
Olson and Benik 1

Closed-Loop Feedback Controller of DC Motor’s RPM

The project objective was to design and prototype a software controlled DC motor
closed-loop system, utilizing the 80515 microcontroller development board. The primary
goals were to model the entire system theoretically and in MATLAB Simulink to
determine an appropriate controller design, to design the hardware interface for the
microcontroller, joystick, and motor, and to develop assembly code for the user interface
and for the microcontroller to control the motor’s RPM with both open-loop and closed-
loop feedback control. Key goals were to meet design specifications, to design interrupt
driven software, and to choose appropriate control criteria and to optimize these criteria.
Also, a working prototype was to be built and tested in order to give a demonstration of
the design to Dr. Dempsey.
 The system’s analysis and design tasks were divided between Adam Olson and
Simon Benik. Adam Olson’s tasks were first to analyze and evaluate the system’s
Simulink model, and then to design, build, and test the hardware interface for the various
subsystems, create and document flow charts and schematics, and then finally to assist in
the software design, specifically the error control and closed-loop feedback modules.
Simon Benik’s tasks were to create the vast majority of code for the microcontroller
including modification of user interface code from a previous project, timer 0 and timer 2
code design for timing required in product specification, PWM signal generation, RPM
calculation, and I/O interfacing, particularly in joystick switch scanning.
 The product specifications required the LCD display to be 2-lines in normal
display mode. Upon power up, the display is “Mini-Project 2006”. After 0.75 seconds,
the normal mode is displayed which is line 1: “RPM=WWW” and line2:
“PWM=YYY.Y%”, where the increments in PWM are to be at most 0.2%. When the ‘C’
key is pressed on the keypad, the display should enter keypad entry mode, which is line
1: “A=HOME D=GAIN E=P/PI” and line 2: “F=JOYSTICK SCAN”. When ‘A’ is
pressed, the display should return to normal mode. When ‘D’ is pressed, the display
should switch to only line 1 reading “Enter Kp:000-255”, and if an invalid entry is
entered, an error message should be displayed. If ‘E’ is pressed, the display should
switch to only line 1 reading “Enter 1=PRO,2=PI”, and if an invalid entry is entered, an
error message is displayed. If ‘F’ is pressed, the display should switch to a message of
only line 1 reading “Enter ms:005-250” to enter the scan rate, and again, if an invalid
entry is entered, an error message is displayed. The LCD refresh rate must be 0.5
seconds.

The power supply provided is 20VDC, and is used for the motor and external
circuitry. The PWM signal must have a fixed period of 1ms, and a variable duty cycle
from 0% to 100% in 0.2% increments or less. The display accuracy of the RPM reading
must be ± 40 RPM at the most and this RPM reading must be displayed every 0.5
seconds.

The joystick scan period must be every 40ms by default, and be able to vary from
5 to 250ms by user selection. The joystick must be powered by the EMAC’s 5VDC
power regulator. Button D2 and D3 of the joystick increase and decrease the RPM
respectively when the trigger button is pressed. Button D4 activates the motor brake and
exits from the closed-loop control when pressed alone. If D4 is pressed while the trigger
is active, the closed-loop control is initiated and enabled.

Olson and Benik 2

During closed-loop operation, the center (bias) velocity is set via the joystick
buttons. If the error signal exceeds the software limits (overflow), the controller must
revert back to the original duty cycle at closed-loop initiation and remain in closed-loop
mode. The proportional controller gain must be obtained for maximum motor supply
voltage range, and velocity accuracy versus supply voltage must be recorded. Extra
credit was given for the D/A channel to monitor and display the error signal as 2.5V (0
error) ± 2.5V error.

The last requirements of the product specifications are that the product operates at
a temperature range of 0 to 40 degrees C. Also, An LED must be updated at the LCD
refresh rate on port 4.0, port 4.1 must be toggled to show 1ms timing, port 4.2 must be
toggled to show the joystick scan rate, and port 4.3 must show the 1ms interrupt
execution time. All of the software must be interrupt driven and designed in a modular
programming method.
 The system controls the RPM of a DC Pittman motor. A functional block
diagram of this system is shown in figure 2-1.

Fig. 2-1: System functional block diagram with subsystems

The 80515 microcontroller development board’s LCD and keypad are used to

interface with the user of the system. The high level flowchart of the software subsystem
is shown in figure 3-1.

Olson and Benik 3

Fig. 3-1: High level flowchart of software

The keypad routine is interrupt driven, and upon its service routine, the ASCII

character in the accumulator is compared to selected ASCII values to determine what
character was pressed and thereupon executing the appropriate action for the character.
The keypad flowchart is shown in figure 10-1. The LCD flowchart is shown in figure 11-
1. The LCD function is called, where the LCD status registers are read as external
memory locations to determine the status of the LCD. If the LCD is not busy, different
cases will be checked to determine what value is written to the LCD.

