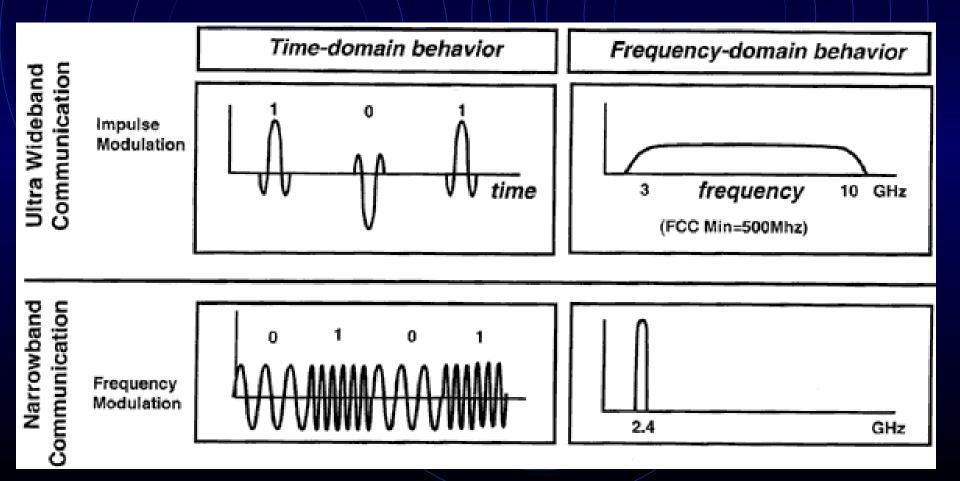
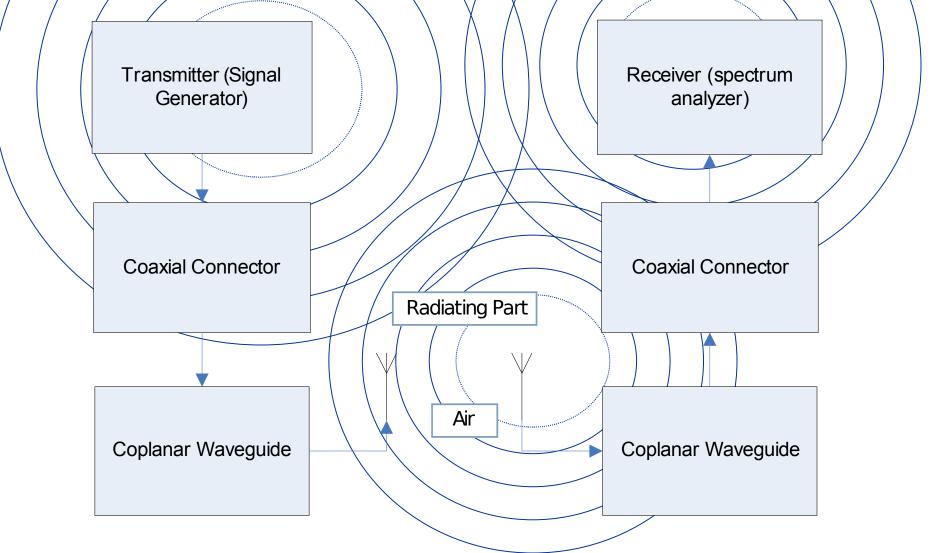
Ultra Wideband (UWB) Antenna **Progress Report** January/February By: Ross Stange Advisor: Dr. Prasad Shastry Bradley University

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Information Received from Cunningham Graphics
- Revised Tentative Schedule and Progress

Intro to Antennas

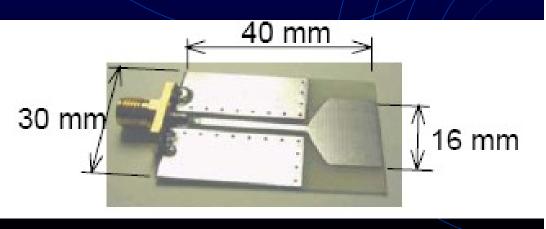

- An antenna is a transducer between a guided wave propagating in a transmission line, and an electromagnetic wave propagating in an unbounded medium, like air.
- All antennas are both transmitting and receiving antennas.
- Car antenna mainly in receiving mode

