
 1

Using Haptics to Simulate Medical Diagnoses

Christine Cabrera, Advisor: Dr. Tom Stewart

 Abstract—This project utilizes the SensAble

Technologies Phantom Omni haptic device to research the

meaning of “touch” as a medical diagnosis. Providing a

simulation that includes correct haptic feedback can offer

a significantly more realistic environment than graphics

alone. C++ and OpenGL software was written to create a

simple virtual environment containing multiple objects

with varying levels of resistance. The environment created

demonstrates the collaboration of both the graphical and

haptic interfaces that allow an operator to “feel” what is

seen on the computer screen. This research is meant to

create awareness about haptics as a powerful simulation

tool, and lay foundation work from which future haptic

projects can build.

 Index Terms— medical simulation, force-feedback,

haptic device, haptics technology.

I. Introduction

The market for medical simulators is growing

dramatically as an increase in technology is

allowing these devices to come to life. Creating

virtual environments for the medical industry can

provide cost-effective training and the opportunity

for repetitive learning. This project moves beyond

surgical tools and instruments, and utilizes a haptic

device to research the meaning of “touch” as a

diagnosis. What lies under the skin is visually

unknown and applying pressure to the area (and

knowing what it should feel like) results in the

initial diagnosis.

A. What is a Haptic Device?

A haptic device is an electronic machine that

creates a virtual three-dimensional environment

allowing the operator to feel and touch virtual

objects. The device can resist movement in specific

locations so that the operator can feel where virtual

objects have been placed. The device can mimic

various feelings of touch from a slippery, malleable

substance to one that is rock solid. This feeling, or

touch, is also referred to as force-feedback from the

system. Terms such as haptic device and haptics

cursor are interchangeable in this research paper.

B. Future Applications for Haptics

This research focuses mainly on applications for

haptics in the medical industry, specifically in

training and simulation environments. Providing

proper and realistic feedback in a virtual simulation

can teach an inexperienced doctor to become

sensitive to the significance of various levels of

pressure. In collaboration with complex graphical

environments used for surgical simulations, haptics

can replicate the texture of organs, tissues, and

bones, for example. These simulations can also be

extended to training individuals in all levels of

medical professions, including doctors, nurses,

medical technicians, and military medical units.

II. System Description

To create the virtual environment, software was

written to the haptic device using C++ commands

and functions from the OpenHaptics Toolkit

reference manual.

A. Initial Research

The OpenHaptics Toolkit reference manual and

sample software programs available were used

during the initial research for operating the device,

understanding device positions, orientation, and

physical characteristics of objects.

1) Phase 1 - Software

Referring to Fig. 1 below, the first phase of this

project development relied heavily on creating a

virtual environment solely based on the haptic

interface.

2) Phase 2 - Graphics

The second phase involved writing graphics to

the objects created. An open source imaging

software called OpenGL was used to create the

graphics.

Fig. 1. High level overall system block diagram.

 2

III. Project Development – Phase 1

A. Initial Two-Sphere Design

For the initial design task, it was proposed to

create two spheres. One sphere would be made up

of a very stiff surface inside a larger, more

malleable sphere. The intent was for the operator to

“push into” the first sphere and feel the harder

surface of the second sphere, mimicking the

application of pressure to an area and feeling its

force-feedback.

After numerous attempts, the cursor could not

locate the inside sphere. This may have been due to

the code defaulting the spheres as a “solid” object

and thus didn’t know how to compute an object

inside the other. This will require some additional

research to correct.

Fig. 2. Image of the two-sphere design concept.

B. Forces by Position Parameters

A second design idea was to map out the

position of the cursor and impose forces at specific

positions. For example, if the cursor’s X positions

are between say, 15 and 20 points, then apply Force

= K * X, where K is equal to a force constant. Also,

the force applied in this design increases (or pushes

back) as the cursor passes through the X frames.

This design worked well when it only had two

reference planes. The next step was to create a

stiffer force for the user to feel once they have

passed through that first layer. However, after

introducing another parameter to create a stiffer

force, say at 20 < X < 25 some instability was

created with the device causing it to create a

“buzzing” sound. The instability lessened if the

stiffer force overlapped, for example at

18 < X < 23.

Fig. 3. Image of position parameter with end-to-end forces. Created

instability on device.

Fig. 4. Image of position parameter with overlapping forces. Created more

stability on device.

