

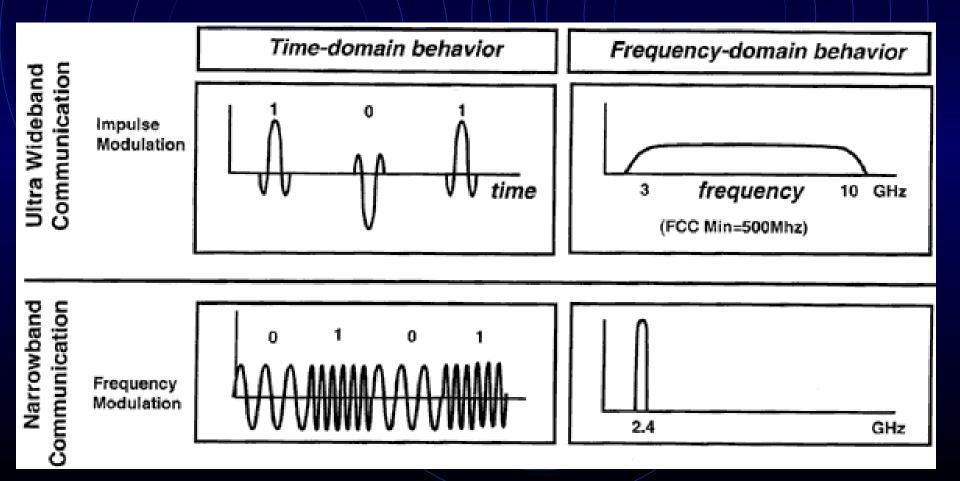
Ultra Wideband Antenna – Senior Project

By: Ross Stange Advisor: Dr. Prasad Shastry Bradley University

Summary of Project

- Introduction to Antennas
- Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna.
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

Intro to Antennas


- An antenna is a transducer between a guided wave propagating in a transmission line, and an electromagnetic wave propagating in an unbounded medium, like air.
- All antennas are both transmitting and receiving antennas.
- Car antenna mainly in receiving mode

Intro to UWB

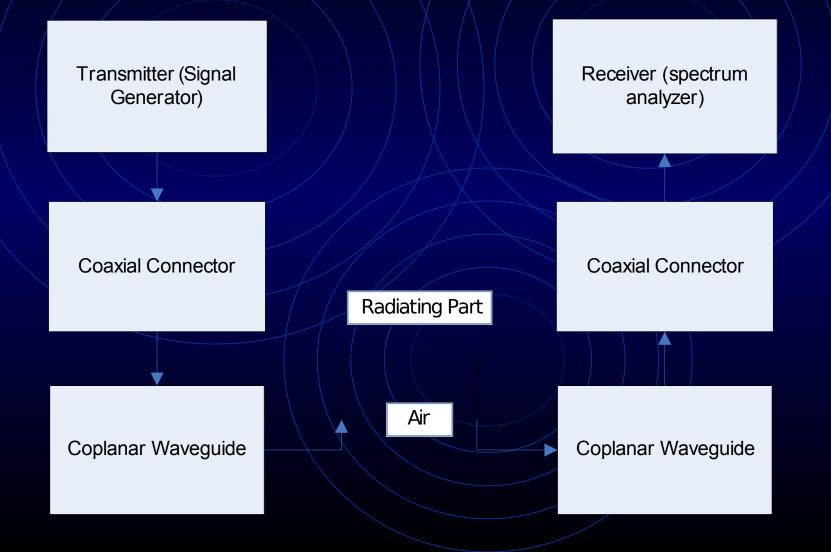
- UWB is defined as a system having a bandwidth greater than 500 megahertz (MHz).
- UWB signals are pulse-based waveforms compressed in time, instead of sinusoidal waveforms compressed in frequency.

Intro to UWB (cont.)

Intro to UWB (cont.)

Applications of Project

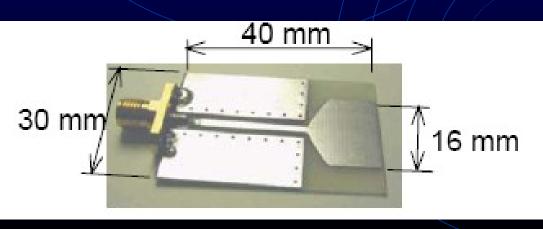
• Low Energy (Power) Levels for Short-Range High Speed Radio Communications

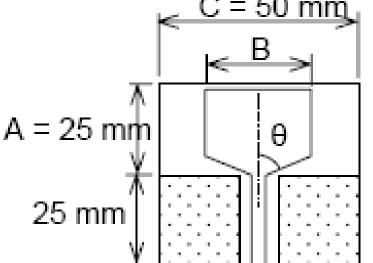

• Range is about 10 meters maximum

Importance and Purpose of Project

- Importance
 - UWB is becoming a form of new technology
 - UWB Antenna can be used to communicate wirelessly over a short distance using less power
- Project Purpose
 - To build a working UWB Antenna.
 - Learn the process of optimizing an antenna.

- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

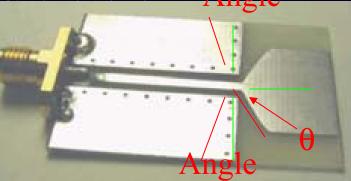

Block Diagram of UWB Antenna



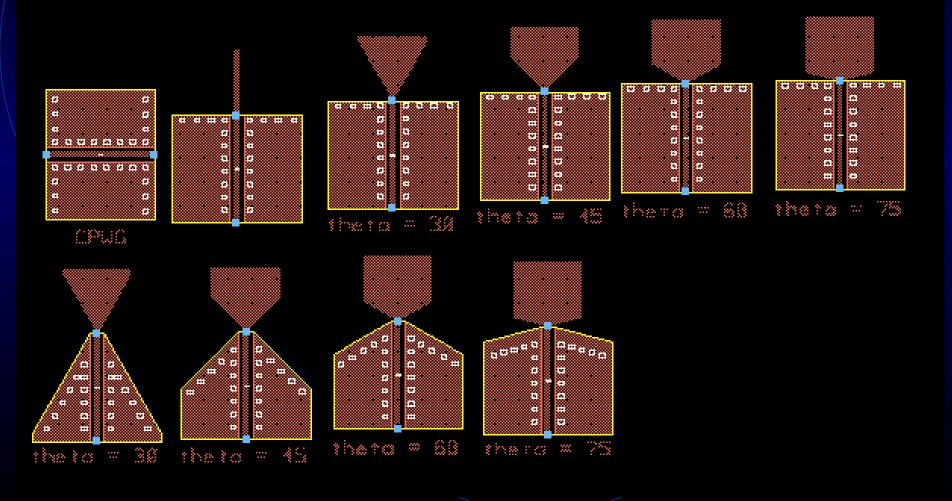
- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

Picture of Reference Antenna

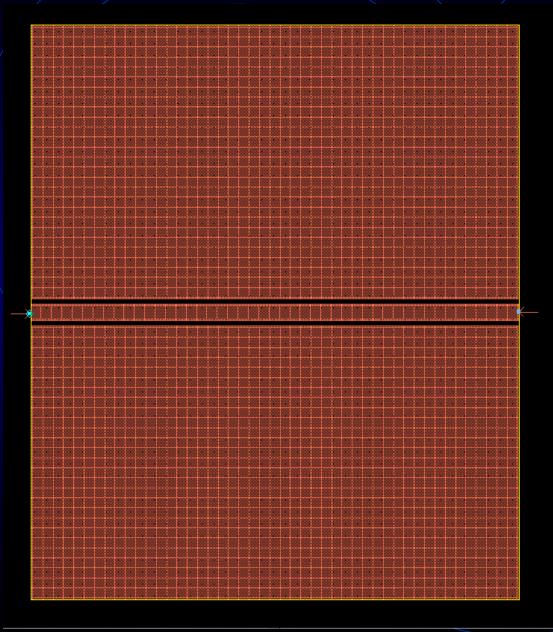
- Picture of a Monopole Antenna [Left = Final (Optimized) Result] [Right = Initial Set-Up -- from Fujitsu
- Final Values: $\theta = 63^{\circ}$ B = 16 mm A = 15 mm


- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Com Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

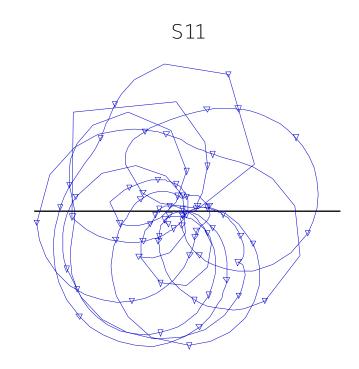
Work to Change Reference Antenna to UWB Antenna


 Reference Antenna to be designed first – gap and width of center conductor unknown

 $\forall \theta = 63^{\circ}$ (Original Value)


- Will be changed to 0° , 30° , 45° , 60° , and 75° .
- Change shape of Coplanar Waveguide
 - Trapezoidal (Angle = 90θ)
- Test Coplanar Waveguide by itself
 - At 0°

