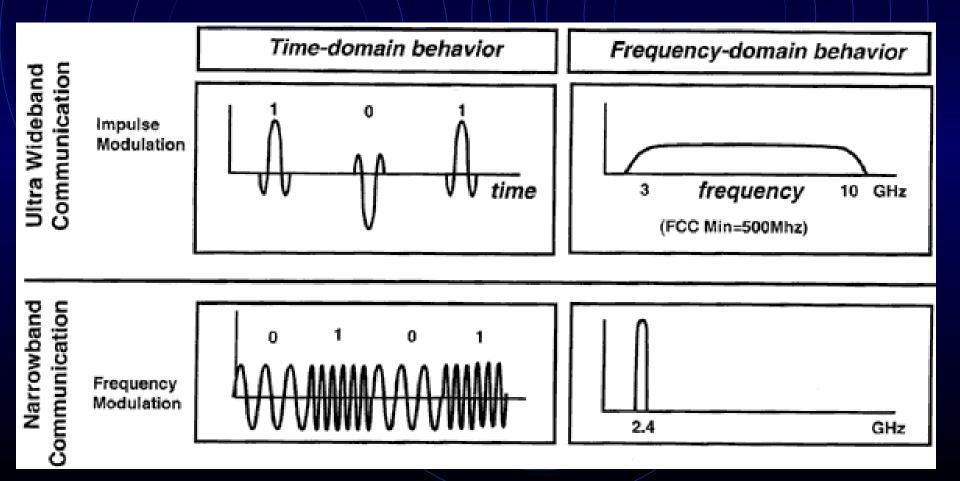
Ultra Wideband Antenna – Senior Project

By: Ross Stange Advisor: Dr. Prasad Shastry Bradley University

Summary on Antennas and UWB

- Introduction to Antennas
- Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information Received from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Intro to Antennas


- An antenna is a transducer between a guided wave propagating in a transmission line, and an electromagnetic wave propagating in an unbounded medium, like air.
- All antennas are both transmitting and receiving antennas.
- Car antenna mainly in receiving mode

Intro to UWB

- UWB is defined as a system having a bandwidth greater than 500 megahertz (MHz).
- UWB signals are pulse-based waveforms compressed in time, instead of sinusoidal waveforms compressed in frequency.

Intro to UWB (cont.)

Intro to UWB (cont.)

