

GPS Gaucho Bradley University Electrical Engineering

> Peter Fattore Andrew Neebel

> > Advisors: Dr. Ahn Dr. Schertz

GPSGaucho Application

- GPS-based Self-navigating Autonomous Vehicle
- Vehicle that can drive from point A to point B with no outside intervention
- Many uses
 - Farm Machinery
 - City Bus Routes
 - Tour Busses
 - Nuclear warfare

System Overview

- Differential GPS
- Gaucho control system redesign
- Ebox-II/WinCE6 Control System Platform
- Control System Software

Power Sub-system

Power Sub-system

- 5V
 - E-Box II
 - Ethernet Bridge
 - Gaucho
- 24V
 - GPS Unit
- 9v
 - RF Serial transceiver
- Smells great!

- What does this do?
 - Normal GPS 20 ft accuracy
 - Differential GPS involves two units to improve accuracy to 1 ft (RT-20)
 - Stationary base station generates correction data
 - Mobile receiver uses correction data

- Two main parts
 - Base Station
 - GPS receiver on top of Jobst Hall
 - GPS device parsing data and generates RT-20 data
 - Broadcasts correction data

 - Longitude 89.61684333092W
 - Altitude 198.75
 - Remote Station
 - Receives RT-20 data via serial RF data
 - Parses RT-20 correction data with current raw coordinates and outputs corrected GPS data on secondary serial port

- RT-20 protocol
 - Includes worst case scenario to still help improve accuracy in poor conditions
 - Must maintain 4 satellites for decent performance
 - After 3 minutes of use 20 cm accuracy
 - After 10-20 minutes of use 3-4 cm accuracy
 - Keeping the unit still for any period of time helps improve accuracy
 - Transmitted logs
 - RTCM (10 seconds) Reports fixed location that was entered into base station
 - RTCM49 (2 seconds) Reports base station's satellite observation data <= 12 satellites
 - RTCM (5 seconds) Reports RTCM type 1 data for quick 1 meter position (worst case scenario)

- Easy to implement
 - Does not require any additional programming for Ebox or any future client to receive these improved coordinates
- Serial Communication
 - Each RT20 unit includes 2 serial ports
 - Typically one for programming and one for sending data
- Saving settings
 - Each unit has onboard flash memory to save configuration (saveconfig)
 - Allows proper operation immediately upon power up

- Communication
 - Lawn-II RF transceiver
 - Broadcasts via 900 MHz
 - 9600 baud
 - No configuration

Multi-year project

- Started with developing both software and h/w
- Then was developed with hardware only
- This year developed software for the Gaucho
- Gaucho Hardware
 - HCS12DG256B
 - H-Bridges
 - Two 12VDC motors
 - Linear Actuator

- Our onboard system redesign
 - Reprogramming two-way serial communications
 - Accepts F,B,L,C,R,H,X commands
 - Communication
 - 19200 Baud, 8 data bits, 1 stop bit, no parity, no flow control
- Code design allows for future extensions
 - Ultrasonic sensors
 - Distance sensor for wheels (detects slippage)
 - Variable turning radius

- Programming was done in MetroWerks Codewarrior 3.1
- Uses embedded C code
- Used better serial communication (sends back ACK)
- Allows for specific motor speed
- Uses PWM to control speed and bits for direction
 - steering (linear actuator)
 - drive speed (two independent motors)

- What this allows us to do
 - This is more than adequate to allow any type of navigation
 - Some driving tasks may be require redundant commands
- Current steering is full left/full right (drunk driving)
 - Makes fine control difficult

Ebox-II

- Encompasses all subsystems and manages vehicle controls
- Small form factor x86 computer
- Has low power requirements
- Supports .Net 2.0 Compact Framework
 - allows easy development

Ebox-II System Control

- Network connected (802.11b bridge)
 - Able to coexist on Bradley's Wi-Fi network
 - Limited access on quad, but should be adequate for testing
 - Able to handle movement between access points
- Serial Connectivity Only one at a time
 - USB Dongle not supported
 - GPS receiver
 - 9600 Baud
 - Gaucho
 - 19200 Baud

Windows CE 6

- New Baseline OS
- Used for embedded systems
 - Pocket PC's and Smartphones
 - Delivery and POS
- .Net 2.0 Compact Framework built in
- Includes helpful drivers for easier device integration

Control System Software

- Web server
 - Allows access on port 8080 from any computer
 - Commands are based on requested URL (/left.html)
 - Currently is a basic implementation
 - Needs to be improved to serve more dynamic data and include more capabilities
 - Responsive enough for navigation but not live driving
 - Current lag is due to web browsers and network

Web Interface

🥖 Gaucho Control Server - Windows Internet Explorer	
🕗 🗢 🖉 http://136.176.21.151:8080/ 🔻 🍫 🔀 Google	۶ ج
🚖 🏟 🔠 🗸 « 🎉 Gauch 🗙 » 👘 🏠 🔻 🔝 👻 🖶 🗣 🔂 Page 🤊	▼
Welcome to the Gaucho Control Server	*
Left <u>Center Right</u> Forward <u>Halt</u> Backward	
	*
Done 😜 Internet Protected Mode: Off	🔍 100% 🔻 🔡

Web Server

- Receives http request
- Translates into command
 - /left.html
 - /sequence.html
 - /
- Handles exceptions with too many requests

Video Demonstration

- 100 Degree right turn
 - Preprogrammed sequence
 - Open loop
 - 5 seconds forward
 - 3 seconds turning right
 - 5 seconds forward

Video Demonstration

Summary

- RT 20 Differential GPS to provide accurate position data
- Gaucho with low-level control system for platform
- E-Box II provides high-level software to provide control
 - Web Server allows universal access
 - Receives data from DGPS
 - Sends commands to Gaucho

What can be improved/finished?

- Need E-Box 2300
 - Includes two serial ports (GPS and Gaucho control)
- Low-level control improvements
 - Ultrasonic Sensors
 - Variable radius turning
- More automatic navigation system apply DGPS
- WebCam for remote video feed

Conclusion

- Gaucho as a whole is a stable system
- Overall goals of being closed loop were not completed
- This was due to having to rebuild low-level system
- Future projects involving the Gaucho will not need to rebuild any subsystems

Questions?