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Closed-Loop Feedback Controller of DC Motor’s RPM 
 

The project objective was to design and prototype a software controlled DC motor 
closed-loop system, utilizing the 80515 microcontroller development board.  The primary 
goals were to model the entire system theoretically and in MATLAB Simulink to 
determine an appropriate controller design, to design the hardware interface for the 
microcontroller, joystick, and motor, and to develop assembly code for the user interface 
and for the microcontroller to control the motor’s RPM with both open-loop and closed-
loop feedback control.  Key goals were to meet design specifications, to design interrupt 
driven software, and to choose appropriate control criteria and to optimize these criteria.  
Also, a working prototype was to be built and tested in order to give a demonstration of 
the design to Dr. Dempsey. 
 The system’s analysis and design tasks were divided between Adam Olson and 
Simon Benik.  Adam Olson’s tasks were first to analyze and evaluate the system’s 
Simulink model, and then to design, build, and test the hardware interface for the various 
subsystems, create and document flow charts and schematics, and then finally to assist in 
the software design, specifically the error control and closed-loop feedback modules.  
Simon Benik’s tasks were to create the vast majority of code for the microcontroller 
including modification of user interface code from a previous project, timer 0 and timer 2 
code design for timing required in product specification, PWM signal generation, RPM 
calculation, and I/O interfacing, particularly in joystick switch scanning. 
 The product specifications required the LCD display to be 2-lines in normal 
display mode.  Upon power up, the display is “Mini-Project 2006”.  After 0.75 seconds, 
the normal mode is displayed which is line 1: “RPM=WWW” and line2:  
“PWM=YYY.Y%”, where the increments in PWM are to be at most 0.2%.  When the ‘C’ 
key is pressed on the keypad, the display should enter keypad entry mode, which is line 
1: “A=HOME D=GAIN E=P/PI” and line 2: “F=JOYSTICK SCAN”.  When ‘A’ is 
pressed, the display should return to normal mode.  When ‘D’ is pressed, the display 
should switch to only line 1 reading “Enter Kp:000-255”, and if an invalid entry is 
entered, an error message should be displayed.  If ‘E’ is pressed, the display should 
switch to only line 1 reading “Enter 1=PRO,2=PI”, and if an invalid entry is entered, an 
error message is displayed.  If ‘F’ is pressed, the display should switch to a message of 
only line 1 reading “Enter ms:005-250” to enter the scan rate, and again, if an invalid 
entry is entered, an error message is displayed.  The LCD refresh rate must be 0.5 
seconds.   

The power supply provided is 20VDC, and is used for the motor and external 
circuitry.  The PWM signal must have a fixed period of 1ms, and a variable duty cycle 
from 0% to 100% in 0.2% increments or less.  The display accuracy of the RPM reading 
must be ± 40 RPM at the most and this RPM reading must be displayed every 0.5 
seconds.   

The joystick scan period must be every 40ms by default, and be able to vary from 
5 to 250ms by user selection.  The joystick must be powered by the EMAC’s 5VDC 
power regulator.  Button D2 and D3 of the joystick increase and decrease the RPM 
respectively when the trigger button is pressed.  Button D4 activates the motor brake and 
exits from the closed-loop control when pressed alone.  If D4 is pressed while the trigger 
is active, the closed-loop control is initiated and enabled. 
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During closed-loop operation, the center (bias) velocity is set via the joystick 
buttons.  If the error signal exceeds the software limits (overflow), the controller must 
revert back to the original duty cycle at closed-loop initiation and remain in closed-loop 
mode.  The proportional controller gain must be obtained for maximum motor supply 
voltage range, and velocity accuracy versus supply voltage must be recorded.  Extra 
credit was given for the D/A channel to monitor and display the error signal as 2.5V (0 
error) ± 2.5V error. 

The last requirements of the product specifications are that the product operates at 
a temperature range of 0 to 40 degrees C.  Also, An LED must be updated at the LCD 
refresh rate on port 4.0, port 4.1 must be toggled to show 1ms timing, port 4.2 must be 
toggled to show the joystick scan rate, and port 4.3 must show the 1ms interrupt 
execution time.  All of the software must be interrupt driven and designed in a modular 
programming method. 
 The system controls the RPM of a DC Pittman motor.  A functional block 
diagram of this system is shown in figure 2-1. 
 
 

 
Fig. 2-1: System functional block diagram with subsystems 

 
The 80515 microcontroller development board’s LCD and keypad are used to 

interface with the user of the system.  The high level flowchart of the software subsystem 
is shown in figure 3-1.   
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Fig. 3-1: High level flowchart of software 

 
The keypad routine is interrupt driven, and upon its service routine, the ASCII 

character in the accumulator is compared to selected ASCII values to determine what 
character was pressed and thereupon executing the appropriate action for the character.  
The keypad flowchart is shown in figure 10-1.  The LCD flowchart is shown in figure 11-
1.  The LCD function is called, where the LCD status registers are read as external 
memory locations to determine the status of the LCD.  If the LCD is not busy, different 
cases will be checked to determine what value is written to the LCD.   

