Using Haptics to Simulate Medical Diagnoses

Christine Cabrera Bradley University Senior Project Proposal Project Advisor: Dr. Tom Stewart

Outline

- Introduction
- Project Summary
- Review of Previous Work
- Applicable Patents and Standards
- Project Description
 - Functional Description
 - System Block Diagram
 - Requirements and Performance Specifications
 - Preliminary Lab Work
 - Initial Design Specifications
 - Present State and Next Steps
 - •Equipment and Parts List
- Schedule of Tasks
- Questions

Introduction

- Growing Industry for Medical Simulations
- WHY?
 - Cost-Effective Training
 - Increasingly Realistic Environments
 - Graphical Interface/Virtual Reality
 - Force-Feedback
 - Avoid Use of Limited Resources
 - Repetition

Project Summary

- Model medical applications based on touch.
- Provide proper force-feedback.
- Phantom Omni Haptic Device

USING HAPTICS TO SIMULATE MEDICAL DIAGNOSES

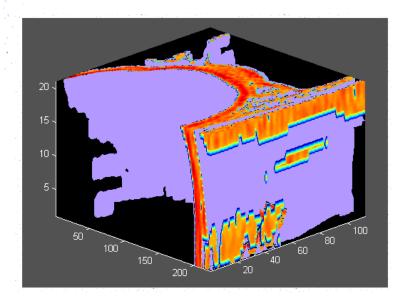

Review of Previous Work

Image Generator to Support the Application of a Haptic Device for the Simulation of Arthroscopic Surgery Renata Zabawa Advisor: Dr. Stewart

Image Data

MATLAB CODE to Generate Model of Cartilage and Simulation of Arthroscopic Surgery Arthroscopic Surgery Simulation on Monitor

Figure 1: Overall System Block Diagram

Review of Applicable Patents and Standards


Patents

- 7,206,627: System and method for intra-operative haptic planning of a medical procedure.
- 7,206,627: System and method for haptic sculpting of physical objects.
- 6,113,395: Selectable instruments with homing devices for haptic virtual reality medical simulation.

<u>Standards</u>

ISO/DIS 9241-920: Ergonomics of human-system interaction – Guidance on tactile and haptic interactions.

Project Description – Functional Description

• Force-feedback on system.

- Initial graphics applied in OpenGL programming language
- Integrate virtual environment created from Phase 1

Project Description – System Block Diagram

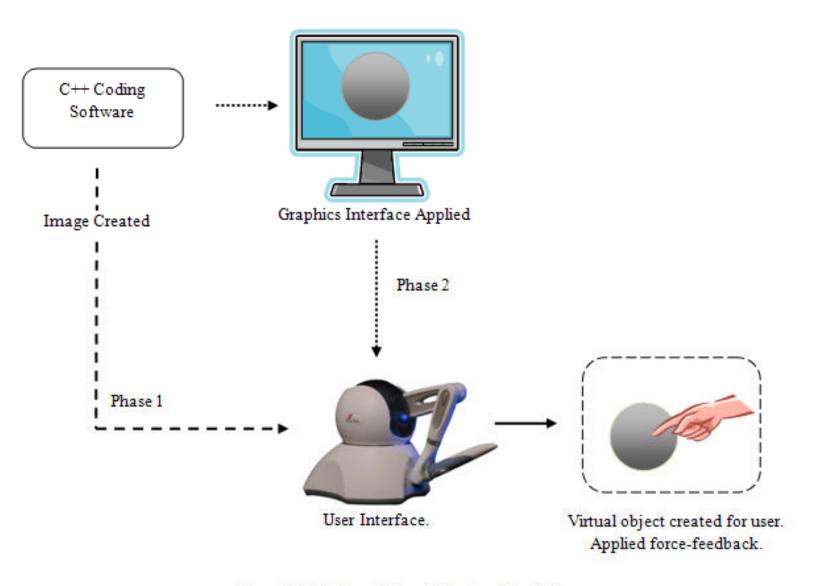


Figure 1: High Level Overall System Block Diagram

Project Description – Requirements and Performance Specifications

Subsystem	Requirements	Performance Specifications	
C++ Programming	Shape definition	Successful user interaction.	
Graphics Interface	3D imaging structure applied to shapes	Visually recognize graphics.	
User Interface	Hand-hold haptic device.	Maximum spatial limits of device.	
Virtual Object Created.	User-applied pressure	User differentiates between soft/hard surfaces and hollow/solid surfaces.	