From experimentation came two additional design

questions: 1) Can objects be created solely on

specifying certain X,Y,Z values? and 2) If not, can

this be used as a layer over OpenGL cubes and

spheres?

Question 1 – The expected answer is, yes, of course.

Mathematically, one can create infinite objects with

X,Y,Z values. However, the most that was proved

here was an attempt at creating a cube. Basically, it

consisted of setting forces over all three

dimensions: Set a force for X values (length), a

force for Y values (width), and force for Z values

(height). While this did work correctly, the

instability was too much to work with and the cube

created through OpenGL created a much more well-

defined shape.

Question 2 – This brings about the second question.

If the instability is caused by created multiple

layers, why not create one layer on top of already

existing spheres or cubes? This became part of a

new design. The first layer was a force set on

specific X values, say for 20 < X < 40. Then a

sphere was created with its center position just

behind the layer, say at X > (20 – R) where R is the

radius of the sphere. Initially, whenever the cursor

reached the surface of the sphere, the forces of the

 3

first layer would disappear. After numerous

attempts of readjusting the programming, the

correction needed was to set the force of the sphere

equal to its force plus that of the layer. Originally it

was only set to equal the forces of the sphere only.

Only haptics were rendered, no graphics were

programmed. An image of the haptics created is

shown in Fig. 5 (a).

Fig. 5. (a) Image of haptics created with sphere drawn behind a position-

parameter layer.

IV. Project Development – Phase 2

A. Initial Graphics Design

The idea was to mimic the design shown in

Figure 5 and apply graphics. The first step was to

create a graphical sphere and locate it directly inside

of a graphical cube. However the problems found in

the two-sphere design were brought up again at this

point. The haptic device can push through the layer

of the cube but no matter how hard it is pushed or

how close the sphere is to the surface of the cube,

the cursor could never feel the surface of the sphere.

The conclusion made was that the programming

creates solid cubes and solid spheres. Pressing

through the cube will only allow the user to feel

forces from the cube, and nothing else. Further

research will need to be done to correct this issue.

Fig. 6. Image of graphics created in OpenGL with sphere drawn behind a

three-dimensional plane.

B. Final Graphics Design

The second attempt for creating graphics was to

create multiple cubes, possibly in a row that

contained various instances of friction and stiffness.

Friction and stiffness are important parameters that

help describe the surface of an object to the

operator. Friction determines whether something is

smooth like a tendon, or rough like a bone. Stiffness

also determines the malleability factor – how dense

or flimsy an object might be. The final design

consisted of three cubes in a row, imitating a

rectangular surface. The cube on the left contained a

malleable surface, and the cube on the right had a

variation in friction and stiffness. There were also

two spheres present in the scene, one to show the

operator what it looked like and how it felt, and the

second was hidden on the surface of the middle

cube mimicking a “lump” that the operator would

have to locate. This design was shown in the

Bradley University Student Exposition.

a

 b

 c

Fig. 7. (a) Graphical representation of final design. (b) Computer screenshot
of design with center sphere, “lump” shown. (c) Computer screenshot with

sphere, “lump” hidden.

 4

 a b c

Fig. 8. (a) Screenshot creating one cube, voxel. (b) Screenshot after writing a loop to create back-to-back cubes, after specifying number of columns. (c) Screenshot
after writing a nested loop in (b) to add rows of cubes, ultimately creating a plane.

C. Experimental Graphics Design

While not completed, this design was a

continuation of the final graphics design. If a cube

represented a voxel, or pixel, then one can ideally

create hundreds or thousands of small cubes to

create a large environment consisting of hundreds

of various forces. Figures 10-12 show a progression

of looped programming to instantly create a plane

of sixty cubes.

V. Conclusions

This project was developed to initiate

research in the area of haptics. While much of the

experimentation was trial and error, this paper

begins to shows a procedure for starting from

scratch to creating a simple haptic scene. The

research will provide a foundation from which

another student can learn and continue to develop

more complex environments. Programming in C++

was used throughout a large majority of this project.

Located in the appendices is a tutorial to start a

program and some notable code from various

designs.

A. Suggestions for Future Projects

Research more into the area of OpenGL. It may be

able to provide opportunity for creating better, more

complex graphics than in in C++ alone.

VI. References

[1] Cohen, Georgy. Visualization Wall Grand
Opening. Tufts University School of Engineering.

2008. 31 Mar. 2008

<http://engineering.tufts.edu/1181647322330/Engin

eering-Page-eng2w_1202727607540.html>.