Applications

• Low Energy (Power) Levels for Short-Range High Speed Radio Communications

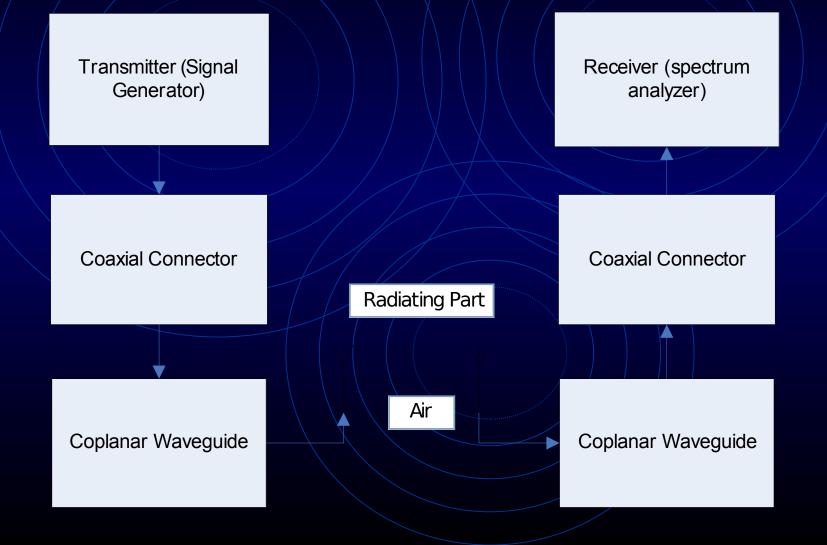
• Range is about 10 meters maximum

• Summary on Antennas and UWB

- Introduction to Antennas

- Introduction to UWB

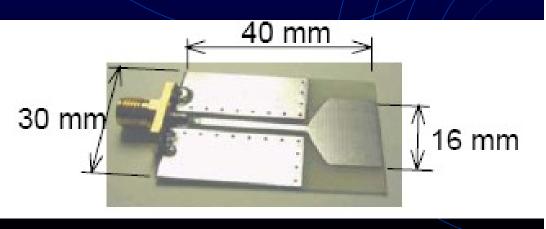
Deliverables Due during Fall
Semester

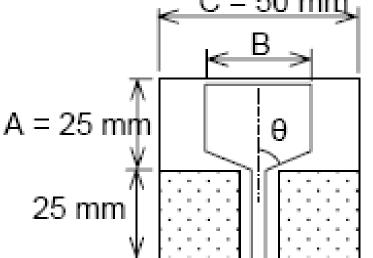

- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information Received from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Deliverables Due during Fall Semester

- Functional Description and Block Diagram
- Functional Requirements List and Specifications
- Proposal
 - Paper Version
 - Presentation Version

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information Received from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

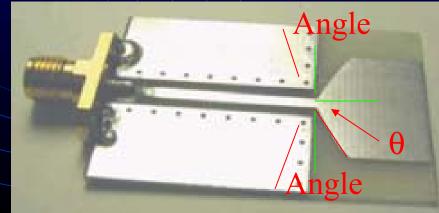

Final Block Diagram

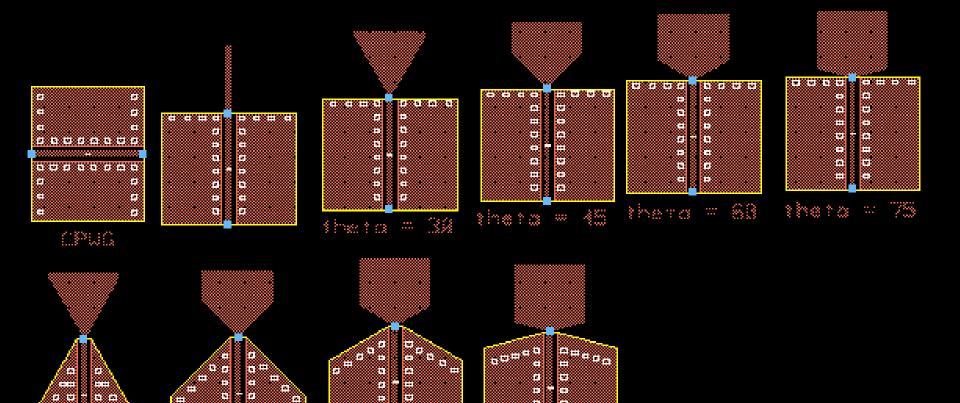


- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information Received from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Reference Antenna

- Picture of a Monopole Antenna [Left = Final (Optimized) Result] [Right = Initial Set-Up
- Final Values: $\theta = 63^{\circ}$ B = 16 mm A = 15 mm




- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Com Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information Received from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Changes to be Made to Reference Antenna

- Reference Antenna to be designed first $\forall \theta = 63^{\circ}$ (Original Value)
 - Will be changed to 0° , 30° , 45° , 60° , and 75° .
- Change shape of Coplanar Waveguide
 - Trapezoidal (Angle = 90θ)
- Test Coplanar Waveguide by itself
 - At 0°

Changes to be Made to Reference Antenna

.

1 h&10

83

e - 1

.....

.