Project Description – Datasheet

Model	The PHANTOM Omni Device	
Force feedback workspace	~6.4 W x 4.8 H x 2.8 D in	
	> 160 W x 120 H x 70 D mm	
Footprint		
Physical area the base of device	6 5/8 W x 8 D in	
occupies on the desk	~168 W x 203 D mm	
Weight (device only)	3 lb 15 oz	
Range of motion	Hand movement pivoting at wrist	
	> 450 dpi	
Nominal position resolution	~ 0.055 mm	
Backdrive friction	<1 oz (0.26 N)	
Maximum exertable force at nominal		
(orthogonal arms) position	0.75 lbf. (3.3 N)	
Continuous exertable force (24 hrs.)	> 0.2 lbf. (0.88 N)	
	X axis > 7.3 lb/in (1.26 N/mm)	
Stiffness	Y axis > 13.4 lb/in (2.31 N/mm)	
	Z axis > 5.9 lb/in (1.02 N/mm)	
Inertia (apparent mass at tip)	~0.101 lbm. (45 g)	
Force feedback	x, y, z	
Position sensing	x, y, z (digital encoders)	
••••	••••••	
[Stylus gimbal]	[Pitch, roll, yaw (± 5% linearity	
	potentiometers)]	
Interface	IEEE-1394 FireWire® port	
Supported platforms	Intel-based PCs	
GHOST® SDK compatibility	No	
3D Touch [™] SDK compatibility	Yes	
	Selected Types of Haptic Research and	
Applications	The FreeForm® Concept™ system	

Preliminary Lab Work

Research:

- Specific device programming commands.
- Sample programs provided with device, understanding user

interaction and device responses.

Initial Design Specifications:

Medical Application – Two Layers

Layer	Matter Consistency	Programming Approach	Visual
Outer Sphere	Soft, expanding.	Sphere Stiffness ≤ 0.15	
Inner Sphere	Hard, firm	Sphere Stiffness ≥ 0.25	

Preliminary Lab Work

Completed:

- ✓ Programming of plane orientation.
- ✓ Programming of two physically distinguishable layers.

In Process:

- \odot Break down graphics programming.
- \odot Apply plane layers to virtual spheres.

Next Steps:

Create multiple surfaced objects underneath even plane

Equipment Parts List

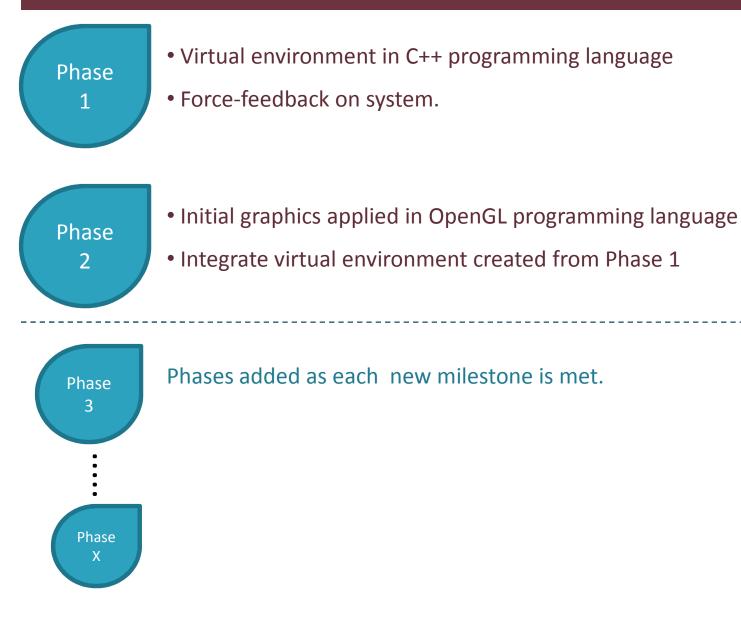
Haptic Device:

PHANTOM[®] Omni[™]

Software:

Microsoft Visual C++ Language

Schedule of Tasks


Lab Time	Project Goals	
January 23 – January 25	Re-establish virtual environment created in December.	
January 28 – February 8	Complete graphics for sphere layers. (2 weeks)	
February 11 – February 22	Program plane layer over multiple surfaces. (2 weeks)	
February 25 – March 7	Complete graphics for multiple surfaces system. (Part A - 2 weeks)	
March 10 – March 14	Spring Break	
March 17 – March 21	Complete graphics for multiple surfaces system. (Part B - 1 weeks)	
March 24 – April 11	Integrate material properties into graphics model. (3 weeks)	
April 14 – April 25	Integrate all three systems. Test haptic realism. (2 weeks)	
April 28 – May 2	Preparation for Oral Presentation and Final Project Report	
May 5 – May 9	Final Project Report	

Questions

Questions?

Using Haptics to Simulate Medical Diagnoses

Project Description – Functional Description

