

Self-Mapping Mobile Robot (MapBot)

Senior Capstone Project Report

Submitted to

Dr. Aleksander Malinowski and Dr. Winfred Anakwa

by Stephanie Luft

9 May 2006

Abstract

This report discusses the results of a feasibility study of a Self-Mapping Mobile Robot.
The objective of the project is to develop a robot that will map its environment and
locate itself on the map. Topics covered will include descriptions of the laser distance-
measuring system, including relevant calculations and image processing algorithms,
and the probabilistic mapping system, including the robot and its associated software
and hardware. The results of the feasibility study, as well as future areas of opportunity
will be also be presented.

Table of Contents

Introduction

Objective
Applications

System Description

Block Diagram
Functional Description

Software

Functional Modes
Flowcharts

Design Process

Theory
 Laser Distance Meter
 Mapping Algorithm
Simulation
Testing
Results

Conclusion

Future Work

References

Appendix: MATLAB files

2
2
2

2
2
3

4
4
5

6
6
6
8
9
9
10

11

11

12

A-1

2

Introduction

Objective

The objective of the Self-Mapping Mobile Robot project is to develop a robot that can
independently create a map of its environment, locate itself on the map, and orient itself
within the environment.

Applications

A robot of this type has various uses. This technology could be useful on military robots
such as the PackBot, which need to dropped into unknown terrains with the ability to
map and navigate. A similar technology is already in use on household robots like the
Roomba and the Scooba, and could be adapted for use on a Mars or Moon rover.

System Description

Block Diagram and Functional Description

The robot system, shown in Figure 1 below, will consist of the Pioneer 2 mobile
platform, previously used in the GuideBot project, a laser distance meter, and a laptop
computer currently mounted on the mobile platform. The system may include a remote
computer in addition to the laptop for running calculations, storing map data, and
interfacing with a user.

ActivMedia Robotics
Pioneer 2

Mobile Robotic
Platform

+
Laptop Interface

Audio Warning

Robot Movement

Proximity Values

Map

Location within Map

Laser
Distance

Meter

Remote PC

or Laptop

Server
Connection

User Commands

Figure 1: System block diagram for the MapBot

3

The robot will move throughout its environment at the command of a user or the
software. It will use data from the laser distance meter to create a map of its
environment and locate itself on the map. The robot will be able to make an audio
warning sound if it encounters a problem such as low battery power.

The core of the robot is the ActivMedia Pioneer 2 robotic platform. It has three wheels,
a set of ultrasonic sensors, and the batteries that power the robot and all of the
equipment that it carries. The user enters commands through the laptop or a remote
computer, which connects to the robot through a TCP/IP server.

The laser distance meter became a much larger portion of the project than originally
anticipated. This is a result of the unavailability of meters that met the needs of the
project in terms of both functionality and budget. The kind of laser meters that do meet
the requirements cost thousands of dollars and would add up to one-half kilogram to the
weight of the robot. There are much less expensive “point and shoot” models available
at hardware stores, however they cannot be controlled through the computer.
Therefore, a different type of laser meter had to be created for the project. The one in
use at this time is constructed of a standard laser pointer from Radio Shack, and a
USB2 webcam, available at most electronics stores. It is mounted on a Pan-Tilt Unit,
which allows it to turn in a 320-degree arc, as well as tilt up and down.

The outputs of the system are the map and the robot’s location, which are displayed on
the laptop screen. The robot can drive forward and in reverse, and rotate right or left at
the user’s command. Finally, the robot also emits an audio warning to signal problems
such as a low battery or an obstacle blocking its path.

Functional Description

Figure 2: Diagram of measuring and mapping principle

The laser distance meter will rotate through nearly 360 degrees, recording distance

measurements and the angle of rotation, φ. After the rotation has been completed, the
map will be created and displayed on the laptop. At that point, the robot can decide to
move to a sparse area of the map to fill it in with additional measurements, or it can wait
for a user command.

4

Software

Functional Modes

The robot has two main functional modes, Mapping and Maneuvering. In the Mapping
mode, the robot operates independently to map its environment and locate itself on the
map. This mode contains several functionalities:

• Distance reading

• Obstacle avoidance

• Self-locating – determining the robot’s location on the map

• Plotting the visual representation of the robot’s environment and showing its
own location

• Interfacing – allowing the user to command the robot to map an area and
displaying the map to the user.