m

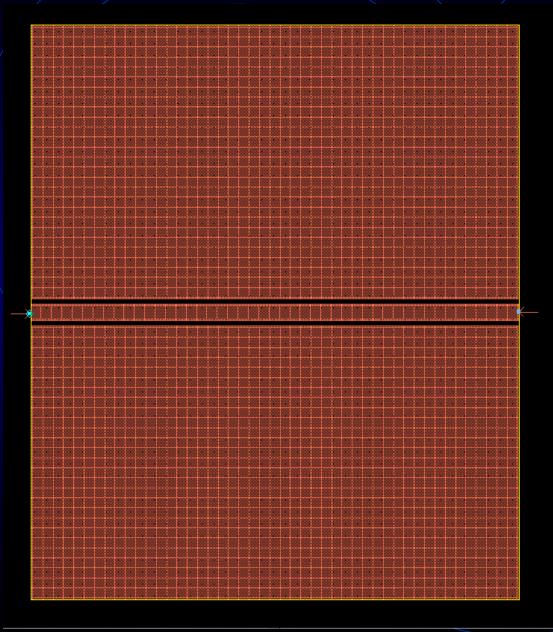
38

49

theid

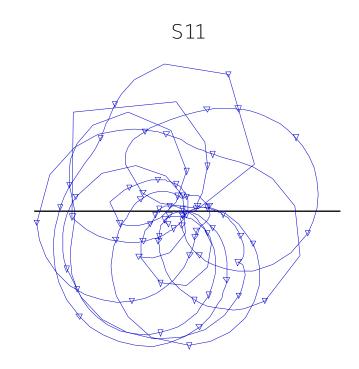
25

3332


thera

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information Received from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

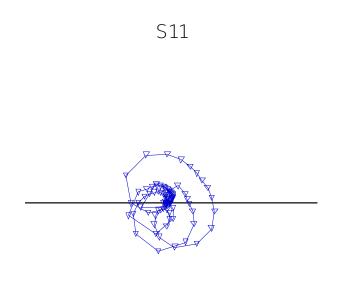
EE 409 (RF Comm Lab) Labs


- Network Analyzer
- ADS Lab
- Antenna Measurements (Not Finished!)
- Microstrip LPF Fabrication and Measurements (Not Finished!)

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

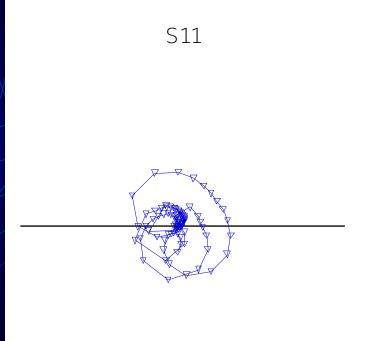
Coplanar Waveguide for Simulation 1

- Simulation 1 Bad Data
- Z0=50 Ohms (for all simulations)


freq (3.100GHz to 10.60GHz)

- Simulation 2 better results
- Date Simulation Done - 3/6/2008
- Center Conductor Width and Gap Changed

S11


freq (2.500GHz to 12.00GHz)

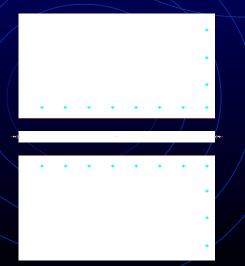
- Simulation 3
- Date Simulation Done
 3/13/2008
- Thickness of copper = 1 oz., which is different to Simulations 1 and 2

freq (2.500GHz to 12.00GHz)

- Simulation 4
- Date Simulation Done
 3/14/2008
- Simulation 4 similar to Simulation 3 because only width and gap change.

freq (2.500GHz to 12.00GHz)

- Final Layout of Coplanar Waveguide
- Width = 52.6 mils = 1.336 mm
- Gap = 38 mils = 0.965 mm
- Side Plane = 626.25 mils = 13.37 mm
- Width + 2(Gap) + 2(Side Plane) = 30 mm
- 1.336 mm + 2(0.965 mm) + 2(13.37 mm) = 30.006 mm
- 30.006 mm is very close to 30 mm



- Results from final layout of coplanar waveguide
- 9GHz only questionable spot

freq	Zreal	Zimg
3.000 GHz 3.500 GHz 4.000 GHz 5.000 GHz 5.000 GHz 6.000 GHz 6.500 GHz 7.000 GHz 7.500 GHz 8.000 GHz 8.500 GHz 9.000 GHz 9.500 GHz 10.00 GHz 10.00 GHz 10.00 GHz	49.067 50.438 52.014 53.215 53.308 52.912 44.660 49.662 50.505 50.368 49.132 50.295 5.944 47.456 49.934 48.151 47.305	2.548 2.301 2.513 1.370 -0.310 -1.954 6.011 2.117 1.398 0.297 -0.275 -0.106 -20.212 4.187 1.162 -3.199 -2.876

