
1

Wireless Data Acquisition for the SAE Car

Final Senior Project Paper

By:

J.P. Haberkorn

 Jon Trainor

Project Advisors:

Mr. Steven Gutschlag

Mr. Nick Schmidt

2

Abstract:

The Wireless Data Acquisition for the SAE Car project consists of gathering data from

sensors on the SAE car and transmitting it wirelessly from the on-board microcontroller to a

stationary computer. The transmitted data will include car velocity, engine speed, acceleration,

engine water temperature, oil pressure, and suspension travel. This data will be transmitted using

the Aerocomm AC4790-200 wireless transceiver, which has a range of up to four miles when

used with an external antenna.

3

Table of Contents:

Abstract…………………………………………………………………………………… p.2

Introduction……………………………………………………………………………….p.4

Functional Description

 Basic Functionality…………………………………………………………………p.5

 Sensor Interface…………………………………………………………………….p.6

 Transmitting Data…………………………………………………………………..p.7

 Receiving Data…………………………………………………….………………..p.8

Wireless Communication

Aerocomm AC4790-200……………………………………………………………p.8

Communicating with the Transceivers……………………………………………...p.10

Initializing Aerocomm Transceivers…………………………………….……...…..p.10

Transmitting with the Transceivers…………………………………………………p.13

Analysis of Results…………………………………………………………………………p.14

Conclusions………………………………………………………………………………...p.14

Appendices :

 Appendix I – MATLAB CODE…………………………………………………..p.15

 Appendix II – Board_2_Board Program………………………………………...p.17

 Appendix III – Transmitting Code……………………………………………….p.21

 Receiving Code…………………………………………………...p.30

4

Introduction

 Each year a team of Mechanical Engineers from Bradley University designs and builds a

formula SAE car. This vehicle is raced in various competitions in the state and has won awards

over the past few years. One problem, however, is the data logging system that is currently used

for the project. The system being used requires the Mechanical Engineers to download all of the

car sensor data after the car has been driven.

 The solution to this problem and the goal of this project is to gather the data from various

sensors on the car and wirelessly transmit the data to an off-track laptop computer. Here the data

can be stored in Microsoft Excel Spreadsheet for future analysis and graphing. In addition the

data can be displayed in real-time using a macro program such as MATLAB. With this system

if, the engine temperature or oil pressure falls out of the normal range, the driver can be notified

promptly by the computer user to shut down the car before serious damage to the vehicle or

driven occurs.

 Not only would this system be ideal for critical data like temperature and pressure, it can

also be used to gather the car velocity, engine speed, and the suspension positions on all four

corners. This is more data than the Mechanical Engineers have been able to gather in the past,

and would surely benefit the SAE Formula Team Project.

5

Functional Description

Basic Functionality

 The Wireless Data Acquisition project consists of gathering data from the SAE

car and transmitting it wirelessly from the on-board microcontroller to an off-track laptop

computer. The transmitted data includes car velocity, acceleration, suspension travel, engine

velocity, and engine water temperature and oil pressure. The wireless transceivers used for the

project are the Aerocomm AC4790-200 chips, which have a range of up to four miles when used

with an external antenna. Figure 1 shows the basic functionality of two transceivers

communicating with each other, where the OEM Hosts can be either a computer or a

microcontroller. For this project, the OEM Hosts are EMAC Micropac535 boards, but the

receiver OEM Host will eventually be changed to an off-track laptop.

Figure 1

6

The main focus of this project was gathering the necessary data from the car, processing

and storing it in the microcontroller, wirelessly transmitting and receiving the data using the

Aerocomm AC4790-200, and displaying it on a laptop computer. A high level block diagram of

the entire system may be seen in Figure 2.

Figure 2

Sensor Interface:

The sensor interface software was implemented with an EMAC Micropac535

microcontroller system, and essentially entails sampling the different sensors as needed.

For example, the tachometer and velocity sensors will need to be sampled much more

frequently than the oil pressure or engine temperature sensors. Updating priority for the

sensor data is shown below. The priority is based on how frequently the incoming data is

changing. For example, the engine speed will change much more often than the oil

pressure, so it must be polled more frequently.