The system begins in open-loop control, where the user controls the PWM signal
generated by the microcontroller which corresponds to a specific RPM value displayed.
The flowchart for this part of the code is shown in figure 12-1. The RPM value is read
from two pulses out of the rotary encoder of the DC motor. The two pulses have a 90

Olson and Benik 4

degrees phase difference, which allows for two pulses rather than one pulse to be
counted, thereby doubling the resolution for RPM calculations. These pulses drive two
pins that generate interrupts, where the pulse value is incremented. Every 1ms, timed by
timer 0, the pulse count is checked and cleared, and a corresponding RPM is found and
displayed using a look up table in memory. Timer 2 is setup for generating a PWM
signal with the 1ms period of timer 0. A value of FFFFh – 922d is the minimum value
loaded into timer 2, corresponding to a 100% duty cycle, and a maximum value of FFFFh
– 1h corresponds to a 0% duty cycle. The value is incremented and decremented when
either the D2 or D3 switches of the joystick are scanned as high in conjunction with the
trigger switch scanned as high. This gives a resolution of (100%/922) = 0.108% duty
cycle increments, which is nearly half of the required spec of 0.2%. When a new value is
initiated by the joystick scans, the incremented value is stored in CCL1 and CCH1 to be
reloaded into timer 2 for its overflow interrupt timing, which toggles P1.1 for PWM
generation. The reload value is also used to look up a corresponding value in a look up
table in memory to display the duty cycle on the LCD.

The PWM signal is signaled to external circuitry which is used to interface the
80515 microcontroller development board with the Pittman motor. The signal is used as
an output via a pull up resistor to toggle the PWM input pin 5 of the H-bridge. The H-
bridge circuitry is shown in figure 4-1.

Fig. 4-1: H-bridge circuitry used to control the motor and interface with the

 microcontroller.

The direction control is hardwired rather than software controlled. The brake pin
is connected to P3.7 of the microcontroller which, when pulled low by software, will
allow the motor to run, and when pulled high, will cause the motor to stop. Pins 1 and 11
are connected to the two output pins through 10nF capacitors. These bootstrap pins allow
the output pins to pull extra energy from the capacitors when necessary. Depending on
the direction set, one output pin is always at 20V, which is the supply voltage, while the
other pin pulses to ground corresponding to the input PWM from the microcontroller.
Using pull-up resistors of 5KΩ with 5V sources allowed a maximum current flow
through the microcontroller ports to be 1mA which is within the safe current limits of the
80515 data sheets. The LED required a 250Ω resistor to limit current within safe levels.

Olson and Benik 5

The H-bridge drew about 100mA of current, so at its maximum operating voltage of
20VDC, the power dissipation is 2.1316W (calculated in lab book pages 87-89) which, at
room temperature, is within the limits of the H-bridge safe operation. Total power
dissipation on average is 2.3076W. The entire system circuitry design is shown in the
schematic of figure 14-1.

The closed-loop control code was designed to operate upon user activation, where
the current pulses counted and the timer 2 load values were stored. The optimum
proportional gain was determined to be 150 in Simulink because at lower kp values, for
instance in figure 5-1, the steady state RPM was considerably lower than the control
RPM, and at higher than 150 kp values, in figure 6-1, the steady state RPM became
unstable and oscillated. Overshoot and rise time were taken into account as well, as
discussed in the lab book. The compromise was a kp value of 150, whose transient and
steady state properties are apparent in figure 6-2.

Fig. 5-1: Simulated RPM with kp of 50.

Olson and Benik 6

Fig. 6-1: Simulated RPM with kp of 175.

Fig. 6-2: Simulated RPM with kp of 150.

Olson and Benik 7

The algorithm that manipulated the closed-loop control of the PWM signal is
shown in the flowchart of figure X.X. The kp value was multiplied by the error and then
added or subtracted, depending on the sign of the error. If at anytime the error
adjustment exceeded the bounds of FFFFh-1h or FFFFh-922d, the timer 2 reload values
would revert back to the original values at the initiation of the closed-loop. Closed-loop
control was never achieved in lab.

The experimental results of the open-loop RPM at given average voltages (duty
cycle of 20V) is compared to the simulated values to give a comparison of how the
system performs. Table 7-1 shows the RPM data comparisons. The prototype is least
accurate at very low RPM and then greatly improves accuracy, giving the system an
average RPM percentage error from the simulated system of 11.34%.

