Electric Motor Control with Regenerative Braking

Cody Doremus & Keegan Roach Advisor: Mr. Gutschlag Bradley Electrical Engineering Senior Design Project

Presentation Outline

- Project Goals
- Project Background
- Regenerative Breaking Overview
- Research
- Intermediate Goals
- Schedule

Project Goals

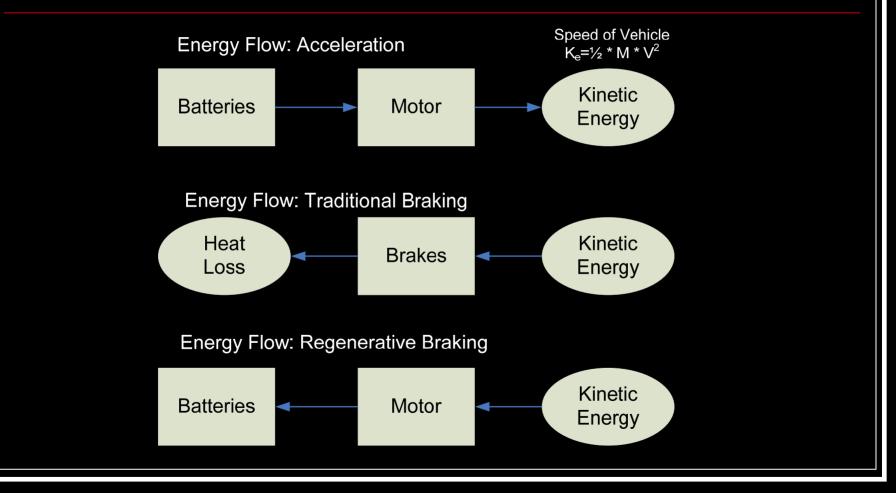
- Design and implement a test bench to determine the efficiency of regenerative braking
- (Optional) Design a Drive for a Synchronous AC motor

Background Information

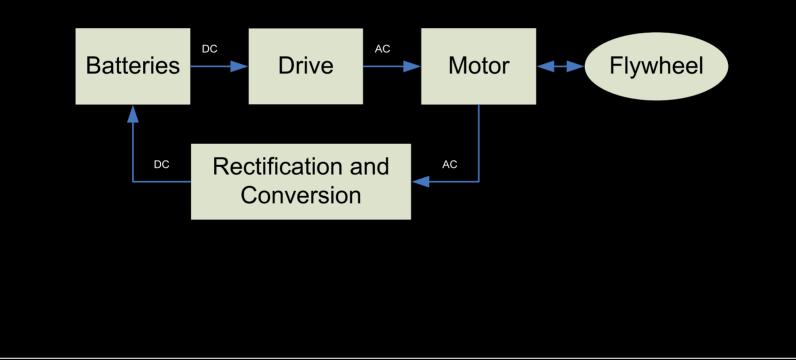
Spin off of current Bradley Mechanical Engineering electric vehicle project

Technology Comparison

Electric Vehicles today:


- Zenn (Feel Good Cars):
 - **\$11,000-\$14,000**
 - 25 mph max
 - 25 mile range
 - 1705 lbs
- EV1
 - **\$**34,000
 - 80 mph max
 - 75 130 mile range
 - 2900 lbs

- Bradley Mechanical Engineering Ultra Light Concept Vehicle Desired Specifications
 - <\$5000
 - 45 mph max
 - 100 mile range
 - <600 lbs.


Regenerative Breaking - Overview

- Regenerative braking is used to improve the efficiency (fuel economy) of:
 - Electric Vehicles
 - Hybrid Vehicles
 - Industrial Applications
- Lowers operation costs

Regenerative Breaking - Overview

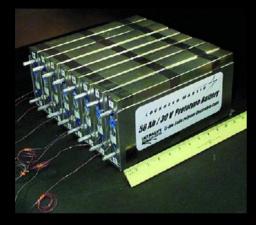
Regenerative Braking - Overview

Research

- Motors
- Drives
- Energy Storage
- Power Conversion
- Existing Products

Motors

- DC Motors (Brushed)
- AC Wound Rotor
 Motors (Commutated)
- AC Induction Motors
- Synchronous AC
 Motors Aka
 Brushless DC
- Wheel Motors


Drives

AC Servo Drives

- Torque Control
- Velocity Control
- Position Control
- Integrated Electronics
 - 3-Phase AC rectifier
 - Multiple feedback options
 - Very elaborate control systems

Energy Storage

Lithium Ion Batteries

- Best Energy Density
- Highest Cost
- Nimh Batteries
- Nicad Batteries
- Lead Acid Batteries
 - Lowest Energy Density
 - Lowest Cost
 - Ultracapacitors

Power Conversion

- DC/DC Converters
- Inverters
- Rectifiers
- Transformers

Existing Products: Toyota Prius

 NiMh Batteries
 Synchronous AC Motor

Existing Products: Honda Accord

 NiMh Batteries
 Synchronous AC Motor

Intermediate Goals

- 1. Construct Test Bench
- 2. Develop Simulation Models
- 3. Design & Implement Regeneration
- 4. Collect Experimental Data
- 5. Compare Experimental Results with Simulations
- 6. Design a Simpler Controller (optional)
- Repeat Experiment for Simpler controller (optional)

Schedule

X-Mas	Test Bench Construction
Week 1	Test Bench Construction
Week 2	Test Bench Construction
Week 3	Simulation Modeling
Week 4	Simulation Modeling
Week 5	Simulation Modeling
Week 6	Confirm Simulations by testing motor w/ Flywheel
Week 7	Take Regeneration Data
Week 8	Take Regeneration Data
Week 9	Design Controller
Week 10	Design Controller
Week 11	Design Controller
Week 12	Final Presentation

Questions