7

• Priority One

o Car Velocity (Wheel Sensor)

o Engine Speed (Pulse)

o Suspension Travel (Linear Voltage)

• Priority Two

o Oil Pressure (Switch)

o Water Temperature Linear Voltage)

For this project, the above signals were simulated with a function generator at

various voltage levels. The EMAC Micropac535 system converts the values obtained

from the sensors with software to the desired output units (e.g., speed in revolutions per

minute [RPM]) before transmission).

 Transmitting Data

The transmission process simply gathers all of the sensor data, and once the data

is a complete packet, it is sent out on the Aerocomm AC4790-200 transceiver. All of the

sensor data comes in as pulses or through the A/D converter from the linear voltage

sensors. The transmission process flow chart is shown below in Figure 3.

8

Figure 3

Receiving Data

 The data is currently received by another EMAC Micropac535 system and stored in

memory. Eventually, this data will be displayed and stored using a MATLAB macro on a laptop

computer. The code has been acquired to make this possible, but time to complete this task was

not available. The MATLAB code can be found in Appendix 1.

Wireless Communication

Aerocomm AC4790-200

 Before implementing the Aerocomm transceivers into the project, the RS232 COM Ports

on the EMAC Board needed to be mastered. A program was written that would initialize COM

Port 2 on both EMAC boards. A 100Hz sine wave was applied to the A/D Converter on the

transmitting end, and was sent out over the COM2 Port. The receiving EMAC Board took in the

data and immediately sent it back to the transmitter, where once received was put out on the D/A

converter and compared with the original sine wave on an oscilloscope. This process was

successfully completed as well. The code for this process is shown in Appendix 2.

 Once the RS232 capabilities of the EMAC were fully tested and understood, it was

interfaced with the Aerocomm AC4790-200. This transceiver is shown in figure 4.

9

Figure 4

 The basic theory of operation of these transceivers is shown in Figure 5. The transceiver

is always in receive mode until something is written to RXD (Pin 3) of the transceiver, which

puts it into transmit mode. The Command Mode is enabled when the Command Data input (Pin

17) of the chip is asserted low. While in Command Mode, the user can set operating modes on

the transceiver by altering its EEPROM data. This mode is very useful for setting up two

transceivers for communication.

Figure 5

10

Communicating with the Transceivers

 The Aerocomm transceivers accept TTL Level voltages (0 to 5V) for the data to be

transmitted and the command data. Since the EMAC Micropac35 system puts out RS232

voltages (-15 to 15V) there needed to be a converter between the EMAC and the transceivers.

The MC-1488 and MC-1489 quad line drivers provide this functionality and were implemented

into the design as shown in Figure 6.

Figure 6

Initializing Aerocomm Transceivers

 Once communication was established between the EMAC boards and the Aerocomm

devices, the chips need to be initialized. This proved to be a very tedious and grueling task since

the original data sheets provided were often insufficient and also listed some false data. The

User Manual for the Aerocomm AC4790 proved to be a little more useful since it gave a few tips

11

on how to overcome problems previously encountered by others using the device. Even with the

tips, however, this device was very difficult to obtain complete functionality and required

significantly more time than expected in this project. Although this led to a serious impediment

to completing the project as originally conceived, it can be viewed as a triumph since these

transceivers have finally been mastered and understood. Operational flowcharts have been

developed so that students will not have to start from scratch with these devices in the future.

Now that the fundamental operational requirements of the Aerocomm transceivers have been

well documented, they can easily be used in many future senior projects to great effect.

 In order to operate properly, the Aerocomm devices need to be initialized to the same

settings (ie same channel, same broadcast mode, etc.). This is achieved via the AT Command

Mode which as mentioned before is entered by asserting Pin 17 (Command Data) logic low. A

command can be looked up in the chart from the User Manual which shows the command to be

given, and the response the transceiver sends back to the host. The basic command process is

shown in the flowchart in Figure 7.