[2] Kesavadas, T, and Amrita Chanda. “Pysically-

Based Modeling through a Dynamic Atomic Unit

Approach for Haptic Rendering: Towards Non-

Linear, Viscoelastic, Anisotropic Behavior." Virtual

Reality Laboratory. University At Buffalo. 27 Feb.

2008

<http://www.vrlab.buffalo.edu/projects_group_med

ical/atomic_unit/atomic_nonlinear.html>.

[3] "Phantom Omni Haptic Device." Sensable

Technologies. 31 Mar. 2008

<http://www.sensable.com/haptic-phantom-

omni.htm>.

[4] Riezenman, Michael J. "Haptics Takes Hold."

The Institute (2008). 30 Mar. 2008

<http://www.theinstitute.ieee.org/portal/site/tionline

/menuitem.130a3558587d56e8fb2275875bac26c8/i

ndex.jsp?&pName=institute_level1_article&TheCat

=2201&article=tionline/legacy/inst2008/mar08/feat

uretechnology.xml&>.

 5

Appendix A

Tutorial Visual C++ Code to Draw a Simple Sphere*
*Tutorial Created off of Sample Code Provided in FrictionlessSphere.cpp

Open Microsoft Visual C++.
Click File, New.

Choose Win32 Application.
Name your project.

Choose “An empty project.” Click Finish.

 6

Click File, New.
Choose C++ Source File.
Give the file a name. This file will automatically
be added to your project.
Click OK.

Click Project, Settings.

Click the “C/C++” tab.

Delete all text under “Project Options.”

Replace with the following text:

/nologo /MDd /W3 /Gm /GX /ZI /Od /I "include"
/I "$(3DTOUCH_BASE)\include" /I
"$(3DTOUCH_BASE)\utilities\include" /D
"WIN32" /D "_DEBUG" /D "_CONSOLE" /D
"_MBCS" /Fo"Debug/" /Fd"Debug/" /FD /GZ /c

Click the “Link” tab.

Delete all text under “Project Options.”

Replace with the following text:

hl.lib hlud.lib hd.lib hdud.lib glut32.lib
opengl32.lib /nologo /subsystem:console
/incremental:yes /pdb:"Debug/Events.pdb"
/debug /machine:I386 /out:"Debug/Events.exe"
/pdbtype:sept /libpath:"$(3DTOUCH_BASE)\lib"
/libpath:"$(3DTOUCH_BASE)\utilities\lib"

The “Object/library modules:” field will
automatically populate with the libraries just
added.

Click OK.

 7

In your Source file, include the following
headers:

#include <math.h>, #include <assert.h>, #ifdef
WIN32, #include <windows.h>, #endif, #include
<GL/gl.h>, #include <GL/glut.h>, #include
<HL/hl.h>, #include <HDU/hduMatrix.h>,
#include <HDU/hduError.h>, #include
<HLU/hlu.h>, #include <iostream>, #include
<conio.h>, #include <stdio.h>, #include
<HD/hd.h>, #include <HDU/hduVector.h>

Add the following code to initialize the programs:

static HHD hHD = HD_INVALID_HANDLE;
static HHLRC hHLRC = 0;

HLuint ShapeId1;

#define CURSOR_SIZE_PIXELS 20
static double gCursorScale;
static GLuint gCursorDisplayList = 0;

void glutDisplay(void);
void glutReshape(int width, int height);
void glutIdle(void);

void exitHandler(void);

void initGL();
void initHL();
void initScene();

void drawSceneHaptics();
void drawSceneGraphics();
void drawCursor();

void updateWorkspace();

My understanding is that you need a new
ShapeID for each object with a different
force. Because we only have one object,
only one ShapeID is needed.

 8

Next, add Callback and Main Code:

HDCallbackCode HDCALLBACK FrictionlessSphereCallback(void *data)
{
 HDErrorInfo error;
 if (HD_DEVICE_ERROR(error = hdGetError()))
 {
 hduPrintError(stderr, &error, "Error during main scheduler callback\n");

 if (hduIsSchedulerError(&error))
 {
 return HD_CALLBACK_DONE;
 }
 }

 return HD_CALLBACK_CONTINUE;
}

int main(int argc, char *argv[])
{
 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

 glutInitWindowSize(500, 500);
 glutCreateWindow("First Haptics Program");

 glutDisplayFunc(glutDisplay);
 glutReshapeFunc(glutReshape);
 glutIdleFunc(glutIdle);

 atexit(exitHandler);

 initScene();
 glutMainLoop();

 return 0;
}

Call code if an
error occurs.