- Other Layouts to choose from
 - Less via holes (top left)
 - Gap=45 mils Width=54.2mils (top right)
 - Gap=65mils Width=57.15mils (bottom left)
 - Gap=73.28mils Width=58mils (bottom right)

Results from other layouts

Less via holes

\sim		• •	
(+91	$\mathbf{n} = \mathbf{n}$	mi	C
Ga	J = I		
	[/		

	\\				V \ 1
freq	Zreal	Zimg	freq	Zr	Zi
3.000 GHz 3.500 GHz 4.000 GHz 4.500 GHz 5.000 GHz 5.500 GHz 6.500 GHz 7.000 GHz 7.500 GHz 8.000 GHz 9.000 GHz 9.500 GHz 10.00 GHz 10.00 GHz 11.00 GHz	49.067 50.438 52.014 53.215 53.308 52.912 44.660 49.662 50.505 50.368 49.132 50.295 5.944 47.456 49.934 48.151 47.305	2.548 2.301 2.513 1.370 -0.310 -1.954 6.011 2.117 1.398 0.297 -0.275 -0.106 -20.212 4.187 1.162 -3.199 -2.876	3 000 GHz 3 500 GHz 4 000 GHz 5 500 GHz 5 500 GHz 6 000 GHz 7 000 GHz 7 000 GHz 7 500 GHz 8 500 GHz 9 000 GHz 9 000 GHz 10 00 GHz 10 00 GHz 11.00 GHz	49.209 50.355 51.330 51.797 51.583 51.609 45.558 49.747 50.165 49.122 47.123 48.209 7.116 47.639 49.951 47.400 46.425	$\begin{array}{c} 2.274\\ 1.687\\ 1.562\\ 0.691\\ -0.204\\ -1.121\\ 5.333\\ 1.848\\ 0.414\\ -0.795\\ -0.731\\ 0.355\\ -17.221\\ 4.124\\ 0.440\\ -4.211\\ -2.795\end{array}$

Gap = 65 mils

freq	Zr	Zi
3.000 GHz 3.500 GHz 4.000 GHz 5.000 GHz 5.500 GHz 6.000 GHz 6.500 GHz 7.000 GHz 7.500 GHz 8.000 GHz 9.000 GHz 9.500 GHz 10.00 GHz 10.50 GHz	49.453 50.133 49.896 49.028 48.345 48.967 46.883 49.882 49.332 46.656 43.650 44.323 11.769 47.905 49.883 46.123 43.000	1.737 0.506 -0.198 -0.456 0.091 0.591 4.261 1.101 -1.470 -2.633 -1.325 1.292 -11.140 4.047 -0.785 -5.713 -4.402

Gap = 73.28 mils

- Reasons for choosing Gap = 38 mils Width = 52.6 mils
 - Number of via holes equals reference antenna's amount
 - Time constraint
 - Side plane values are ready calculated
 - Simulation of coplanar waveguide without via holes already done

Gap = 65 mils and Gap = 73.28 mils are becoming to large

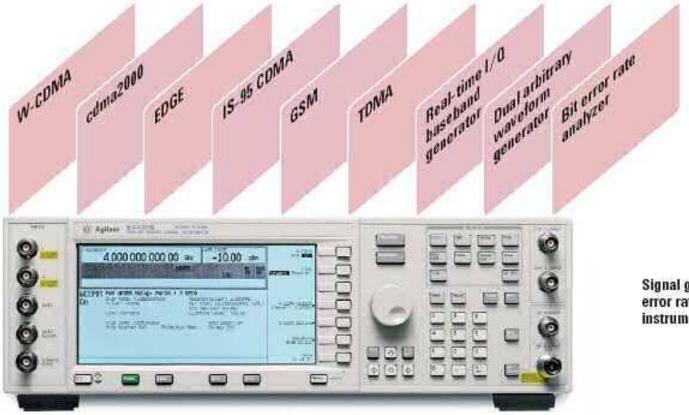
- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Equipment List