Table 7-1: Experimental RPM of prototype compared to simulated RPM

Average Voltage
RPM of simulated

system
RPM of

prototype percent error
1V 30 20 33%
5V 145 140 3.40%
10V 295 260 11.80%
15V 440 410 6.80%
20V 590 580 1.70%

 Average Error: 11.34%

The average difference in RPM from simulated to experimental, however, is only

18 RPM, which is less than the required resolution of RPM display in the specifications,
so this is a better representation of how the experimental prototype matches the simulated
RPM. The system open-loop mode RPM values are accurate and also, the PWM value
displayed on the LCD was accurate within 0.1% duty cycle when compared to measured
duty cycle values using the oscilloscope.

A bill of material for the external circuitry only is shown in table 7-2.

Table 7-2: Bill of materials for external circuitry

Component Quantity Value Manufacturer Cost per unit Total Cost
C1, C5, C6 3 0.01uF Kemet $0.06 $0.18

C2 1 0.1uF Kemet $0.06 $0.06
C3 1 1nF Kemet $0.06 $0.06
C4 1 1uF Kemet $0.06 $0.06

R1-R8 8 5KΩ Panasonic $0.04 $0.32
R9 1 250Ω Panasonic $0.04 $0.04
U1 1 LMD18200 National $11.70 $11.70

Single unit cost $12.42
10,000 units cost $124,200.00

The values were obtained from www.digikey.com and only reflect an estimate of

what large volume production costs may be for these components. A total list of parts is
shown in table 8-1. The microcontroller development kit is used rather than the
individual components of the kit, such that components on the kit may be unnecessary in

Olson and Benik 8

the scope of the system design. Also, the HP DC power supply is included as the voltage
regulator for the prototype, although this is impractical for most market products.

Table 8-1: Final parts list

Component Quantity Value/Part # Manufacturer
Vsupply 1 20VDC HP
EMAC 80515development kit 1 Micropac 535 Keil
DC Motor 1 GM9000 Pittman
Joystick 1 Wingman Logitech
C1, C5, C6 3 0.01uF Kemet
C2 1 0.1uF Kemet
C3 1 1nF Kemet
C4 1 1uF Kemet
R1-R8 8 5KΩ Panasonic
R9 1 250Ω Panasonic
U1 1 LMD18200 National

Much success was achieved for the project, however, not all of the goals were

completed. Closed-loop control was never implemented correctly. As discussed in the
lab book, when the closed-loop control was activated, the PWM signal was no longer
generated, even while the PWM reading on the LCD was changing, and the timer 2
reload registers during debugging were changing. Another partially non-functional minor
problem was that the display would not display down to absolute 0% PWM. Also,
although the keypad entry mode was implemented for the kp value entry, the value was
never adjusted by the user, it remained a constant 150. All open-loop code worked
almost flawlessly, and with better performance than the product specifications in many
cases. The hardware was interfaced correctly between all subsystems and worked in the
prototype as designed. Adam Olson received a 92% for the demo grade, and most of the
penalization came in the closed-loop functionality. Simon Benik received a 97% for the
demo grade by being penalized for the incomplete PWM display.

Product improvements could include an actual user selectable kp value as
mentioned above. Also, various other control designs could be utilized, primarily the
integrator that was never designed in code. The integrator would improve the steady
state RPM greatly with minor transient setbacks. Also, direction control could be
implemented because one of the H-bridge’s primary features is the ability to switch
polarity of the source voltage to the motor. The H-bridge consists of four switches in an
H circuit configuration, and these switches can be manipulated with the direction pin,
which was tied to ground in our prototype. If this pin were to be toggled with the
microcontroller, the motor could be controlled in both directions. Also, the H-bridge’s
thermal flag could be implemented in the design to allow for safety protection to the
circuitry by monitoring the temperature level with the microcontroller, where duty cycle
could be decreased or completely set to 0% when the temperature level is too high.
Additional design features could be to use the potentiometer of the joystick to give a
voltage level to the microcontroller’s A/D converter where the position of the joystick
could be monitored. Also, the D/A converter could be utilized as suggested in the
product specifications to generate a voltage level between 0V and 5V that is proportional
to the error value used by the closed-loop feedback control.

Olson and Benik 9

Project design hours for Adam Olson were approximately 32 hours, with almost
equal time being spent in hardware design, Simulink analysis, and closed-loop code
design. Simon Benik spent approximately 34 hours, with all time being spent in all
aspects of microcontroller system design and programming.

The hardware design time was approximately 11 hours, where the final design
took 6 hours to reach, debugging and building took approximately 3.5 hours over the
course of the project including reassembly of the circuits each lab day. Testing took
approximately 30 minutes, and one hour was spent creating schematics.