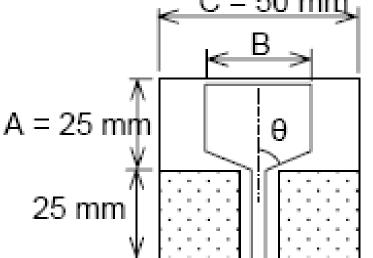
Intro to UWB


- UWB is defined as a system having a bandwidth greater than 500 megahertz (MHz).
- UWB signals are pulse-based waveforms compressed in time, instead of sinusoidal waveforms compressed in frequency.

Intro to UWB (cont.)

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Information Received from Cunningham Graphics
- Revised Tentative Schedule and Progress


Updated Block Diagram



- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Information Received from Cunningham Graphics
- Revised Tentative Schedule and Progress

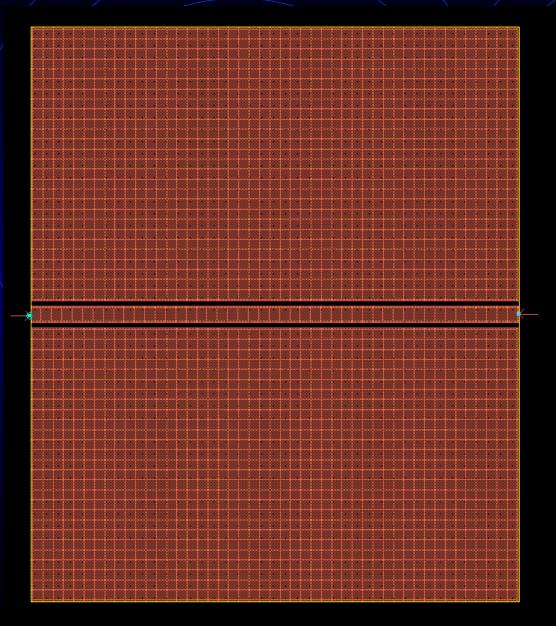
Reference Antenna

- Picture of a Monopole Antenna [Left = Final (Optimized) Result] [Right = Initial Set-Up
- Final Values: $\theta = 63^{\circ}$ B = 16 mm A = 15 mm

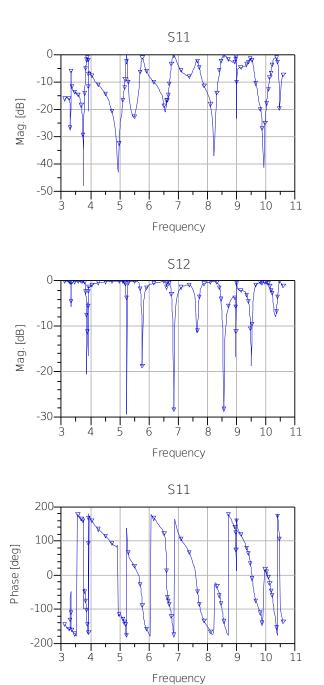
- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Com Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Information Received from Cunningham Graphics
- Revised Tentative Schedule and Progress

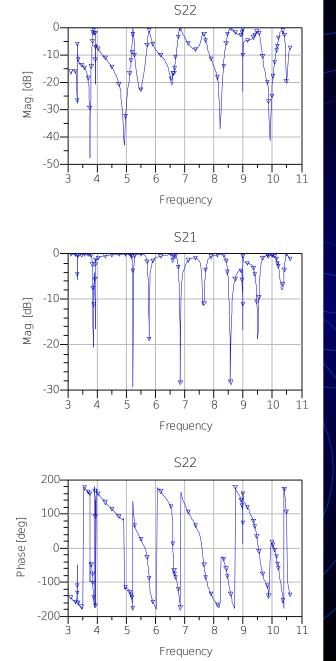
Changes to be Made to Reference Antenna

- Reference Antenna to be designed first $\forall \theta = 63^{\circ}$ (Original Value)
 - Will be changed to 0°, 30°, 45°, and 75°.
- Change shape of Coplanar Waveguide
 - Trapezoidal (Angle = 90θ)
- Test Coplanar Waveguide by itself
 - At 0°, 30°, 45°, 63°, and 75°