Figure 7

 The next few figures will give an example of how to issue and verify an AT Command

for setting the channel. Both transceivers need to be set to the same channel before any attempt

12

of data transmission is made. Figure 8 shows the row of the chart of AT Commands from the

AC4790 User Manual corresponding to channel selection. The bytes #CCh, #01h, and the

desired channel (channel #02h was selected) need to be written to the RXD Pin on the

transceiver while Pin 17 (Command Data) is low. These bytes need to be written with minimal

delay between each of them, since if there is 1ms of delay between bytes they will not be

recognized as a command and the command will have to be reissued. The transceiver then

responds with #CCh, #02h (Channel #02h was selected in our case). If any other response was

received, the command was not received properly and needed to be reissued.

Figure 8

Below, Figure 9 shows the flowchart for the channel setting process:

Figure 9

13

Transmitting with the Transceivers:

 Once both transceivers have been initialized to the same channel and broadcast mode,

they are ready to begin sending and receiving data. Before the user does this, however, there are

a few things to know so data loss can be prevented. First, the transmitter buffer on the

Aerocomm device is 256 bytes, and the device will begin an RF transmission once the buffer

gets to the RF Packet size. This can be accessed in the chip’s EEPROM and set to whatever the

user desires. The default value is 80h bytes, which is also the limit of the device’s capabilities.

Figure 10

When a transmission begins, it takes 50ms to complete. This is because the transceivers

need to initialize the session, transmit the RF packet, and then end the session for each hop. The

user must be very careful that the buffer doesn’t fill up during this process. For example, a sine

wave was applied to the A/D and sampled very rapidly. Its output was being written right to the

Aerocomm transceiver, but on the receiving end, only a few pieces were coming in and there was

a significant amount of data loss occurring. For the purpose of updating the car sensor data, this

transceiver is practical. One packet of every single sensor should be no more than 30 bytes of

data in each packet. The user must make sure they set the RF Packet size to match the amount of

data needed to be transmitted so that only one complete packet is sent at a time, as opposed to

packets being split up.

14

Analysis of Results

 The system successfully transmitted the simulated PWM signal for the crankshaft

position sensor and calculated the associated RPM. While the hex to bcd assembly code was not

perfect, it still served its purpose, showing that a four byte number in ASCII can be sent and

received every .5 seconds. Based on test results, a maximum of 128 bytes can be sent every 50

milliseconds. This means 1280 ASCII characters can be sent every .5 seconds. Therefore the

system will be able to transmit fast enough to send all the data desired from the car and update

the real-time display at an adequate frequency.

Conclusion:

 The major accomplishment of this project has been to fully understand the Aerocomm

AC4790 transceivers. The flowcharts that were created to show the exact procedure for

initializing the transceiver and writing commands will enable future Bradley students to

implement secure wireless systems utilizing the AC4790 tranceivers in a very short time frame

without the frustration and delay due to confusing and incomplete data sheets. The final

accomplishment was to get the system to transmit a simulated signal from one microcontroller to

another, leaving the project at a good point to be continued next year. The sensors that are on the

car can be tested so the acquisition code can be rewritten and it can send the actual signals from

the sensors instead of a simulated version. Once communication with the serial RS-232 ports is

established with MATLAB on the off-track laptop computer and one of the Aerocomm

15

transceivers is rewired to be plugged into the serial port of the laptop, the system can be

implemented on the SAE car.

APPENDIX I – MATLAB CODE

function [tV, V, tI, I] = CollectMotor_Data_2()
%Collect Motor Data scopes must be in print mode rate = 1

%COM 1 (VOLTAGE SCOPE) PORT CONFIG
c1 = serial('COM1');
set(c1, 'BaudRate', 9600);
set(c1, 'DataBits', 8);
set(c1, 'FlowControl', 'none');
set(c1, 'Parity', 'none');

%COM 2 (CURRENT SCOPE) PORT CONFIG
 c2 = serial('COM3');
 set(c2, 'BaudRate', 9600);
 set(c2, 'DataBits', 8);
 set(c2, 'FlowControl', 'none');
 set(c2, 'Parity', 'none');

%OPEN COM 1
fopen(c1);

