Laith Slaton Adesegun Sun-Basorun Advisor: Dr. Gary Dempsey Design of Simulink® -based Electromechanical Control Workstation for Load Disturbance Testing (EMCW)

Presentation Outline

- Summary
- Previous Work
- High Level Block Diagram
- Important System Components
 - □ Hardware
 - □ Software
- Major Project Objectives
 - Modeling
 - Controller Design
 - Graphical User Interface (GUI) Development
 - Performance Specifications
- Schedule
- Questions

Summary

- To design in Simulink® an electromechanical control workstation to examine the effects of load disturbance on the GM9236C534-R2 Pittman DC-geared motor.
- The controller's response to various load disturbances will be tested by coupling a second motor to the first to act as a DC generator.

Summary

- Modeled in SimMechanics® as well as Simulink®. Various experiments and motor/clutch datasheets will be used for system ID.
- Graphical User Interface (GUI) will be developed to allow for easy variation of system parameters, command signals, and loads.

Previous Work

Linear Motor Model

Developed during Mini-Project Fall 2006.

Previous Work

Linear Motor Model

Developed during Mini-Project Fall 2006.

Previous Work

Linear Motor Model

Developed during Mini-Project Fall 2006.

High Level Block Diagram

Important Components

The Hardware

- GM9236C534-R2 Pittman Motor
- □ Reell EC15 Coupler

The Software

- Simulink for Electrical & Mechanical Systems
- □ Matlab's "Guide" for GUI development
- □ SimMechanics for Mechanical Systems

71 72 73 74 75 76	<pre>%</pre>
77 - 78 -	X = handles.edit2; Y = handles.edit3;
79 80 - 81 - 82	ANSWER = X + Y; set(handles.text2,'String',ANSWER);

The Software cont'd

Matlab's "Guide"

A Matlab GUI development tool.

 Allows the user to create complex interfaces by simply specifying layout.

 Automatically generates layout code.

Presentation Outline

- Summary
- Previous Work
- High Level Block Diagram
- Important System Components
 - □ Hardware
 - □ Software
- Major Project Objectives
 - Modeling
 - □ Controller Design
 - Graphical User Interface (GUI) Development
 - Performance Specifications
- Schedule
- Questions

The Software

- About SimMechanics
 - □ A feature of Simulink.
 - Enables the user to model mechanical systems based on components' physical properties and location in a coordinate system

The Software

Pendulum Tutorial

Major Project Objectives

- Modeling: The following will be modeled in both SimMechanics and Simulink.
 - Motor
 - DC Generator
 - Coupler
- Controller Design
- Graphical User Interface (GUI) Development

The Motor

Unlike previous models of the Pittman DC motor the model used will be nonlinear.

Our Model will take into account various nonlinear frictions.

See following slide for nonlinear frictions.

Nonlinear Frictions of the Motor

The DC Generator

- □ Another Pittman motor driven by the first.
- Rheostat across generator terminals varies load seen by motor.
 - Open circuit corresponds to smallest load.
 - Short circuit corresponds to largest load.

The Coupler

□ A coupler between the motor and generator.

- □ Model must take into account,
 - Added inertia and friction.
 - Time delay caused by spring mechanism.
- Designed method to observe transient response of coupler.

Transient Response

Controller Design

- Upon verifying the models, controller design will begin.
- Initially, a single loop velocity controller will be used, with more advanced designs to follow.

The GUI

- Will allow the user to adjust:
 - Controller Gain/Type
 - Frictions & Inertias
 - Coupler Status
 - The Load
- Graphing capabilities will also be included for various outputs and inputs.

System Specifications

Functional Requirements and Performance Specifications of Subsystem Components				
Subsystem	Primary Objectives			
Controller	 Nonlinear characteristics of motor must be accounted for. X% overshoot with Y load. settling time with Y load. rise time with Y load. Regulation range: 0rpm - 500rpm. 			
DC Motor Model	 Initial model parameters accurate. Motor model based on measured parameters accurate to within X% (velocity, current). All model parameters should be variable using GUI. 			
Clutch	 Experimental time delay accurately depicted in clutch model. Clutch model engaged/disengaged through GUI. Model only works in one direction. All model parameters should be variable using GUI, including inertia, friction, and spring constant. 			
DC Generator Model	 Initial model parameters accurate. Generator model based on measured parameters accurate to within X% (voltage, current). All model parameters should be variable using GUI. Load varied/connected/disconnected through GUI. 			
GUI	 Aesthetically pleasing and intuitive layout. Outputs of interest displayed and graphed vs. command inputs. 			

The Schedule

Spring Semester Schedule				
Week	Laith Slaton	Adesegun Sun-Basorun		
1-3	Coupler System ID	Motor System ID		
4-5	Validation of models			
6	Single loop velocity control			
7-8	GUI design			
9	Two-loop velocity/acceleration	Single-loop feed-forward		
10	Serial interface between Simulink and physical system			
11-12	Advanced Controllers (Optimum Phase Margin, Disturbance Rejection, State-variable, Three-loop with torque control, Nonlinear controller, Adaptive Feed-Forward Control)			

Questions?