Medical Imaging
Image Generator to Support the Application of a Haptic Device for the Simulation of Arthroscopic Surgery

Bradley University
Department of Electrical and Computer Engineering
By: Renata Zabawa
Project Advisor: Dr. Thomas L. Stewart
December 6, 2005
Project Introduction

- Magnetic Resonance Imaging (MRI)
- MRI show cross section knee
- Create 3-D model of cartilage
- Simulate surgeon’s view during arthroscopic surgery
- Simulate the arthroscopic surgery with a haptic feedback system

MRI Scan of Knee

Picture Provided By Dr. Stewart
Project Introduction

- Not Diagnosis Tool
- Medical Students
- Current medical simulator enables demonstration and trial of insertion of torqueable elongated members (guide wires or catheters) into small body passages
System Block Diagram

Image Data from MRI 500X500 Pixels → MATLAB CODE to Generate Model of Cartilage and Simulation of Arthroscopic Surgery → Arthroscopic Surgery Simulation on Monitor
Software Block Diagrams

- Image Processing Block Diagram
- Graphics Block Diagram
Image Processing Block Diagram

- Creates model of cartilage
 - Isosurfaces-displays overall structure of cartilage
 - Isocaps-reveal details of interior cartilage
Graphics Block Diagram

- Takes the model of cartilage and creates the simulation of an arthroscopic meniscus surgery
Actual Views of Arthroscopic Knee Surgery

Figure 1: Arthroscopic Surgery View of Torn Cartilage

Figure 2: Arthroscopic Surgery View of Healthy Cartilage
Preliminary Results / Issues

- Model of Cartilage
- Lighting
- View Control

- Making the MRI data model look like an arthroscopic surgeon’s view
Model of Cartilage
Lighting

- Cone Model
- Cone with Light
View Control

- Matlab Functions
 - Camera position
 - Camera target
- Views from different angles and at different locations
- Limited - cartilage is not yet split
Simulation of Surgeon’s View

- Light added to Cartilage Model

- Problems
 - Model blows up the size of the cartilage on the screen
 - Lack of data causes distortion to show on the cartilage when light is added

- Proposed Solution
 - Render data between two points
 - Two dimensional filter over a curve
<table>
<thead>
<tr>
<th>Date</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/06/05</td>
<td>Present Project</td>
</tr>
<tr>
<td>12/07/05</td>
<td>Study Day</td>
</tr>
<tr>
<td>12/16/05</td>
<td>Research rendering routines for cartilage model</td>
</tr>
<tr>
<td>01/19/06</td>
<td>Address rendering issues of cartilage model</td>
</tr>
<tr>
<td>01/26/06</td>
<td>Address rendering issues of cartilage model</td>
</tr>
<tr>
<td>02/02/06</td>
<td>Address rendering issues of cartilage model</td>
</tr>
<tr>
<td>02/09/06</td>
<td>Address light issues of cartilage model</td>
</tr>
<tr>
<td>02/16/06</td>
<td>Research light and view control on cartilage</td>
</tr>
<tr>
<td>02/23/06</td>
<td>Address issues for the light and view control</td>
</tr>
<tr>
<td>03/02/06</td>
<td>Address issues for the light and view control</td>
</tr>
<tr>
<td>03/09/06</td>
<td>Address issues for the light and view control</td>
</tr>
<tr>
<td>03/16/06</td>
<td>Address issues for the light and view control</td>
</tr>
<tr>
<td>03/23/06</td>
<td>Research haptic feedback system</td>
</tr>
<tr>
<td>03/30/06</td>
<td>Implement haptic device with cartilage model</td>
</tr>
<tr>
<td>04/06/06</td>
<td>Implement haptic device with cartilage model</td>
</tr>
<tr>
<td>04/13/06</td>
<td>Documentation, Presentation</td>
</tr>
<tr>
<td>04/20/06</td>
<td>Documentation, Presentation</td>
</tr>
<tr>
<td>04/27/06</td>
<td>Documentation, Presentation</td>
</tr>
</tbody>
</table>
Equipment List

- PC with Matlab Version 7.0.1
- SensAble Phantom Omni Haptic Device
Project Summary

- Project Introduction
- System Block Diagrams
- Software Block Diagrams
- Preliminary Results / Issues
- Schedule
- Equipment List
Questions?