%VOLTAGE SCOPE SETUP
fprintf(c1,'RWLS'); %Lockout Scope
fprintf(c1,'TRIGGER 2'); %Temporarily suspend measurement operations
fprintf(c1,'VDC'); %Voltage Measurement
fprintf(c1,'RATE F'); %Fast measurements
fprintf(c1,'RANGE 4'); %300v Range
fprintf(c1,'FIXED'); %Don't Autosense range
fprintf(c1,'TRIGGER 1'); %Resume measurement operations

%OPEN COM 2

16

fopen(c2);

%CURRENT SCOPE SETUP
fprintf(c2,'RWLS'); %Lockout Scope
fprintf(c2,'TRIGGER 2'); %Temporarily suspend measurement operations
fprintf(c2,'ADC'); %Voltage Measurement
fprintf(c2,'RATE F'); %Fast measurements
fprintf(c2,'RANGE 3'); %10A Range
fprintf(c2,'FIXED'); %Don't Autosense range
fprintf(c2,'TRIGGER 1'); %Resume measurement operations

%CLEAR SERAIL RECEIVE BUFFERS
pause %Need to let scopes settle (variable delay) and configure
 %Motors to regeneration
while ((c1.BytesAvailable ~= 0) || (c2.BytesAvailable ~= 0))
 if (c1.BytesAvailable ~= 0)
 resp = fscanf(c1);
 end
 if (c2.BytesAvailable ~= 0)
 resp = fscanf(c2);
 end
end

%Data Collection Loop
x = 1;
y = 1;
tic
while ((x < 100) || (y < 100))
 if (c1.BytesAvailable ~= 0)
 V(x) = str2double(fscanf(c1));
 tV(x) = toc;
 x = x + 1;
 end
 if (c2.BytesAvailable ~= 0)
 I(y) = str2double(fscanf(c2));
 tI(y) = toc;
 y = y + 1;
 end
end

%COLSE COM 1
fprintf(c1,'LOCS');
fclose(c1);
delete(c1);
clear c1;

17

%COLSE COM 2
fprintf(c2,'LOCS');
fclose(c2);
delete(c2);
clear c2;

APPENDIX II – Board2Board Program

INIT FILE:

;J.P. Haberkorn & Jon Trainor
;EE-451
;test1 up1
;Initialization File

$NOMOD51
$include(reg515.inc)
$include(var.inc)

public init

extrn code(main, lcdinit, INIT2681)

cseg at 8000h
 ljmp init

init_seg segment code
rseg init_seg

;***
;This file initializes all registers, as well as the LCD
;It also sets up the Serial Port Interface for TRANSMITTING DATA
;Pin 1.0 and an interupt are being used to show how long the
;transmitting and receiving process takes.
;***

init:
 mov SP, #50h

18

 setb p5.5
 clr p5.5
 lcall lcdinit

setb p1.0
 clr start

lcall INIT2681 ;setup COM1 Port

runprog:
 lcall main

end

APPENDIX II Continued

INIT2681 FILE:

$NOMOD51
$include(reg515.inc)
$include(var.inc)
public INIT2681

INIT2681_seg segment code
rseg INIT2681_seg

INIT2681:

; DO RESET COMMANDS FOR PORTS A AND B. THIS WILL
;EXECUTE CHANNEL
; A & B's MISCELLANEOUS COMMANDS NUMBERED
;101,100,011,010,001.

mov A,#01010000B ; DO FROM THIS COMMAND, DOWN TO

;00010000

crinit: mov P2,#0Ah
 movx @R1,A
 add A,#-16 ; SUBTRACT 1 FROM UPPER NIBBLE
 jnz crinit ; LOOP TILL 0

 mov P2,#08h ; SETUP PROTOCOL FOR PORT b

 mov A,#MR2BDAT
 movx @R1,A

; SELECT BAUD RATE

19

 mov P2,#04h
 mov A,#80H
 movx @R1,A ; SELECT SET 2 OF BAUD RATES
 mov P2,#1001b
 mov A,#10111011b
 movx @R1,A ; RX AND TX AT 9600 FOR B

 mov P2,#0Ah
 mov A,#00000101B ; ENABLE TXER AND RXER
 movx @R1,A

 RET

End
APPENDIX II Continued

MAIN FILE:

$NOMOD51
$include(reg515.inc)
$include(var.inc)
name main
public main

main_seg segment code
rseg main_seg

extrn code(lcdout)

