LOW CARBON FOOTPRINT HYBRID BATTERY CHARGER

PROJECT PROGRESS

Students: Advisors: Date:

Blake Kennedy, Phil Thomas Dr. Huggins, Mr. Gutschlag, Dr. Irwin March 3, 2008

PRESENTATION OUTLINE

• Project Status

- Time Management
- Project Delays
- Updated Flowchart
- Updated Materials
- Project Updates
 - Buck-Boost Scheme
 - Charger Scheme
 - PSPICE Simulations
 - Controller & Software Design

PROJECT STATUS

PROJECT STATUS

PROJECT DELAYS

- Research
 - Major Setback
 - More research than anticipated
 - Probably should have taken EE430 last year
 - One week research spent on Buck then Boost topologies
 - Scraped plans and used Buck-Boost topology
 - Less parts needed
 - Simply makes more sense for this application

PROJECT DELAYS

- Simulations Round I
 - About one day spent troubleshooting PSPICE
 - MOSFET switching
 - Initially, planned use of a p channel MOSFET
 - Switched to n channel
 - Lower Rds-On Value
 - Utilize mutual ground with source
 - Simpler topology

PROJECT DELAYS

- Implementation Round I
 - MOSFET was stuck in linear mode
 - Gate driver needed
- Simulations Round II
 - Vout was stuck around 21 Volts for 40V input.
 - Vds was greater than maximum
 - Replaced MOSFET
 - Confirmed gate driver setup

OLD HIGH LEVEL FLOWCHART

LOW LEVEL FLOWCHART

UPDATED MATERIALS

- Stationary Battery
- Optima D31T
 - Lead Acid
 - 75 Ah,12V
 - Low cost
 - No Memory Effect

Battery Charger (Constant Voltage): Float Charge:

Rapid Recharge: (Constant voltage charger) 13.8 to 15.0 volts; 10 amps maximum; 6-12 hours approximate 13.2 to 13.8 volts; 1 amp maximum (indefinite time at lower voltages) Maximum voltage 15.6 volts. No current limit as long as battery temperature remains below 125°F (51.7°C). Charge until

current drops below 1 amp.

UPDATED MATERIALS

• Photovoltaic (P.V.) Array

- Had planned to use Kyocera KC50T
- Using BP 350J
- 50W, 17.5V, 2.9A at max power

UPDATED MATERIALS

- BP 350J Efficiency
- 72 modules (0.042m x 0.125m)
- Solar Panel Area = $0.378m^2$
- Nominal Sun Power Density: 1kW/m^2
- Maximum Panel Power: 0.050 kW
- Efficiency: 0.050kW/(0.378m^2*1kW/m^2)

= 13.22 %

ANALYTICAL CALCULATIONS

• Load Calculation

- Capacity 12V*12Ah=144Wh
- 144 W*3,600 sec*1.25 = 648,000 J

• Solar Power Calculation

- Efficiency*Area*Sun hours*3,600 seconds
- Maximum Spec 50W=180,000 J/hour / panel
- Worst Case for Chicago = 206,449 J/day
- Worst Case Number of Solar Modules
 - 648,000 J/285,768 J= 2.45 P.V. Modules

BUCK-BOOST SCHEME

- Buck-Boost Voltage Regulator Topology
- Energy Stored in Inductor
- Inductor supplies energy to load
- Capacitor supplies energy to load when in the "on-state"
- Will operate in continuous mode

BUCK-BOOST SCHEME

• Buck-Boost Voltage Regulator Topology

BUCK-BOOST SCHEME

• Implementation Considerations

- Inductor energy must be large enough to store required energy
- Inductor must be large enough to be in continuous mode
- Switching speed must be fast enough to remain in continuous mode
- Capacitor must be large enough to supplement inductor when switch is closed
- Diode must have:
 - high reverse bias ratings
 - low voltage drop
 - fast recovery
- Inductor, FET, and Diode have high current

BUCK-BOOST IMPLEMENTATION

- Values determined from maximum and minimum Vin voltage simulations only
- Next step is to theoretically figure minimum values for Inductor and Capacitor