Initialize
display area.

 9

Add display codes:

void glutDisplay()
{
 drawSceneHaptics();
 drawSceneGraphics();
 glutSwapBuffers();
}

void glutReshape(int width, int height)
{
 static const double kPI = 3.1415926535897932384626433832795;
 static const double kFovY = 40;

 double nearDist, farDist, aspect;
 glViewport(0, 0, width, height);

 nearDist = 1.0 / tan((kFovY / 2.0) * kPI / 180.0);
 farDist = nearDist + 2.0;
 aspect = (double) width / height;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(kFovY, aspect, nearDist, farDist);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 gluLookAt(0, 0, nearDist + 1.0,
 0, 0, 0,
 0, 1, 0);

 updateWorkspace();
}

void glutIdle()
{
 glutPostRedisplay();
}

void exitHandler()
{

 hlDeleteShapes(ShapeId1, 1);

 hlMakeCurrent(NULL);
 if (hHLRC != NULL)
 {
 hlDeleteContext(hHLRC);
 }

 if (hHD != HD_INVALID_HANDLE)
 {
 hdDisableDevice(hHD);
 }
}

Calls haptics and
graphics code.

Reference to the
ShapeID.

 10

void initScene()
{
 initHL();
}

void initGL()
{
 static const GLfloat light_model_ambient[] = {0.3f, 0.3f, 0.3f, 0.3f};
 static const GLfloat light0_diffuse[] = {0.7f, 0.7f, 0.7f, 0.7f};
 static const GLfloat light0_direction[] = {0.0f, 0.0f, 1.0f, 0.0f};

 glDepthFunc(GL_LEQUAL);
 glEnable(GL_DEPTH_TEST);

 glCullFace(GL_BACK);
 glEnable(GL_CULL_FACE);

 glEnable(GL_LIGHTING);
 glEnable(GL_NORMALIZE);
 glShadeModel(GL_SMOOTH);

 glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_FALSE);
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, light_model_ambient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse);
 glLightfv(GL_LIGHT0, GL_POSITION, light0_direction);
 glEnable(GL_LIGHT0);

}

void initHL()
{
 HDErrorInfo error;

 hHD = hdInitDevice(HD_DEFAULT_DEVICE);
 if (HD_DEVICE_ERROR(error = hdGetError()))
 {
 hduPrintError(stderr, &error, "Failed to initialize haptic device");
 fprintf(stderr, "Press any key to exit");
 getchar();
 exit(-1);
 }

 hHLRC = hlCreateContext(hHD);
 hlMakeCurrent(hHLRC);

 hlEnable(HL_HAPTIC_CAMERA_VIEW);

 ShapeId1 = hlGenShapes(1);

 hlTouchableFace(HL_FRONT);

}

Changing these
parameters changes
lighting on objects.

Reference to the
ShapeID.

 11

void updateWorkspace()
{
 GLdouble modelview[16];
 GLdouble projection[16];
 GLint viewport[4];

 glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
 glGetDoublev(GL_PROJECTION_MATRIX, projection);
 glGetIntegerv(GL_VIEWPORT, viewport);

 hlMatrixMode(HL_TOUCHWORKSPACE);
 hlLoadIdentity();

 /* fit haptic workspace to view volume */
 hluFitWorkspace(projection);

 /* compute cursor scale */
 gCursorScale = hluScreenToModelScale(modelview, projection, viewport);
 gCursorScale *= CURSOR_SIZE_PIXELS;
}

void drawSphere()
{
 glPushMatrix();
 glTranslatef(0,0,0);
 glutSolidSphere(0.5, 30, 30);
 glPopMatrix();
}

void drawSceneGraphics()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 initGL();
 drawCursor();
 drawSphere();
}

void drawSceneHaptics()
{
 hlBeginFrame();
 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, ShapeId1);
 hlTouchableFace(HL_FRONT);
 hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.3f);
 hlMaterialf(HL_FRONT_AND_BACK, HL_DAMPING, 0.1f);
 hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2f);
 hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.3f);

 drawSphere();

 hlEndShape();

 hlEndFrame();

}

Reference to the ShapeID.

0,0,0 = position of object, I found that instead of x,y,z;
it is actually x,z,y.
0.5 = radius, 30 = longitude lines, 30 = latidude lines.