In the Maneuvering mode, the robot is controlled by the user. It is entirely the user’s
responsibility in this mode to protect the robot from collisions with obstacles or other
dangers. This mode’s functionality is similar to that of the Mapping mode:

• Interfacing – allowing the user to command the robot to move or adjust the
Pan-Tilt Unit.

• Distance reading

• Self-locating

The functionality described above is implemented in MATLAB, Simulink, and C++. The
TCP/IP servers that connect to the robot and to the Pan-Tilt Unit to control the
movement of each one were written in C++ by Dr. Malinowski. Simulink provides the
interface to the webcam in a very simple “plug and play” kind of format. This is the
factor that drove the decision to use MATLAB for the rest of the programming in the
project. MATLAB is very easy to use for image processing and creation of graphics or
plots, however it can be significantly slower than C++ in certain applications. That said,
the current software is only slowed by the interface to the server and, most importantly,
the interface to the webcam. The mapping and other processing are relatively efficient.

5

Flowcharts

The flowcharts in Figure 3 show the processes for the main routines in the MapBot
project. The actual code can be found in the Appendix of the report.

Figure 3: Software flowcharts for MapBot

6

Design Process

Theory

Laser Distance Meter

The concept behind the laser distance meter was one previously used at Drexel
University. The laser pointer shines on a target a certain distance D away from the
robot, as shown in Figure 4 below. This target is the obstacle, such as a wall, that the
robot will map. The camera is separated from the laser pointer by a distance h and
takes a snapshot of the scene in front of it, including the laser dot on the obstacle. The
image processing software then detects the brightest pixel in the frame, which is the
center of the laser dot.

Figure 4: Laser Distance Meter Diagram

The lines that result from this setup create two similar triangles; the base of the second
one is the number of pixels from the center of the focal plane, marked pfc in the

diagram. Using right triangle trigonometry, it is possible find the angle θ from the value
of pfc, and from there find the distance D, outlined in the equations below.

Guiding Equation: D = h = h .
 tan(q) tan(pfc*m+b)

7

D = distance (meters) to object
h = distance (meters) between laser beam and center of lens
pfc = pixels from center of image to laser dot
m = calibration coefficient
b = calibration offset

The laser distance meter was calibrated by taking set measurements and determining
the pfc from the image processing routine. The value of h was pre-set to allow for the
optimal measuring range to occur between 1 and 20 meters. The values of pfc and D
were then substituted into the equation above, and m and b calculated. With an initial
set of values determined, the user is able to use an iterative process to “tweak” the
calibration coefficient and offset until the desired level of accuracy in the desired range
is achieved. In this case, the calibration variables were set to yield the lowest average
error across the range of interest. However, they could have been set to give even
greater accuracy over a smaller range, if desired.

Results of Calibration Data show that the values of the equation are

h = 0.189
m = 0.00113923
b = -0.0324705

which leads to a final equation of

 D = 0.189 .

 tan(pfc*0.00113923-0.0324705)

8

Mapping Algorithm

Once all of the distance readings have been taken, the obstacles are plotted on the
map. A probabilistic algorithm was used, so that as opposed to plotting simple
obstacles, the program instead plots the probability that there is an obstacle in a
particular location. This allows the map to adapt to changes in the environment, such
as a person walking through a room or a chair moved from one location to another in a
hallway.

Pixel values on the map range from 0
(white) to 1 (black). All pixels begin at a
light gray color, which has a probability of
about 1 in 4. When an obstacle is
detected, the pixel’s probability value is
incremented by 0.25. When an area is
determined to be clear space, i.e. the
pixels that the laser beam passes through
unobstructed, then the probability values
of the pixels in the area are decremented
by 0.25. In this way, temporary obstacles
are phased out of the map while
permanent obstacles are made clearer.