BUCK-BOOST IMPLEMENTATION

- UA78S40
- Universal Switching Regulator Subsystem
- Provides PWM Closed Loop Control
 - Scales down output voltage and compares to 1.25V
 Voltage divider must have 1% resistor tolerance
 - Variable frequency range from 1Khz – 100Khz
 - Faster switching allows for lower inductance
 - Eliminates need for developing a stable control system in software
 - 0-40V PWM output
 o Vcc= 5V used

BUCK-BOOST IMPLEMENTATION

- IR2113
- High and Low Side Driver
- Ability to operate at 100KHz
- Separate logic supply range from 3.3V to 20V
- LO = Vdd = Vbatt = 12-13.5V

BUCK-BOOST IMPLEMENTATIONIR2113

• BQ2031

- Lead Acid Fast Charge IC
- Two-Step Voltage Control
 - Automatically detects low current and switches to trickle charge
 - Temperature-compensated
 - PWM Control of output
 - Automatically detects shorted, opened, or damaged cells

• BQ2031

• Lead Acid Fast Charge IC

TMTO	Time-out timebase input		
FLOAT	State control output		
BAT	Battery voltage input		
VCOMP	Voltage loop comp input		
ICOMP	Current loop comp input		
IGSEL	Current gain select input		
SNS	Sense resistor input		
TS	Temperature sense input		
TPWM	Regulator timebase input		

LED3/ QSEL	Charge status output 3/ Charge algorithm select input 1	
COM	Common LED output	
V _{SS}	System ground	
V _{CC}	5.0V±10% power	
MOD	Modulation control output	
LED1/ TSEL	Charge status output 1/ Charge algorithm select input 2	
LED ₂ / DSEL	Charge status output 2/ Display select input	

• BQ2031

• Two-Step Voltage Charge

• BQ2031

• Configuring Charging Algorithm

Algorithm/State	QSEL	TSEL	Conditions	MOD Output
Two-Step Voltage	L	H/L ^{Note 1}	-	-
Fast charge, phase 1			while $V_{BAT} < V_{BLK}$, $I_{SNS} = I_{MAX}$	Current regulation
Fast charge, phase 2			while $I_{SNS} > I_{MIN}$, $V_{BAT} = V_{BLK}$	Voltage regulation
Primary termination			$I_{SNS} = I_{MIN}$	
Maintenance			$V_{BAT} = V_{FLT}$	Voltage regulation
Two-Step Current	Η	L	-	-
Fast charge			while $V_{BAT} < V_{BLK}$, $I_{SNS} = I_{MAX}$	Current regulation
Primary termination			$V_{BAT} = V_{BLK} \text{ or } \Delta^2 V < -8 m V^{Note 2}$	
Maintenance			I _{SNS} pulsed to average I _{FLT}	Fixed pulse current
Pulsed Current	Н	Н	-	-
Fast charge			while $V_{BAT} < V_{BLK}$, $I_{SNS} = I_{MAX}$	Current regulation
Primary termination			$V_{BAT} = V_{BLK}$	
Maintenance			$\begin{split} I_{\rm SNS} &= I_{\rm MAX} \text{ after } V_{\rm BAT} = V_{\rm FLT}; \\ I_{\rm SNS} &= 0 \text{ after } V_{\rm BAT} = V_{\rm BLK} \end{split}$	Hysteretic pulsed current

• BQ2031

• Voltage and Current Monitoring

The resistor values are calculated from the following:

Equation 1

$$\frac{RB1}{RB2} = \frac{(N \ \ast \ V_{\rm FLT})}{2.2V} - 1$$

Equation 2

$$\frac{\mathrm{RB1}}{\mathrm{RB2}} + \frac{\mathrm{RB1}}{\mathrm{RB3}} = (\frac{\mathrm{N} \, \ast \, V_{\mathrm{BLK}}}{2.2}) - 1$$

Equation 3

$$I_{MAX} = \frac{0.250V}{R_{SNS}}$$

where:

- N = Number of cells
- V_{FLT} = Desired float voltage
- V_{BLK} = Desired bulk charging voltage
- I_{MAX} = Desired maximum charge current

• BQ2031

• Voltage and Current Monitoring

- N=6 cells
- Vflt=13.3V
- Vblk=14.0V
- Imax=10A
- Using Equations
- RB1=130KΩ
- RB2=50KΩ
- RB3=620KΩ

The resistor values are calculated from the following: Equation 1

 $\frac{RB1}{RB2} = \frac{(N\,\ast\,V_{_{FLT}})}{2.2V} - 1$

Equation 2

 $\frac{\mathrm{RB1}}{\mathrm{RB2}} + \frac{\mathrm{RB1}}{\mathrm{RB3}} = (\frac{\mathrm{N} \, \ast \, V_{\mathrm{BLK}}}{2.2}) - 1$

Equation 3

$$I_{MAX} = \frac{0.250V}{R_{SNS}}$$

where:

N = Number of cells

- $\bullet \quad V_{FLT} = Desired \ float \ voltage$
- V_{BLK} = Desired bulk charging voltage
- IMAX = Desired maximum charge current

• BQ2031

• Fast Charge cutoff to Trickle Charge

 \circ IGSEL = 0

• Imin = Imax/10 = 10A/10 = 1A

IGSEL	I _{MIN}
0	$I_{MAX}/10$
1	$I_{MAX}/20$
Z	$I_{MAX}/30$

- BQ2031
- Temperature Sensing
- Thermistors have been ordered but calculations have not been done yet.

Equation 4

$$0.6 \, * \, V_{\rm CC} = \frac{(V_{\rm CC} - 0.250V)}{1 \, + \, \frac{RT1 \, * \, (RT2 \, + \, R_{\rm LTF})}{(RT2 \, * \, R_{\rm LTF})}}$$

Equation 5

$$0.44 = \frac{1}{1 + \frac{\text{RT1} * (\text{RT2} + \text{R}_{\text{HTF}})}{(\text{RT2} * \text{R}_{\text{HTF}})}}$$

where:

- R_{LTF} = thermistor resistance at LTF
- R_{HTF} = thermistor resistance at HTF

TCO is determined by the values of RT1 and RT2. 1% resistors are recommended.

 $\mathbf{28}$

• BQ2031

- Setting Charging Maximum Timeout
- Tmto=24hours
- R=24hrs/(.5*.1uF)
- = $480 \text{G}\Omega$
- Use largest resistance possible or open circuit

Equation 6

 $t_{MTO} = 0.5 * R * C$

where R is in $k\Omega,$ C is in $\mu F,$ and t_{MTO} is in hours. Typically, the maximum value for C of 0.1 μF is used.

• BQ2031

• Set switching frequency

• Fpwm=100KHz

Equation 9

 $F_{PWM} = 0.1/C_{PWM}$

where C is in μ F and F is in kHz. A typical switching rate is 100kHz, implying C_{PWM} = 0.001 μ F. MOD pulse width is modulated between 0 and 80% of the switching period.

- BQ2031
- Voltage Loop stability
- Additional 17 page PDF explaining stability
- Adds external components to the IC
- Equations needed have been identified but will not be shown due to complexity and length
- We still need to determine exact values

- The same buck-boost process and fast charge IC will be used except with different values
- The same design process will be used
 - Have not started yet
- Will have 2 modes of operation
 - Fast Charge & Trickle
 - Modes switched via microcontroller digital output

• Minimum Input 6V with a 75% Duty Cycle

• Maximum Input 40V with a 25% Duty Cycle

• Input 20V with a 50% Duty Cycle

• Switch Rate of 100KHz supported by IC model

CONTROLLER & SOFTWARE DESIGN

• Microcontroller switches IC charging mode

- Feedback loop handled by IC
- Microcontroller Requirements
 - Keypad user input
 - 1 port needed
 - LCD user output
 - 1 port needed
 - Port pin IC input
 - 3 pins needed for status
 - Port pin IC output
 - 1 pin needed for switching modes

QUESTIONS?