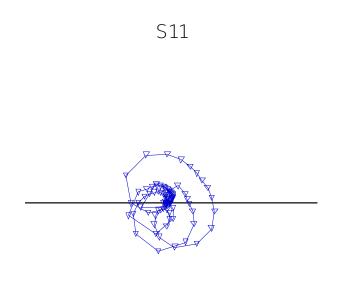
Work to Change Reference Antenna to UWB Antenna



- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram
- Picture of Reference Antenna
- Work to Change Reference Antenna to UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

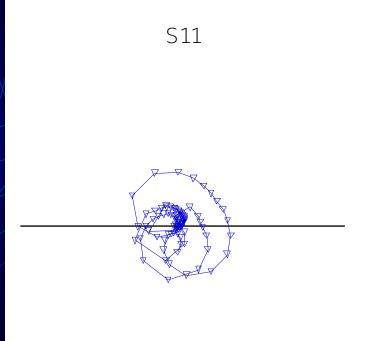
Coplanar Waveguide for Simulation 1

- Simulation 1 Bad Data
- Z0=50 Ohms (for all simulations)


freq (3.100GHz to 10.60GHz)

- Simulation 2 better results
- Date Simulation Done - 3/6/2008
- Center Conductor Width and Gap Changed

S11


freq (2.500GHz to 12.00GHz)

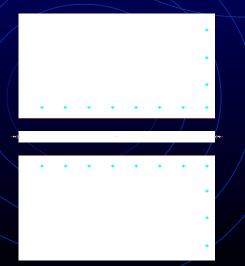
- Simulation 3
- Date Simulation Done
 3/13/2008
- Thickness of copper = 1 oz., which is different to Simulations 1 and 2

freq (2.500GHz to 12.00GHz)

- Simulation 4
- Date Simulation Done
 3/14/2008
- Simulation 4 similar to Simulation 3 because only width and gap change.

freq (2.500GHz to 12.00GHz)

- Final Layout of Coplanar Waveguide
- Width = 52.6 mils = 1.336 mm
- Gap = 38 mils = 0.965 mm
- Side Plane = 626.25 mils = 13.37 mm
- Width + 2(Gap) + 2(Side Plane) = 30 mm
- 1.336 mm + 2(0.965 mm) + 2(13.37 mm) = 30.006 mm
- 30.006 mm is very close to 30 mm



- Results from final layout of coplanar waveguide
- 9GHz only questionable spot

freq	Zreal	Zimg
3.000 GHz 3.500 GHz 4.000 GHz 5.000 GHz 5.000 GHz 6.000 GHz 6.500 GHz 7.000 GHz 7.500 GHz 8.000 GHz 8.500 GHz 9.000 GHz 9.500 GHz 10.00 GHz 10.00 GHz 10.00 GHz	49.067 50.438 52.014 53.215 53.308 52.912 44.660 49.662 50.505 50.368 49.132 50.295 5.944 47.456 49.934 48.151 47.305	2.548 2.301 2.513 1.370 -0.310 -1.954 6.011 2.117 1.398 0.297 -0.275 -0.106 -20.212 4.187 1.162 -3.199 -2.876

- Other Layouts to choose from
 - Less via holes (top left)
 - Gap=45 mils Width=54.2mils (top right)
 - Gap=65mils Width=57.15mils (bottom left)
 - Gap=73.28mils Width=58mils (bottom right)