Figure 5: Demonstration of Probabilistic Mapping
Scheme

LL.25.25.25.25.25.25.25RR

LL.25.25.25.25.25.2500.25.25

AA.25.25.25.2500.25.25.25.25

WW.25.250.25.25.25.25.25.25

.25.2500.25.25.25.25.25.25.25.25

.5.5.25.25.25.25.25.25.25.25.25.25

L.25.25.25.25R

L.25.25.250.25

A.25.250.25.25

W.250.25.25.25

.250.25.25.25.25

.5.25.25.25.25.25

9

Simulation

The initial mapping algorithm was tested with simulated data. The data used reflected a
perfectly rectangular room, with no additional obstacles and the robot sitting at one end
of it. In this way, it was demonstrated that the mapping algorithm worked for a simple
structure.

final map

10 20 30 40 50

20

40

60

80

100

120

140

160 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Simulated room and the map created with simulated data

Testing

MapBot was tested at the Student Scholarship Expo, where it detected obstacles such
as a chair, a table, two walls, and two students standing nearby, as shown in Figure 7
on the following page. The results show that the mapping algorithm did a good job of
picking out the obstacles; however there were two important issues. First, the map had
a left-to-right mirror effect. Second, there are several points lying very far outside of the
mapped area, probably as a result of something being too close to the distance meter.
If an object is too close to the robot, the snapshot taken by the webcam does not
include the laser dot, and so readings may be wildly inaccurate.

Shape of
Room

10

Figure 7: Testing the mapping process. Two issues: outliers and horizontal mirror effect.

After the Expo, the mirror image effect in the plotting routine was corrected, and
statistical filtering was implemented in the data calculating routine to prevent this type of
outlying measurement.

Results

The results of the laser distance meter testing were good, especially in the middle
distances from about 2 to 8 meters, where there was generally less than a 2% error
between calculated and measured data. The highest error was at the ends, up to 12%.
The absolute maximum range of the sensor is ½ to 175 meters, however to measure
with any accuracy, the range is capped closer to 20 meters.

Figure 8: Plot of Actual (circles) vs.
Calculated (squares) Distance Data

final map

10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

100

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Actual Shape of
Environment

final map

10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

100

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

pfc

d
 (

m
)

11

Figure 9: Plot of Actual vs. Calculated
Distance Data, showing nearly a +1
correlation coefficient.

Conclusion

At the end of the project, MapBot has met the original objectives of mapping its
environment and locating itself on the map. The mapping algorithm is complete to the
point of allowing the robot to take multiple mappings from the same location. The
program and the user both have complete control over the pan-tilt unit that turns the
laser meter. The robot is also capable of responding to user commands to move and
turn, both directly from the laptop as well as remotely through a workstation PC.

Future Work

Other teams may be interested in pursuing advances to this project in areas such as

• Web control for remote users

• Navigation and advanced decision-making in regard to paths of motion, possibly
including semi-random motion for maneuvering around obstacles

• Greater distance meter accuracy and enhanced ability to measure in bright light

• The ability to map in three dimensions and to detect stairs

• Efficiency and conservation of battery power.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

actual data

c
a
lc

u
la

te
d
 d

a
ta

12

References

• GuideBot Capstone Project 2005 by John Hathway and Daniel Leach.
http://cegt201.bradley.edu/projects/proj2005/guidebot

• Laser Meter: from Drexel University.
http://www.pages/drexel.edu/~twd25/webcam_laser_ranger.html

• Mapping: from Dartmouth University, 1999.
http://www.jonh.net/%7Ejonh/robots/mapping/submitted-paper.html

• Thesis: Duckett, Thomas. “Concurrent Map Building and Self-Localization for
Mobile Robot Navigation”. Manchester, United Kingdom.

A-1

Appendix: MATLAB Files

Createmap.m

% Create a Map
% 12 April 2006 MapBot Project Stephanie Luft
% This program is the main module for the mapping algorithm.
% It could be turned into a function, as shown. Right now, to create the
% first map, the 'maparray=finalmap;' line must be commented out, and to
% create subsequent maps, the 'firstmap' line must be commented out.

%function [finalmap]=createmap(maparray)

runPTU
robotcolor
firstmap
%maparray=finalmap;
[ploti,plotj]=obstaclecoords(phi, distance, roboti, robotj);
figure,plot(ploti,plotj,'bo',roboti,robotj,'ro') % plot the data points on

a graph
[newmap,ii,jj]=growmap(ploti,plotj,roboti,robotj,maparray);
[finalmap,roboti,robotj]=plotobstacle(ploti,plotj,newmap,roboti,robotj,ii,jj)

;
figure,imshow(finalmap),title('final map'),colormap(botcolor),axis

on,colorbar
 % Plot the new map

runPTU.m

% Control the PTU and take distance readings
% 11 April 2006 MapBot Project Stephanie Luft
% This program communicates with the PTU server to control its movements
% and take distance readings every 5 degrees. It requires that the
% tcp_udp_ip directory to be placed in the same folder as the directory
% holding runPTU.m