Exercise: Change “glutSolidSphere(0.5,30,30)” to “glutSolidCube(0.5).”
Your object will now be a solid cube when you run the program.

This graphics module calls the “drawSphere()” from
above.

This haptics module calls the “drawSphere()” from
above as well.

Changes stiffness, damping,
and friction factors.

 12

void drawCursor()

{
 static const double kCursorRadius = 0.5;
 static const int kCursorTess = 15;
 HLdouble proxytransform[16];

 GLUquadricObj *qobj = 0;

 glPushAttrib(GL_CURRENT_BIT | GL_ENABLE_BIT | GL_LIGHTING_BIT);
 glPushMatrix();

 if (!gCursorDisplayList)
 {
 gCursorDisplayList = glGenLists(1);
 glNewList(gCursorDisplayList, GL_COMPILE);
 qobj = gluNewQuadric();

 gluSphere(qobj, kCursorRadius, kCursorTess, kCursorTess);

 gluDeleteQuadric(qobj);
 glEndList();
 }

 hlGetDoublev(HL_PROXY_TRANSFORM, proxytransform);
 glMultMatrixd(proxytransform);

 glScaled(gCursorScale, gCursorScale, gCursorScale);

 glEnable(GL_NORMALIZE);
 glEnable(GL_COLOR_MATERIAL);
 glColor3f(0.0, 0.5, 1.0);

 glCallList(gCursorDisplayList);

 glPopMatrix();
 glPopAttrib();
}

Click Build, Compile.

If no errors, click Build, Run.

Cursor module.

 13

Appendix B

Notable Programming Code for Fig. 5 – Sphere behind Position Parameter Layer

HDCallbackCode HDCALLBACK FrictionlessSphereCallback(void *data)

{

const double sphereRadius = 20.0;

const hduVector3Dd spherePosition(40,0,-40);

const double sphereStiffness = 0.7;

const double sphereFriction = 0.2;

const double popthroughForceThreshold=5.0;

static int directionFlag = 1;

hdBeginFrame(hdGetCurrentDevice());

hduVector3Dd position;

hdGetDoublev(HD_CURRENT_POSITION, position);

int xvalue = position[0];

int yvalue = position[2];

int zvalue = position[1];

const double k = .4;

if (yvalue <= 0 && yvalue > -80)

{

double penetrationDistanceY = .2*fabs(position[2]);

 hduVector3Dd forceDirectionY(0,0,1);

 hduVector3Dd y = penetrationDistanceY*forceDirectionY;

 hduVector3Dd fy = k*y;

 hdSetDoublev(HD_CURRENT_FORCE, fy);

 double distance = (position-spherePosition).magnitude();

 if (distance < sphereRadius)

 {

 double penetrationDistance = sphereRadius-distance;

hduVector3Dd forceDirection = (position-spherePosition)/distance;

 double k = sphereStiffness;

 hduVector3Dd x = penetrationDistance*forceDirection;

 hduVector3Dd f = k*x;

 hduVector3Dd totalforce = f+fy;

 hdSetDoublev(HD_CURRENT_FORCE, totalforce);

 }

}

hdEndFrame(hdGetCurrentDevice());

return HD_CALLBACK_CONTINUE;

}

penetrationDistance keeps track

of how far the cursor moves in

the y-direction.

Sets the direction of the force

output. In this case, force will be

towards +y direction.

Note that position parameters are not intuitive.

position (a,b,c) corresponds to (X axis, Z axis, Y axis)

Find the distance between the

device and the center of the

sphere.

If the user is within the sphere,

i.e. if the distance from the user

to the center of the sphere is less

than the sphere radius, then the

user is penetrating the sphere and

a force should be commanded to

repel him towards the surface.

Use F=kx to create a force vector

that is away from the center of

the sphere and proportional to the

penetration distance, and scaled

by the object stiffness. Hooke's

law explicitly.