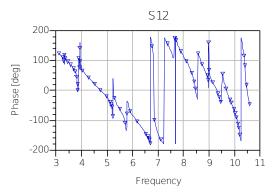

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Information Received from Cunningham Graphics
- Revised Tentative Schedule and Progress

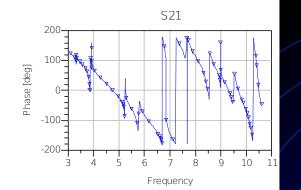
EE 409 (RF Comm Lab) Labs

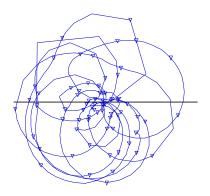

- Network Analyzer
- ADS Lab
- Antenna Measurements (Not Finished!)
- Microstrip LPF Fabrication and Measurements (Not Finished!)


- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Info from Cunningham Graphics
- Revised Tentative Schedule and Progress

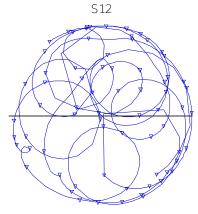
Simulation and Layouts

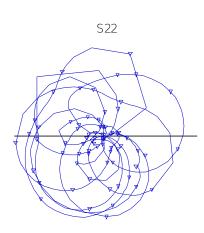


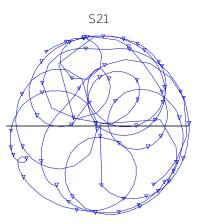

Coplanar Waveguide



Simulation and Layouts




S11


freq (3.100GHz to 10.60GHz)

freq (3.100GHz to 10.60GHz)

freq (3.100GHz to 10.60GHz)

freq (3.100GHz to 10.60GHz)

Simulation

and Layouts

Simulations have bad data. Need to re-simulate

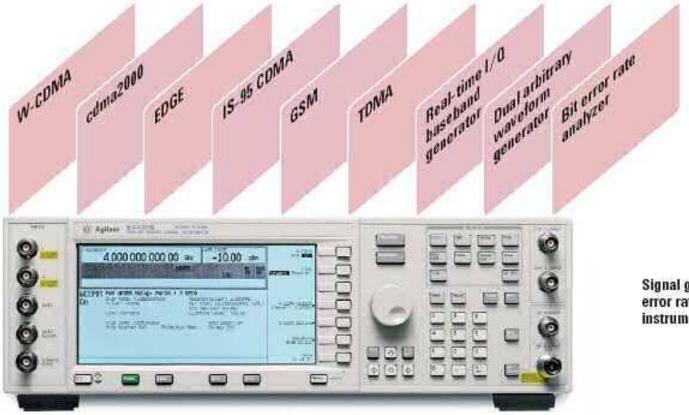
- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Info from Cunningham Graphics
- Revised Tentative Schedule and Progress

Equipment List

- Network analyzer HP8722C or HP8410C
- Spectrum analyzer HP8593E or HP8559A
- Signal generator HPE4433B (May be used)
- Agilent Advanced Design System ADS
- Sonnet 10.52 (Not Going to be Used! Time Constraint)
- Anechoic Chamber
- Agilent VEE pro (Not Going to be Used!)
- Pulse Generator HP8011A (New! Possibility the Signal Generator)

Some Pictures of Equipment

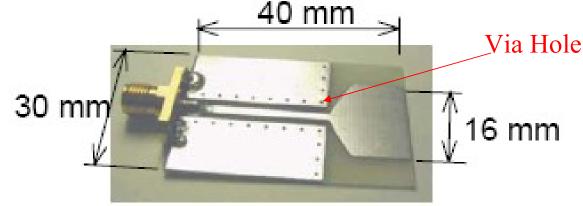
Spectrum Analyzer



Anechoic Chamber

Some Pictures of Equipment

Signal Generator



Signal generation and bit error rate analysis in one instrument.