% Add PTU path
addpath('..\tcp_udp_ip')

% Open PTU connection
connection=pnet('tcpconnect','localhost',8082);
if connection==-1
 disp('ERROR: CONNECTION TO PTU NOT MADE')
 return %break program after error
end
str=pnet(connection,'readline');

% Calibrate PTU
pnet(connection,'printf','PP0\n')
str=pnet(connection,'readline');

A-2

if str(1)~= '+'
 disp('ERROR: INVALID COMMAND OR OTHER PROBLEM WITH PTU')
 disp(str)
end
pnet(connection,'printf','TP0\n')
str=pnet(connection,'readline');
if str(1)~= '+'
 disp('ERROR: INVALID COMMAND OR OTHER PROBLEM WITH PTU')
 disp(str)
end

% Move PTU Number of Positions to Phi (-160 to +160 degrees)
phistep=-160:5:160;
[m,n]=size(phistep);
for i=1:n
 position=round(phistep(i)*19.4445); % step 5 degrees
 if position>3090
 position=3090;
 elseif position<-3089
 position=-3089;
 end
 pos=int2str(position);
 string=strcat('PP',pos,'\n');
 pnet(connection,'printf',string)
 str=pnet(connection,'readline');
 if str(1)~= '+'
 disp('ERROR: INVALID COMMAND OR OTHER PROBLEM WITH PTU')
 disp(str)
 end

% Run ImageCapture
 sim('ImageCapture')
 pic=red(:,:,2)+green(:,:,2)+blue(:,:,2);
 % Have to use 2nd set of data because 1st tends to come out black

% Calculate Distance to Obstacle
 dist=finddistance(pic);

% Record Distance and Phi
 distance(i)=dist;
 if phistep(i)<=0
 phistep(i)=360-abs(phistep(i));
 end
 phi(i)=phistep(i);
end

% Reset PTU
pnet(connection,'printf','PP0\n')
str=pnet(connection,'readline');
if str(1)~= '+'
 disp('ERROR: INVALID COMMAND OR OTHER PROBLEM WITH PTU')
 disp(str)
end
pnet(connection,'printf','TP0\n')
str=pnet(connection,'readline');
if str(1)~= '+'

A-3

 disp('ERROR: INVALID COMMAND OR OTHER PROBLEM WITH PTU')
 disp(str)
end

% Close connection
pnet(connection,'close')

finddistance.m

% Find distance
% MapBot Project Stephanie Luft
% This function finds the distance to an obstacle from the picture taken by
% the webcam. If the pixels from the center (pfc) is outside of the range
% permitted by the equation, the distance is set to -1. Later routines flag
% this as an anomoly before plotting.

function [distance]=finddistance(pic)

pfcpic=pic(250:258,1:320); % Look at the window in the picture where the

laser dot is expected to be
maxval=0;
pfc=0;
for i=1:6
 for j=1:320
 if pfcpic(i,j)>maxval % if the new pixel is the brightest so far
 pfc=320-j; % then calculate pfc
 maxval=pfcpic(i,j);
 end
 end
end
distance=.189/tan(.0013923*pfc-.0324705);
 % this equation was found as the result of testing with the laser

distance
 % meter. If a different setup were used, or for higher accuracy in

different
 % ranges, a different equation or different coefficients would be used.
if pfc<31 | pfc>282 % if pfc is outside of plausible range
 distance=-1;
end

A-4

robotcolor.m

% Set up the colormap for the maps
% 30 March 2006 MapBot Project Stephanie Luft
% This program sets up the colormap for all of the maps. It is redundant
% to the firstmap program, however firstmap.m is not used for second
% mappings, so I've left it in.

obstacle = 9/12;
maybe3 = 7/12;
maybe2 = 5/12;
maybe1 = 3/12;
space = 1/12;
robot = 11/12;
botcolor = [1 1 1; .75 .75 .75; .5 .5 .5; .25 .25 .25; 0 0 0; 1 0 0];

firstmap.m

% Set up the first map
% 30 March 2006 MapBot Project Stephanie Luft
% This program sets up the first map, a very basic 20x20 pixel array with
% the robot in the center. This provides a basis for expansion for future
% mappings. It uses the robotcolor colormap.