The software design time was approximately 55 hours. 30 hours were spent
designing and coding. About 10 hours were required for debugging and testing of the
software designed. Five hours was spent for software documentation, primarily in
flowcharts and lab notebook data. Simulink modeling and analysis took 10 hours and
was used in the software design.

Olson and Benik 10

Start in1srv

Push DPTR

End in1srv

Translate Key pressed into
Key Value and store into R7

Is Display State
0?

Is Display State
1?

Is Display State
2?

Is Display State
3?

Is Display State
4?

NO

NO

NO

NO

NO

POP DPTR
RETI

A

YES

YES

YES

YES

YES

Is C Pressed
YES

Ljmp A

Display State 1
set display position to 0

Is A Pressed
NO NO

Is D Pressed

YES YES

Is E Pressed Is F Pressed

Display State 0 Display State 2 Display State 3 Display State 4

YES YES

LJMP A LJMP A LJMP A LJMP A

NO NO

Set Current Position
Value to Button

Pressed

Set Current Position to
Button Pressed

Have 3 buttons
been pressed?

YES

NO

LJMP A

Is the input
valid?

YES

NO

LJMP Error

Set Gain K To
Inputted Value

LJMP A

Is Key Pressed
1?

Is Key Pressed
2?

YES YES

NO NO
LJMP Error

LJMP A LJMP A

Set Closed Loop
to Pro

Set Closed Loop
to PI

Have 3 buttons
been pressed?

Is the input
valid?

LJMP A LJMP Error LJMP A

Set Poll Time to
Inputted value

Start Error

Clear Screen

Display State 1

End Error

Display Error Message
Pause for .75 seconds

Fig. 10-1: Keypad subsystem flow chart.

Olson and Benik 11

Start LCD

Preserve character
data in A to R2

Send character
data in R2 to LCD

data register

Read LCD instruction
register into A

Is LCD busy
flag set?

No

Yes

Read data register
into A

RET

Start Display

Enter current Character in
message, loop until all
characters have been

entered into display register

Stop LCD

CMDOUT start

Is command
character a

carriage return?

set P2 to point to
instruction register

Convert cursor address to
set DD ram address. Move
cursor to left end of current

line
Send Carriage return to

instruction register

Yes

Is command
character a line

feed?

Is A data to be
displayed??

Is A #0Eh?

Is LCD busy
flag set?

No

No

No

No Yes

Send_CMD
Read instruction register.

Restore command character
and send to LCD controller

instruction register. Preserve
value into R2

If command is a
line feed , store in

A.
Convert to DD ram

address

Yes

Set location of cursor
to A. Put A in R2

Yes

Save location 6 in
cursor into A

No

Is busy flag
set?

Yes

No

Fig. 11-1: LCD subsystem flow chart.

Olson and Benik 12

Start in0srv

Set Pin 4.1 For
1ms timing

Set Timer 0
Reload value

Store Value of Temp
RPM measurement into

R6

Check if
Closed loop

flag set
Lcall CloopYes

No

Increment poll time
register

If poll time
register = poll

timing
Lcall Poll

Increment .5 second
time register

If .5 second time
register = .5

seconds
Lcall Display1

Clear Pin 4.1 for 1ms
Timing

Reti

End in0srv

Yes

Yes

Fig. 12-1: Interrupt service routine for Timer 0.

Olson and Benik 13

Start

Bit 71h set?
(closed loop on

flag)

Bit 70h set?
(closed loop
initiated flag)

Set bit 00h flag

Store CRCL and CRCH
into registers 71h and 72h
(current timer load value)

Store current pulse count
into byte register 70h

No

Yes

Subtract current
pulse value from

stored pulse
value(70h)

Carry flag set?
(negative value?)

Subtract
magnitude of

negative value
from #ffh and add

1 to sum.

Set bit 73h as
negative indication

flag

Multiply subtracted
value by #96h

(150d)

Carry flag set?
(overflow)

Negative flag set?
(negative error?)

Store lower bit (A)
in 71h, higher bit

(B) in 72h

Yes

No

No

Yes

Clear open loop
flagsYes

Clear carry
ADD register 71h

to CRCL and store
back in 71h

ADDC register 72h
to CRCH and store

back in 72h

Carry flag set?

Clear open loop
flags

Restore CRCL
with register 76h,

CRCH with
register 77h

Yes

Store register 71h into
CRCL and register 72h

into CRCH

No

Store CRCL in 76h
Store CRCH in 77h

Ret

No

Clear carry flag
Subtract from

CRCL register 71h
and store back into

register 71h

Subtract from
CRCH register 72h
and store back into

register 72h

Carry flag set?

Yes

Store register 71h
into CRCL and

register 72h into
CRCH

No

No

Fig 13-1: Closed-loop control subsystem flow chart.