Total force =

force of the sphere (f) +

force of the layer (fy)

 14

Appendix B

Notable Programming Code for Figure 7 – Final Graphical Design

 void drawSphere()

{

glPushMatrix();

glTranslatef(-.3,0,-.3);

glutSolidSphere(0.30, 30, 30);

glPopMatrix();

}

void drawSphere2()

{

static const GLfloat light_model_ambient2[] = {0.3f, 0.3f, 0.3f, 1.0f};

static const GLfloat light0_diffuse2[] = {0.1f, 0.9f, 0.9f, 0.0f};

static const GLfloat light0_direction2[] = {0.0f, -0.4f, 1.0f, 0.0f};

glPushMatrix();

glTranslatef(1.25,-1,-.2);

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_FALSE);

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, light_model_ambient2);

glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse2);

glLightfv(GL_LIGHT0, GL_POSITION, light0_direction2);

glEnable(GL_LIGHT0);

glutSolidSphere(0.18, 30, 30);

glPopMatrix();

}

void drawCube()

{

glutSolidCube(1.0);

glPopMatrix();

}

void drawCube2()

{

glPushMatrix();

glTranslatef(0.0,0,-.6);

glutSolidCube(1.0);

glPopMatrix();

}

void drawCube3()

{

glPushMatrix();

initGL();

glTranslatef(1,0,-.6);

glutSolidCube(1.0);

glPopMatrix();

}

Characteristics for hidden

sphere.

Color characteristics for

sphere on bottom right.

Cube 1 – Far left

Cube 2 – Middle

Cube 3 – Far right

 15

void drawSceneGraphics()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

drawCursor();

//drawSphere();

drawSphere2();

drawCube();

drawCube2();

drawCube3();

}

void drawSceneHaptics()

{

 hlBeginFrame();

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, sphereShapeId);

hlTouchableFace(HL_FRONT);

hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.4f);

hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2f);

hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.3f);

drawSphere();

hlEndShape();

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, sphereShapeId2);

hlTouchableFace(HL_FRONT);

hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.4f);

hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2f);

 hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.3f);

drawSphere2();

hlEndShape();

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, cubeShapeId);

hlTouchableFace(HL_FRONT);

hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.25f);

hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2f);

hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.3f);

drawCube();

 hlEndShape();

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, cube2ShapeId);

hlTouchableFace(HL_FRONT);

hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.25f);

hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2f);

hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.3f);

drawCube2();

hlEndShape();

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, cube3ShapeId);

hlTouchableFace(HL_FRONT);

hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.7f);

hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.8f);

hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.1f);

drawCube3();

hlEndShape();

hlEndFrame();

drawSphere() is commented

out so that graphics are not

drawn for it.

number determine’s stiffness

of objects.

Stiffness of first two cubes

are the same.

Stiffness and friction of third

cube is highest.

 16

/*void drawSceneHaptics0()

{

 hlBeginFrame();

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, sphereShapeId);

 hlTouchableFace(HL_FRONT);

 drawSphere();

 hlEndShape();

 hlEndFrame();

}

void drawSceneHaptics2()

{

 hlBeginFrame();

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, cubeShapeId);

 hlTouchableFace(HL_FRONT);

 drawCube();

 hlEndShape();

 hlEndFrame();

}

void drawSceneHaptics3()

{

 hlBeginFrame();

 hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, cube2ShapeId);

 hlTouchableFace(HL_FRONT);

 drawCube2();

 hlEndShape();

 hlEndFrame();

}

 17

Appendix C

Notable Code for Automated Graphics Design

double cubesize = 0.2;
int numberofrows = 6;
int numberofcols=6;

double drawCube(double j, double k)
{
initGL();
glPushMatrix();
glTranslatef(-1+j,-0.5+k,-.5);
glutSolidCube(cubesize);
glPopMatrix();
return j,k;
}

void drawSceneGraphics()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
drawCursor();

for(double i=0; i<(numberofcols*cubesize);i=i+cubesize)
 {
 for(double h = 0; h<=(numberofrows*cubesize); h=h+cubesize)
 drawCube(i,h);

}
}

void drawSceneHaptics()
{
hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, ShapeId1);
hlTouchableFace(HL_FRONT);
hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.7f);
hlMaterialf(HL_FRONT_AND_BACK, HL_DAMPING, 0.1f);
hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2f);
hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 0.3f);

for (double m=0; m<(numberofcols*cubesize);m=m+cubesize)

 {
 for (double n=0; n<=(numberofrows*cubesize); n=n+cubesize)

drawCube(m,n);
 }

 hlEndShape();

Code of cube that will be multiplied.

“glTranslatef” shows initial position.

cubesize = height,width,depth of cube

numberofrows = height of final stack of cubes

numberofcols=width of final stack of cubes

Graphics and Haptics

portions are similar.

Both builds a plane

“numberofrows” high

by “numberofcols”

wide.