obstacle = 9/12;
maybe3 = 7/12;
maybe2 = 5/12;
maybe1 = 3/12;
space = 1/12;
robot = 11/12;
botcolor = [1 1 1; .75 .75 .75; .5 .5 .5; .25 .25 .25; 0 0 0; 1 0 0];
maparray=ones(20,20)*maybe1;
roboti=10;
robotj=10;
maparray(roboti,robotj)=robot;

obstaclecoords.m

% Find the coordinates of the obstacles
% 30 March 2006 MapBot Project Stephanie Luft
% This program finds the coordinates of the obstacles that will be plotted
% on the map, from the distance and angle data.

function [ploti,plotj]=obstaclecoords(phi, distance, roboti, robotj)

scale=10; % scale: 1m = 10 pixels
ploti=0; % if these remain zero, it will cause an error later
plotj=0;
i=0;
index=0;
dist=[0];
[m,n]=size(phi);

A-5

for j=1:n
 if distance(j)>0 & distance(j)<20 % check for wild points
 index=index+1;
 dist(index)=distance(j);
 p(index)=phi(j);
 end
end
meand=mean(dist);
stdd=std(dist);
for j=1:index
 if dist(j)<meand+stdd & dist(j)>meand-stdd % another check for wild

points
 quadrant = floor(p(j)/90);
 i=i+1;
 if p(j)==0 | p(j)==360
 ploti(i)=round(roboti-dist(j)*scale);
 plotj(i)=robotj;
 elseif p(j)==90
 ploti(i)=roboti;
 plotj(i)=round(robotj-dist(j)*scale);
 elseif p(j)==180
 ploti(i)=round(roboti+dist(j)*scale);
 plotj(i)=robotj;
 elseif p(j)==270
 ploti(i)=roboti;
 plotj(i)=round(robotj+dist(j)*scale);
 elseif quadrant==0
 ploti(i)=roboti-round(dist(j)*cos(p(j)*pi/180)*scale);
 plotj(i)=robotj-round(dist(j)*sin(p(j)*pi/180)*scale);
 elseif quadrant==1
 p(i)=p(i)-90;
 ploti(i)=roboti-round(dist(j)*cos(p(j)*pi/180)*scale);
 plotj(i)=robotj-round(dist(j)*sin(p(j)*pi/180)*scale);
 elseif quadrant==2
 p(i)=p(i)-180;
 ploti(i)=roboti-round(dist(j)*cos(p(j)*pi/180)*scale);
 plotj(i)=robotj-round(dist(j)*sin(p(j)*pi/180)*scale);
 elseif quadrant==3
 p(i)=p(i)-270;
 ploti(i)=roboti-round(dist(j)*cos(p(j)*pi/180)*scale);
 plotj(i)=robotj-round(dist(j)*sin(p(j)*pi/180)*scale);
 end
 end
end

A-6

growmap.m

% Expand the previous map to accomodate new obstacles
% 5 April 2006 MapBot Project Stephanie Luft
% This program grows the previous (or initial) map to allow space for the
% obstacles to be plotted. It provides for a 5-pixel border around each
% edge.

function [newmap,roboti,robotj]=growmap(ploti,plotj,roboti,robotj,maparray)

maparray(roboti,robotj)=0;
imax=max(ploti);
jmax=max(plotj);
imin=min(ploti);
jmin=min(plotj);

imax2=imax-roboti;
jmax2=jmax-robotj;

if imax<0 imax=0; end
if imin>0 imin=0; end
if jmax<0 jmax=0; end
if jmin>0 jmin=0; end

[m,n]=size(maparray);

% grow the map
if imin<0 % expand in i direction above robot
 for i=1:m
 for j=1:n
 newmap1(i+abs(imin)+5,j)=maparray(i,j);
 end
 end
 roboti=roboti+abs(imin)+5;
else
 newmap1=maparray;
end
if jmin<0 % expand in j direction behind robot
 [m,n]=size(newmap1);
 for i=1:m
 for j=1:n
 newmap2(i,j+abs(jmin)+5)=newmap1(i,j);
 end
 end
 robotj=robotj+abs(jmin)+5;
else
 newmap2=newmap1;
end
[m,n]=size(newmap2)

newmap3=newmap2; % expand in the two remaining "positive" directions
a=imax2+roboti+5;
b=jmax2+robotj+5;
newmap3(a,b)=0;