The system begins in open-loop control, where the user controls the PWM signal 
generated by the microcontroller which corresponds to a specific RPM value displayed.  
The flowchart for this part of the code is shown in figure 12-1.  The RPM value is read 
from two pulses out of the rotary encoder of the DC motor.  The two pulses have a 90 



Olson and Benik 4 

degrees phase difference, which allows for two pulses rather than one pulse to be 
counted, thereby doubling the resolution for RPM calculations.  These pulses drive two 
pins that generate interrupts, where the pulse value is incremented.  Every 1ms, timed by 
timer 0, the pulse count is checked and cleared, and a corresponding RPM is found and 
displayed using a look up table in memory.  Timer 2 is setup for generating a PWM 
signal with the 1ms period of timer 0.  A value of FFFFh – 922d is the minimum value 
loaded into timer 2, corresponding to a 100% duty cycle, and a maximum value of FFFFh 
– 1h corresponds to a 0% duty cycle.  The value is incremented and decremented when 
either the D2 or D3 switches of the joystick are scanned as high in conjunction with the 
trigger switch scanned as high.  This gives a resolution of (100%/922) = 0.108% duty 
cycle increments, which is nearly half of the required spec of 0.2%.  When a new value is 
initiated by the joystick scans, the incremented value is stored in CCL1 and CCH1 to be 
reloaded into timer 2 for its overflow interrupt timing, which toggles P1.1 for PWM 
generation.  The reload value is also used to look up a corresponding value in a look up 
table in memory to display the duty cycle on the LCD.  

The PWM signal is signaled to external circuitry which is used to interface the 
80515 microcontroller development board with the Pittman motor.  The signal is used as 
an output via a pull up resistor to toggle the PWM input pin 5 of the H-bridge.  The H-
bridge circuitry is shown in figure 4-1. 

 
Fig. 4-1: H-bridge circuitry used to control the motor and interface with the  

        microcontroller. 
 

The direction control is hardwired rather than software controlled.  The brake pin 
is connected to P3.7 of the microcontroller which, when pulled low by software, will 
allow the motor to run, and when pulled high, will cause the motor to stop.  Pins 1 and 11 
are connected to the two output pins through 10nF capacitors.  These bootstrap pins allow 
the output pins to pull extra energy from the capacitors when necessary.  Depending on 
the direction set, one output pin is always at 20V, which is the supply voltage, while the 
other pin pulses to ground corresponding to the input PWM from the microcontroller.  
Using pull-up resistors of 5KΩ with 5V sources allowed a maximum current flow 
through the microcontroller ports to be 1mA which is within the safe current limits of the 
80515 data sheets.  The LED required a 250Ω resistor to limit current within safe levels.  
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The H-bridge drew about 100mA of current, so at its maximum operating voltage of 
20VDC, the power dissipation is 2.1316W (calculated in lab book pages 87-89) which, at 
room temperature, is within the limits of the H-bridge safe operation.  Total power 
dissipation on average is 2.3076W.  The entire system circuitry design is shown in the 
schematic of figure 14-1. 

The closed-loop control code was designed to operate upon user activation, where 
the current pulses counted and the timer 2 load values were stored.  The optimum 
proportional gain was determined to be 150 in Simulink because at lower kp values, for 
instance in figure 5-1, the steady state RPM was considerably lower than the control 
RPM, and at higher than 150 kp values, in figure 6-1, the steady state RPM became 
unstable and oscillated.  Overshoot and rise time were taken into account as well, as 
discussed in the lab book.  The compromise was a kp value of 150, whose transient and 
steady state properties are apparent in figure 6-2.   

 
 
 

 
 
 

Fig. 5-1: Simulated RPM with kp of 50. 
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Fig. 6-1: Simulated RPM with kp of 175. 

 

 
Fig. 6-2: Simulated RPM with kp of 150. 
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The algorithm that manipulated the closed-loop control of the PWM signal is 
shown in the flowchart of figure X.X. The kp value was multiplied by the error and then 
added or subtracted, depending on the sign of the error.  If at anytime the error 
adjustment exceeded the bounds of FFFFh-1h or FFFFh-922d, the timer 2 reload values 
would revert back to the original values at the initiation of the closed-loop.  Closed-loop 
control was never achieved in lab. 

The experimental results of the open-loop RPM at given average voltages (duty 
cycle of 20V) is compared to the simulated values to give a comparison of how the 
system performs.  Table 7-1 shows the RPM data comparisons.  The prototype is least 
accurate at very low RPM and then greatly improves accuracy, giving the system an 
average RPM percentage error from the simulated system of 11.34%. 
 

Table 7-1: Experimental RPM of prototype compared to simulated RPM 

Average Voltage 
RPM of simulated 

system 
RPM of 

prototype percent error 
1V 30 20 33% 
5V 145 140 3.40% 
10V 295 260 11.80% 
15V 440 410 6.80% 
20V 590 580 1.70% 

    
  Average Error: 11.34% 

 
The average difference in RPM from simulated to experimental, however, is only 

18 RPM, which is less than the required resolution of RPM display in the specifications, 
so this is a better representation of how the experimental prototype matches the simulated 
RPM.  The system open-loop mode RPM values are accurate and also, the PWM value 
displayed on the LCD was accurate within 0.1% duty cycle when compared to measured 
duty cycle values using the oscilloscope.    