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Info from Cunningham Graphics
- Revised Tentative Schedule and Progress

New Info from Cunningham Graphics

- Printed Circuit Board 31 mil thickness
- 1 Oz. Copper thickness [Will increase due to electroplatting which was necessary due to via holes (plattedthrough holes)]
- Where antennas will be fabricated (with via holes)
- Via holes are used to connect the ground plate to upper conductor plate so it wouldn't create a T-line

New Info from Cunningham Graphics

- Telephone Conference with Bob Modica
- Possible Problem because of glass fiber amount
 - Each Company uses a different amount of glass fiber and epoxy
 - Just because the printed circuit board is a FR-4, does not mean it is exactly the same
 - Loss, dielectric constant can change

New Info from Cunningham Graphics

From Cunningham Graphics, actual specs:

- FR-4 Printed Circuit Board will have a 30 mil core, 4.6 dielectric constant, copper plating of 2.6 mil, 100 micro-inches of electroless nickel, 3-5 micro-inches of immersion gold
- Fabrication Process 2 weeks
- Fit 25-30 antennas on one sheet

- Summary on Antennas and UWB
 - Introduction to Antennas
 - Introduction to UWB
- Updated Block Diagram
- Picture of Reference Antenna
- Changes to be Made to Reference Antenna
- EE 409 (RF Comm Lab) Labs
- Simulations and Layouts
- Updated Equipment List
- New Info from Cunningham Graphics
- Revised Tentative Schedule and Progress

Tentative Schedule

Schedule for UWB Antenna Senior Project				
Week	Date	Objective	% of Project	Completion
Pre-work	14-Jan-08 to 18-Jan-08	Network Analyzer Lab (EE 409 Lab)	5.00%	100%
1	24-Jan-08	Obtain Reference Paper and Learn about Signal Generator	5.00%	100%
2	31-Jan-08	Learn about Signal Generator	4.00%	100%
3	7-Feb-08	ADS Lab (EE 409 Lab)	5.00%	100%
4	14-Feb-08	ADS Lab (EE 409 Lab)	5.00%	100%
5	21-Feb-08	Design and Simulate Coplanar Waveguide in ADS	5.00%	20%
6	28-Feb-08	Give Monthly Presentation and Build Many Antennas on a Microstrip	5.00%	0%
7	6-Mar-08	Build Many Antennas on a Microstrip	5.00%	0%
8	13-Mar-08	Build Antennas and Send Antennas Out to Fabricated and Do Antenna Testing Lab (EE 409 Lab)	5.00%	0%
9	20-Mar-08	Spring Break	1.00%	0%
10	27-Mar-08	Testing and Recording (Anechoic Chamber)	7.50%	0%
11	3-Apr-08	Testing and Recording (Anechoic Chamber)	7.50%	0%
12	10-Apr-08	Possible Design Changes	5.00%	0%
13	17-Apr-08	Send Design Changes to be Fabricated	7.50%	0%
14	24-Apr-08	Testing and Recording (Anechoic Chamber)	7.50%	0%
15	1-May-08	Final Report and Presentation	10.00%	0%
16	8-May-08	Final Report and Presentation	10.00%	0%
16	8-May-08	Project 100% Completed	100.00%	25%

Special Thanks

- Special thanks to Bob Modica(Cunningham)
- Suresh(Validus) and Bala(Validus)
- Divya(Grad Student)

Questions?

• I'm sorry; you did not answer in the form of a question.