A-7

% fill in the gap
newmap=newmap3;
newmap(1:abs(imin)+5,:)=3/12;
newmap(:,1:abs(jmin)+5)=3/12;
newmap(m:a,:)=3/12;
newmap(:,n:b)=3/12;

% figure,imshow(newmap1),title('newmap1'),axis on
% figure,imshow(newmap2),title('newmap2'),axis on
% figure,imshow(newmap3),title('newmap3'),axis on
% figure,imshow(newmap),title('newmap'),axis on

plotobstacle.m

% Plot the obstacles on the map
% 6 April 2006 MapBot Project Stephanie Luft
% This program plots the obstacles from the coordinates calculated in
% obstaclecoords.m on the expanded map created by growmap.m

function

[finalmap,roboti,robotj]=plotobstacle(ploti,plotj,newmap,roboti,robotj,ii,jj)

[p,n]=size(ploti);
[x,y]=size(newmap);

if ii~=roboti | jj~=robotj % ii and jj are recalculated values for roboti

and robotj
 roboti=roboti+abs(min(ploti))+5;
 robotj=robotj+abs(min(plotj))+5;
 ploti=ploti+abs(min(ploti))+5;
 plotj=plotj+abs(min(plotj))+5;
end

% plot obstacles and clear spaces
for i=1:n
 if newmap(ploti(i),plotj(i))<4/6
 newmap(ploti(i),plotj(i))=newmap(ploti(i),plotj(i))+1/6;
 end
 if roboti==ploti(i) % slope=infinity
 if robotj>plotj(i)
 newmap(roboti,plotj(i)+1:robotj-

1)=newmap(roboti,plotj(i)+1:robotj-1)-1/6;
 elseif robotj<plotj(i)
 newmap(roboti,robotj+1:plotj(i)-

1)=newmap(roboti,robotj+1:plotj(i)-1)-1/6;
 end
 else
 m=(robotj-plotj(i))/(roboti-ploti(i));
 c=(roboti*plotj(i)-robotj*ploti(i))/(roboti-ploti(i));
 if ploti(i)>roboti & plotj(i)>robotj
 for a=1:x
 for b=1:y
 if a>roboti & a<ploti(i) & b>robotj & b<plotj(i)

A-8

 if b==round(a*m+c)
 if newmap(a,b)>1/6
 newmap(a,b)=newmap(a,b)-1/6;
 end
 end
 end
 end
 end
 elseif ploti(i)>roboti & plotj(i)<robotj
 for a=1:x
 for b=1:y
 if a>roboti & a<ploti(i) & b<robotj & b>plotj(i)
 if b==round(a*m+c)
 if newmap(a,b)>1/6
 newmap(a,b)=newmap(a,b)-1/6;
 end
 end
 end
 end
 end
 elseif ploti(i)<roboti & plotj(i)>robotj
 for a=1:x
 for b=1:y
 if a<roboti & a>ploti(i) & b>robotj & b<plotj(i)
 if b==round(a*m+c)
 if newmap(a,b)>1/6
 newmap(a,b)=newmap(a,b)-1/6;
 end
 end
 end
 end
 end
 elseif ploti(i)<roboti & plotj(i)<robotj
 for a=1:x
 for b=1:y
 if a<roboti & a>ploti(i) & b<robotj & b>plotj(i)
 if b==round(a*m+c)
 if newmap(a,b)>1/6
 newmap(a,b)=newmap(a,b)-1/6;
 end
 end
 end
 end
 end
 else
 for a=1:x
 for b=1:x
 if a>roboti & a<ploti(i)
 if b==c
 if newmap(a,b)>1/6;
 newmap(a,b)=newmap(a,b)-1/6;
 end
 end
 elseif a<roboti & a>ploti(i)
 if b==c
 if newmap(a,b)>1/6;
 newmap(a,b)=newmap(a,b)-1/6;

A-9

 end
 end
 end
 end
 end
 end
 end
end
newmap(roboti,robotj)=1;
finalmap=newmap;

ImageCapture.mdl
*Note: This requires the Simulink Image Acquisition Toolbox

R

G

B

USB 2.0 WebCam

RGB24_640x480

Video Input

green

To Workspace2

red

To Workspace1

blue

To Workspace