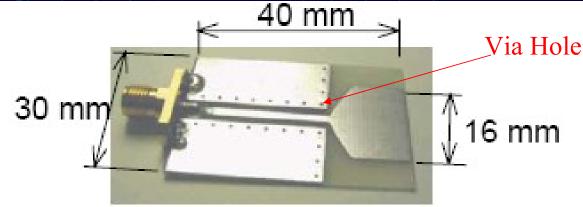
Results from other layouts

Less via holes

\sim		• •	
(+91	$\mathbf{n} = \mathbf{n}$	mi	C
Ga	J = I		
	[/		

	\\				V \ 1
freq	Zreal	Zimg	freq	Zr	Zi
3.000 GHz 3.500 GHz 4.000 GHz 4.500 GHz 5.000 GHz 5.500 GHz 6.500 GHz 7.000 GHz 7.500 GHz 8.000 GHz 9.000 GHz 9.500 GHz 10.00 GHz 10.00 GHz 11.00 GHz	49.067 50.438 52.014 53.215 53.308 52.912 44.660 49.662 50.505 50.368 49.132 50.295 5.944 47.456 49.934 48.151 47.305	2.548 2.301 2.513 1.370 -0.310 -1.954 6.011 2.117 1.398 0.297 -0.275 -0.106 -20.212 4.187 1.162 -3.199 -2.876	3 000 GHz 3 500 GHz 4 000 GHz 5 500 GHz 5 500 GHz 6 000 GHz 7 000 GHz 7 000 GHz 7 500 GHz 8 500 GHz 9 000 GHz 9 000 GHz 10 00 GHz 10 00 GHz 11.00 GHz	49.209 50.355 51.330 51.797 51.583 51.609 45.558 49.747 50.165 49.122 47.123 48.209 7.116 47.639 49.951 47.400 46.425	$\begin{array}{c} 2.274\\ 1.687\\ 1.562\\ 0.691\\ -0.204\\ -1.121\\ 5.333\\ 1.848\\ 0.414\\ -0.795\\ -0.731\\ 0.355\\ -17.221\\ 4.124\\ 0.440\\ -4.211\\ -2.795\end{array}$

Gap = 65 mils

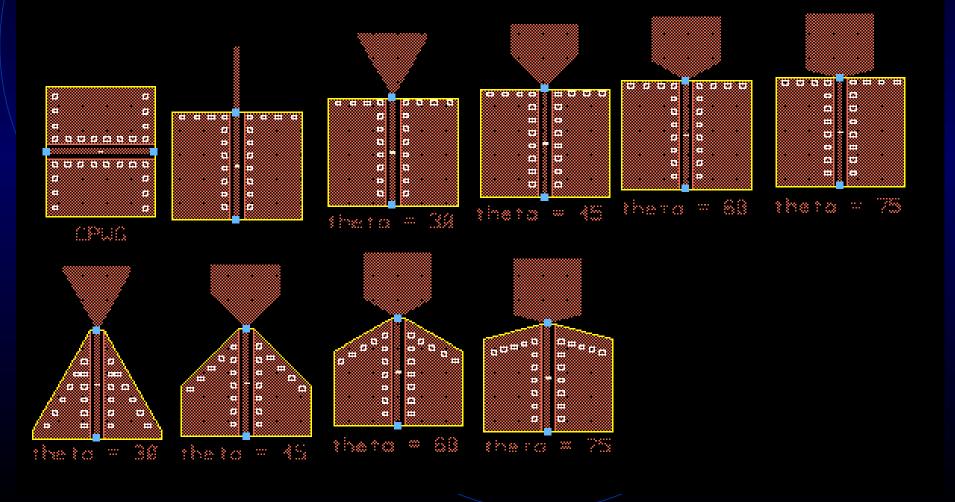

freq	Zr	Zi
3.000 GHz 3.500 GHz 4.000 GHz 5.000 GHz 5.500 GHz 6.000 GHz 6.500 GHz 7.000 GHz 7.500 GHz 8.000 GHz 9.000 GHz 9.500 GHz 10.00 GHz 10.50 GHz	49.453 50.133 49.896 49.028 48.345 48.967 46.883 49.882 49.332 46.656 43.650 44.323 11.769 47.905 49.883 46.123 43.000	1.737 0.506 -0.198 -0.456 0.091 0.591 4.261 1.101 -1.470 -2.633 -1.325 1.292 -11.140 4.047 -0.785 -5.713 -4.402

Gap = 73.28 mils

- Reasons for choosing Gap = 38 mils Width = 52.6 mils
 - Number of via holes equals reference antenna's amount
 - Time constraint
 - Side plane values are ready calculated
 - Simulation of coplanar waveguide without via holes already done (all values less than 5 Ohms from 50 Ohms)
 - Bad reading at 9 GHz is from via holes (they create a(n) inductive and capacitive impedance
 - Gap = 65 mils and Gap = 73.28 mils are becoming to large

- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna.
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

- Printed Circuit Board 31 mil thickness
- 1 Oz. Copper thickness [Will increase due to electroplatting which was necessary due to via holes (plattedthrough holes)]
- Where antennas will be fabricated (with via holes)
- Via holes are used to connect the ground plate to upper conductor plate so it wouldn't create a T-line



- Telephone Conference with Bob Modica 2-21
- Possible Problem because of glass fiber amount
 - Each Company uses a different amount of glass fiber and epoxy
 - Just because the printed circuit board is a FR-4, does not mean it is exactly the same
 - Loss, dielectric constant can change

From Cunningham Graphics, actual specs:

- FR-4 Printed Circuit Board will have a 30 mil core, 4.6 dielectric constant, copper plating of 2.6 mil, 100 micro-inches of electroless nickel, 3-5 micro-inches of immersion gold
- Fabrication Process 2 weeks
- Fit 25-30 antennas on one sheet for \$350

- Working on Gerber File
 - 10 designs cost about \$850
 - 7 designs cost about \$650
 - 4 designs cost about \$450
- Four designs Chosen
 - Coplanar Waveguide by itself
 - Radiating part $\theta = 45$, 60, and 75 degrees

- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics

• Equipment List

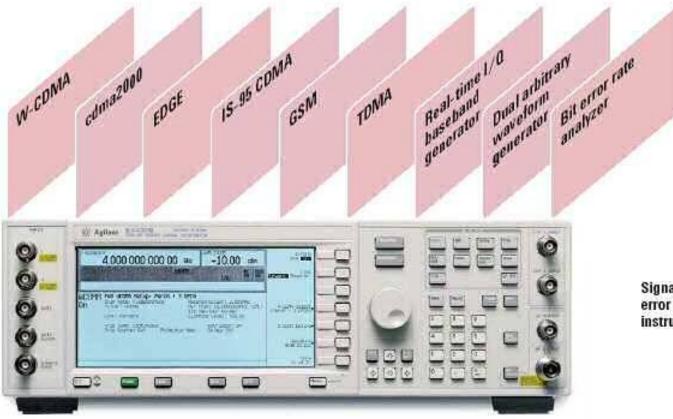

- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

Equipment List

- Network analyzer HP8722C or HP8410C
- Agilent Advanced Design System ADS
- Pulse Generator HP8011A (Possibility the Signal Generator)

Some Pictures of the Equipment

Anechoic Chamber


Some Pictures of the Equipment

Spectrum analyzer - HP8593E or HP8559A

Some Pictures of Equipment

Signal generator - HPE4433B (May be used instead of Pulse Generator)

Signal generation and bit error rate analysis in one instrument.

- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna.
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

EE 409 (RF Comm Lab) Labs

• Network Analyzer

• ADS Lab

- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs

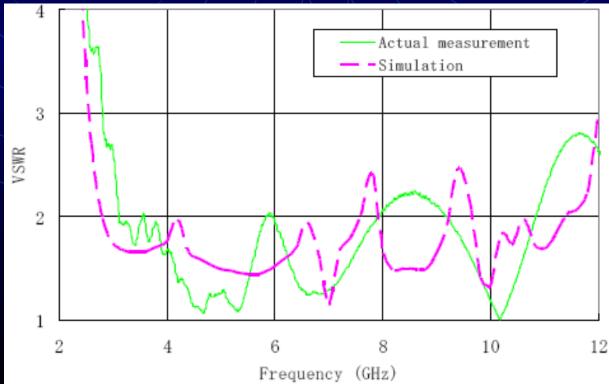
Goals and Completion of Goals

- Future Work
- Special Thanks and Questions

Goals and Completion of Goals

To have a working antenna

- About 85-90% complete
- Simulation working
- Stuck at fabrication
- VSWR less than 2
- Works over UWB frequency range
- Increase knowledge on Antennas
 - Transmitting and Receiving antenna
 - One port system
- Increase knowledge on UWB
 - Pulse based not frequency based


- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna.
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work
- Special Thanks and Questions

Future Work

- Test designs coming back from Cunningham Graphics
 - Would like to do it myself
- Have all 10 designs of the UWB Antenna be fabricated and tested
- Use Sonnet to test radiating part of the antenna
- Change via holes' positions
 - Have them be a least 3 times the gap from the edge of the side planes -- requested by an advisory board member

Future Work

• Expected VSWR characteristics (from reference antenna)

- Summary of Project
 - Introduction to Antennas
 - Introduction to UWB
- Block Diagram of UWB Antenna
- Picture of Reference Antenna
- Work to Change Reference Antenna into UWB Antenna
- Simulations and Layouts
- Information Received from Cunningham Graphics
- Equipment List
- EE 409 (RF Comm Lab) Labs
- Goals and Completion of Goals
- Future Work

Special Thanks and Questions

Special Thanks

- Special thanks to Bob Modica (Cunningham Graphics)
- Suresh Sundaram (Validus) and Bala Sundaram (Validus)
- Divya Gamini (Grad Student)
- Saif Anwar and Sarah Kief helping with ADS
- Dr. Prasad Shastry (ECE professor and advisor)

Paging Dr. Ahn, you have a phone call on the white curtsey phone. Please answer right

away.

Questions?

• I'm sorry; you did not answer in the form of a question.