;***
;This file samples the A/D converter and sends
;the signal out on the serial port to the other
;microcontroller. It then enters reveive mode once
;the transmission is over and will receive the data
;back from the other microcontroller.
;***

main: mov a, #000B
 ;anl A,#111B ; ONLY 8 CHANNELS
 ANL ADCON,#11000000B ; MODE FOR A/D CONVERSION
 ORL ADCON,A ; "OR" IN THE CHANNEL
 MOV DAPR,#0 ; START CONV W/NO REF
 JB BSY,$; LOOP TILL CONVERTED
 MOV ACC,ADDAT ; ACC = CONVERSION

SENDA: jb BSY, SENDA ;wait for conversion

20

 MOV P2,#1001b
 PUSH ACC

SENDA1: MOVX A,@R1
 JNB ACC.2,SENDA1 ; LOOP TILL TXrdy
 POP ACC
 MOV P2,#1011b ; SEND IT OUT
 MOVX @R1,A

 MOV P2,#1001b

RECEIVEA1: MOVX A,@R1
 JNB ACC.0,RECEIVEA1 ; LOOP TILL RXrdy
 MOV P2,#1011b ; READ DATA PORT
 MOVX A,@R1

daconvert: mov dph, #10H
 movx @dptr, a

 ljmp main

END

21

APPENDIX III – AC4790 PROGRAM
 Note: The transmitting and receiving are essentially the same. The init files and
 Most of the modules are identical. The only different module is the main file.
 The transmitting and receiving main files are both included and labeled properly.

INIT FILE:

;J.P. Haberkorn
;EE-451
;Initialization File

$NOMOD51
$include(reg515.inc)
$include(var.inc)

PUBLIC INIT

EXTRN CODE(MAIN, LCDINIT, INIT2681, DELAY1S, SETCHAN, SETBROAD,

SETBAUD, INIT2682, SETSIZE)

CSEG AT 8000h
 LJMP INIT

cseg at 802Bh
 ;P1.4 is the trigger for EX2
 ;12/11.0592e6 = 1 clock cycle in secs.
 ;.5sec/1 cc = 460.8e3 clock cycles
 mov th2, #0FFh
 mov tl2, #0FFh

 inc hseccnt ;incriment the .5sec counter

22

 mov A, hseccnt
 cjne A,#8h, t2cont ;wait until its been counting .5 seconds, then set bit

so main knows to transmit
 mov hseccnt, #0
 setb hsecflag ;set .5sec flag
 mov cntsv, cnt ;save the pulsecounter to 31h
 mov cnt, #0 ;clear 30h

t2cont: clr TF2 ;reset timer 2 overflow flag
 reti

cseg at 804Bh
 inc cnt
 reti

INIT_SEG SEGMENT CODE
RSEG INIT_SEG

;***
;This file initializes all registers, as well as the LCD
;It also sets up the Serial Port Interface for TRANSMITTING DATA
;Pin 1.0 and an interupt are being used to show how long the
;transmitting and receiving process takes.
;***

;****************************AC4790 PINOUTS*********************
; P1.0 - RTS (Pin 8)
; P1.1 - CTS (Pin 7)
; P1.2 - Session Status (Pin 20)
; P1.3 - Command Data (Pin 17)
; P1.4 - Engine Speed Input
; P1.5 - Reset (Pin 15)
; P1.6 - Test (Pin 12)
;***

INIT:
 MOV SP, #50h
 SETB P5.5
 CLR P5.5
 LCALL LCDINIT

 CLR P1.6 ;SET BAUD TO 9600 BY RESET (TEST P12)
 SETB P1.5 ;RESET PIN 15

23

 LCALL DELAY1S
 CLR P1.5 ;COMPLETE RESET
 CLR P1.0 ;ENABLE RTS (DATA STRAIGHT TO HOST)

 LCALL INIT2681 ;setup COM2 Port

SETUPCHIP:
 CLR P1.3 ;ENTER COMMAND MODE
 ;LCALL SETBAUD
 ;LCALL INIT2682 ;SETS BOTH BAUDS TO 4800
 LCALL SETCHAN
 LCALL SETBROAD
 LCALL SETSIZE
 SETB P1.3 ;WAIT SOME TIME