- Network analyzer HP8722C or HP8410C
- Spectrum analyzer HP8593E or HP8559A
- Signal generator HPE4433B (May be used instead of Pulse Generator)
- Agilent Advanced Design System ADS
- Anechoic Chamber
- Pulse Generator HP8011A (New! Possibility the Signal Generator)

Some Pictures of the Equipment

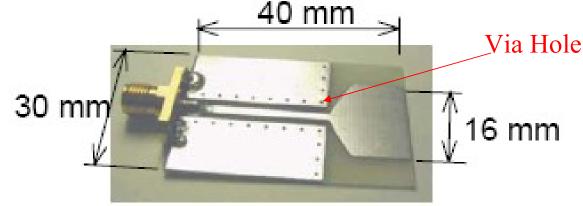
Spectrum Analyzer



Anechoic Chamber

Some Pictures of Equipment

Signal Generator



Signal generation and bit error rate analysis in one instrument.

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

New Info from Cunningham Graphics

- Printed Circuit Board 31 mil thickness
- 1 Oz. Copper thickness [Will increase due to electroplatting which was necessary due to via holes (plattedthrough holes)]
- Where antennas will be fabricated (with via holes)
- Via holes are used to connect the ground plate to upper conductor plate so it wouldn't create a T-line

New Info from Cunningham Graphics

- Telephone Conference with Bob Modica
- Possible Problem because of glass fiber amount
 - Each Company uses a different amount of glass fiber and epoxy
 - Just because the printed circuit board is a FR-4, does not mean it is exactly the same
 - Loss, dielectric constant can change

New Info from Cunningham Graphics

From Cunningham Graphics, actual specs:

- FR-4 Printed Circuit Board will have a 30 mil core, 4.6 dielectric constant, copper plating of 2.6 mil, 100 micro-inches of electroless nickel, 3-5 micro-inches of immersion gold
- Fabrication Process 2 weeks
- Fit 25-30 antennas on one sheet

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Testing and Results

• No testing have been done yet because antenna is being fabricated.

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Deliverables Due during Fall Semester
- Final Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Final Equipment List
- New Information from Cunningham Graphics 2/21
- Testing and Results
- Revised Tentative Schedule and Progress

Tentative Schedule

Schedule	for UWB Antenna Se			
Week	Date	Objective	% of Project	Completion
Pre-work	14-Jan-08 to 18-Jan-08	Network Analyzer Lab (EE 409 Lab)	5.00%	100%
1	24-Jan-08	Obtain Reference Paper and Learn about Signal Generator	5.00%	100%
2	31-Jan-08	Learn about Signal Generator	4.00%	100%
3	7-Feb-08	ADS Lab (EE 409 Lab)	5.00%	100%
4	14-Feb-08	ADS Lab (EE 409 Lab)	5.00%	100%
5	21-Feb-08	Design and Simulate Coplanar Waveguide in ADS	5.00%	100%
6	28-Feb-08	Give Monthly Presentation and Simulate CPWG	5.00%	100%
7	6-Mar-08	Simulate CPWG	5.00%	100%
8	13-Mar-08	Design Many Antennas in Gerber File	5.00%	100%
9	20-Mar-08	Spring Break	1.00%	100%
10	27-Mar-08	Design Many Antennas in Gerber File	5.00%	100%
11	3-Apr-08	Antenna being Fabricated at Cunningham Graphics/Do EE 409 Labs	7.50%	75%
12	10-Apr-08	Antenna being Fabricated at Cunningham Graphics/Do EE 409 Labs	7.50%	0%
13	17-Apr-08	Testing and Recording (Anechoic Chamber)	7.50%	0%
14	24-Apr-08	Testing and Recording (Anechoic Chamber)	7.50%	0%
15	1-May-08	Final Report and Presentation	10.00%	100%
16	8-May-08	Final Report and Presentation	10.00%	0%
16	8-May-08	Project 100% Completed	100.00%	70%

Special Thanks

- Special thanks to Bob Modica (Cunningham Graphics)
- Suresh Sundaram (Validus) and Bala Sundaram (Validus)
- Divya Gamini (Grad Student)

Questions?

• I'm sorry; you did not answer in the form of a question.