A bill of material for the external circuitry only is shown in table 7-2.   
 
Table 7-2: Bill of materials for external circuitry 

Component Quantity Value Manufacturer Cost per unit Total Cost 
C1, C5, C6 3 0.01uF Kemet $0.06  $0.18  

C2 1 0.1uF  Kemet $0.06  $0.06  
C3 1 1nF Kemet $0.06  $0.06  
C4 1 1uF Kemet $0.06  $0.06  

R1-R8 8 5KΩ Panasonic $0.04  $0.32  
R9 1 250Ω Panasonic $0.04  $0.04  
U1 1 LMD18200 National $11.70  $11.70  

Single unit cost     $12.42  
10,000 units cost     $124,200.00 

 
The values were obtained from www.digikey.com and only reflect an estimate of 

what large volume production costs may be for these components.  A total list of parts is 
shown in table 8-1.  The microcontroller development kit is used rather than the 
individual components of the kit, such that components on the kit may be unnecessary in 
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the scope of the system design.  Also, the HP DC power supply is included as the voltage 
regulator for the prototype, although this is impractical for most market products. 

 
Table 8-1: Final parts list 

Component Quantity Value/Part # Manufacturer 
Vsupply 1 20VDC HP 
EMAC 80515development kit 1 Micropac 535 Keil 
DC Motor 1 GM9000 Pittman 
Joystick 1 Wingman Logitech 
C1, C5, C6 3 0.01uF Kemet 
C2 1 0.1uF  Kemet 
C3 1 1nF Kemet 
C4 1 1uF Kemet 
R1-R8 8 5KΩ Panasonic 
R9 1 250Ω Panasonic 
U1 1 LMD18200 National 

 
Much success was achieved for the project, however, not all of the goals were 

completed.  Closed-loop control was never implemented correctly.  As discussed in the 
lab book, when the closed-loop control was activated, the PWM signal was no longer 
generated, even while the PWM reading on the LCD was changing, and the timer 2 
reload registers during debugging were changing.  Another partially non-functional minor 
problem was that the display would not display down to absolute 0% PWM.  Also, 
although the keypad entry mode was implemented for the kp value entry, the value was 
never adjusted by the user, it remained a constant 150.  All open-loop code worked 
almost flawlessly, and with better performance than the product specifications in many 
cases.  The hardware was interfaced correctly between all subsystems and worked in the 
prototype as designed.  Adam Olson received a 92% for the demo grade, and most of the 
penalization came in the closed-loop functionality.  Simon Benik received a 97% for the 
demo grade by being penalized for the incomplete PWM display.   

Product improvements could include an actual user selectable kp value as 
mentioned above.  Also, various other control designs could be utilized, primarily the 
integrator that was never designed in code.  The integrator would improve the steady 
state RPM greatly with minor transient setbacks.  Also, direction control could be 
implemented because one of the H-bridge’s primary features is the ability to switch 
polarity of the source voltage to the motor.  The H-bridge consists of four switches in an 
H circuit configuration, and these switches can be manipulated with the direction pin, 
which was tied to ground in our prototype.  If this pin were to be toggled with the 
microcontroller, the motor could be controlled in both directions.  Also, the H-bridge’s 
thermal flag could be implemented in the design to allow for safety protection to the 
circuitry by monitoring the temperature level with the microcontroller, where duty cycle 
could be decreased or completely set to 0% when the temperature level is too high.  
Additional design features could be to use the potentiometer of the joystick to give a 
voltage level to the microcontroller’s A/D converter where the position of the joystick 
could be monitored.  Also, the D/A converter could be utilized as suggested in the 
product specifications to generate a voltage level between 0V and 5V that is proportional 
to the error value used by the closed-loop feedback control. 
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Project design hours for Adam Olson were approximately 32 hours, with almost 
equal time being spent in hardware design, Simulink analysis, and closed-loop code 
design.  Simon Benik spent approximately 34 hours, with all time being spent in all 
aspects of microcontroller system design and programming. 

The hardware design time was approximately 11 hours, where the final design 
took 6 hours to reach, debugging and building took approximately 3.5 hours over the 
course of the project including reassembly of the circuits each lab day. Testing took 
approximately 30 minutes, and one hour was spent creating schematics. 

The software design time was approximately 55 hours.  30 hours were spent 
designing and coding.  About 10 hours were required for debugging and testing of the 
software designed.  Five hours was spent for software documentation, primarily in 
flowcharts and lab notebook data.  Simulink modeling and analysis took 10 hours and 
was used in the software design. 
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Fig. 10-1: Keypad subsystem flow chart. 
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Fig. 11-1: LCD subsystem flow chart. 
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Fig. 12-1: Interrupt service routine for Timer 0. 
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Fig 13-1: Closed-loop control subsystem flow chart. 