INTENB:
 mov cnt, #0 ;pulse counter
 mov cntsv, #0 ;saved counter
 mov hseccnt, #0 ;.5 sec counter
 mov ascii0, #0
 mov ascii1, #0
 mov ascii2, #0
 mov ascii3, #0
 mov ascii4, #0
 mov rpmlow, #0
 mov rpmhigh, #0
 mov divlow, #0
 mov divhigh, #0
 ;clr ie1 ;clear external interrupt flag

 clr hsecflag ;.5sec flag

 setb eal ;enable all interrupts
 setb ET2 ;set timer 2 overflow interrupt
 setb EX2 ;setup external interrupt 2

 mov A, IP0 ;set External Interupt 2 as highest priority
 orl A, #2
 mov IP0, A

 mov A, IP1
 orl A, #2
 mov IP1, A

24

T2INT: ;SETUP TIMER2 to reload at FFFF
 mov TH2, #0FFh
 mov TL2, #0FFh
 mov a, t2con
 orl a, #00110001b ;rising edge for pin 1.4 set
 mov t2con, A

GOMAIN:
 LCALL MAIN

END
APPENDIX III Continued

SET CHANNEL FILE:

;J.P. Haberkorn
;EE-451
;CHANNEL SETTING FILE

$NOMOD51
$include(reg515.inc)
$include(var.inc)

name SETCHAN
public SETCHAN

SETCHAN_SEG SEGMENT CODE
RSEG SETCHAN_SEG

EXTRN CODE(DELAY1S, TRANSMIT, RECEIVE)

;**********************
;THIS FILE SETS THE AC4790
;TO USE CHANNEL NUMBER 2
;**********************

SETCHAN:
 LCALL DELAY1S
 MOV A, #0CCh
 LCALL TRANSMIT
 MOV A, #01h
 LCALL TRANSMIT

25

 MOV A, #02h ;Set Channel 02h as default
 LCALL TRANSMIT

VERCHAN:
 LCALL RECEIVE
 MOV CHAN1, DATAIN

VERCHAN2:
 LCALL RECEIVE
 MOV CHAN2, DATAIN
 RET

END

APPENDIX III Continued

BROADCAST SETTING FILE:

;J.P. Haberkorn
;EE-451
;BROADCAST SETTING FILE

$NOMOD51
$include(reg515.inc)
$include(var.inc)

name SETBROAD
public SETBROAD

SETBROAD_SEG SEGMENT CODE
RSEG SETBROAD_SEG

EXTRN CODE(DELAY1S, TRANSMIT, RECEIVE)
;**********************
;THIS FILE SETS THE AC4790
;TO USE BROADCAST PACKETS
;**********************

SETBROAD:
 LCALL DELAY1S
 MOV A, #0CCh
 LCALL TRANSMIT
 MOV A, #17h
 LCALL TRANSMIT
 MOV A, #90h

26

 LCALL TRANSMIT
VERBROAD:
 LCALL RECEIVE
 MOV BROAD1, DATAIN
VERBROAD2:
 LCALL RECEIVE
 MOV BROAD2, DATAIN
 RET

END

APPENDIX III Continued

TRANSMIT DATA FILE:

;J.P. Haberkorn
;EE-451
;Sending File

$NOMOD51
$include(reg515.inc)
$include(var.inc)

name TRANSMIT
public TRANSMIT

TRANSMIT_SEG SEGMENT CODE
RSEG TRANSMIT_SEG

;***
;This module takes whatever was last put into ACC and
;puts it out on the COM2. It can be called from the
;MAIN program only.
;***

TRANSMIT:
 MOV P2,#1001b
 PUSH ACC ;PUSHES LAST VALUE IN A (OUTPUT ON

COM2)

CHIPRDY:

27

 ;jb p1.1, CHIPRDY ;Check "Clear To Send" Pin7
 ;jnb p1.2, CHIPRDY ;Check "Session Status" Pin20

SENDA1: MOVX A,@R1
 JNB ACC.2,SENDA1 ; LOOP TILL TXrdy
 POP ACC
 MOV P2,#1011b ; SEND IT OUT
 MOVX @R1,A

 MOV P2,#1001b
 RET

END
APPENDIX III Continued

RECEIVE DATA FILE

;J.P. Haberkorn
;EE-451
;Receiving File

$NOMOD51
$include(reg515.inc)
$include(var.inc)

name RECEIVE
public RECEIVE

RECEIVE_SEG SEGMENT CODE
RSEG RECEIVE_SEG

;**
;This file receives data on the RXD Pin on COM2.
;The received data is stored in ACC and then pushed
;before the return. THE USER MUST POP ACC BEFORE USING
;THE RECEIVED DATA. This file can only be called from
;the main program.
;**

RECEIVE:
 MOV P2, #09h
 MOVX A,@R1
 JNB ACC.0,RECEIVE ; LOOP TILL RXrdy
 MOV P2,#1011b ; READ DATA PORT

28

 MOVX A,@R1
 MOV DATAIN, A
 RET

END

APPENDIX III Continued

MAIN FILE FOR TRANSMITTER

;J.P. Haberkorn
;EE-451
;test1 up1
;Main Program File

$NOMOD51
$include(reg515.inc)
$include(var.inc)

name main
public main

main_seg segment code
rseg main_seg

extrn code(TRANSMIT, RECEIVE, DELAY1S, SETCHAN, SETBROAD,

VARDELAY, ATOD, RPM)

;***
;This file samples the A/D converter and sends
;the signal out on the serial port (using transmit) to the
;AC4790.
;***

main:

LOOPER: JNB HSECFLAG, LOOPER ;wait until .5sec flag is set

29

 ;there are (31h) pulses in .5 sec so multiply
 ;by 120 to get pulses/min = RPM
 CLR T2I0 ;Disable interrupts and timer2 while calculating and

transmitting
 CLR EAL
 LCALL RPM

DATASEND:
 ;LCALL ATOD ;A/D Conversion
 ;MOV A, ADCONV

 MOV A, ASCII0 ;MSB IN ASCII OF ENGINE SPEED
 LCALL TRANSMIT
 MOV A, ASCII1
 LCALL TRANSMIT
 MOV A, ASCII2
 LCALL TRANSMIT
 MOV A, ASCII3
 LCALL TRANSMIT

RESTART:
 mov ascii0, #0 ;reinitialize
 mov ascii1, #0
 mov ascii2, #0
 mov ascii3, #0
 mov ascii4, #0
 mov rpmlow, #0
 mov rpmhigh, #0
 mov divlow, #0
 mov divhigh, #0
 MOV TH2, #0FFh
 MOV TL2, #0FFh
 SETB T2I0
 SETB EAL

 LJMP main

END

30

APPENDIX III Continued

MAIN RECEIVER FILE

;J.P. Haberkorn
;EE-451
;test1 up1
;Main Program File

$NOMOD51
$include(reg515.inc)
$include(var.inc)

name main
public main

main_seg segment code
rseg main_seg

extrn code(TRANSMIT, RECEIVE, DELAY1S, SETCHAN, SETBROAD)

;***
;This file samples the A/D converter and sends
;the signal out on the serial port (using transmit) to the
;AC4790.
;***

main:

DATASEND:

31

 ;LCALL RECEIVE
 ;MOV A, DATAIN
 ;mov dph, #10H
 ;movx @dptr, a

DATASEND1:
 LCALL RECEIVE
 MOV RECEIVE1, DATAIN
 LCALL RECEIVE
 MOV RECEIVE2, DATAIN
 LCALL RECEIVE
 MOV RECEIVE3, DATAIN
 LCALL RECEIVE
 MOV RECEIVE4, DATAIN
 ;LCALL RECEIVE
 ;MOV RECEIVE5, DATAIN
 ;LCALL RECEIVE
 ;MOV RECEIVE6, DATAIN
 ;LCALL RECEIVE
 ;MOV RECEIVE7, DATAIN
 ;LCALL RECEIVE
 ;MOV RECEIVE8, DATAIN

RESTART:
 LJMP DATASEND

END

