
Presentation Content

- Maglev Introduction
- Project Background
- Levitation
- Propulsion
- Questions

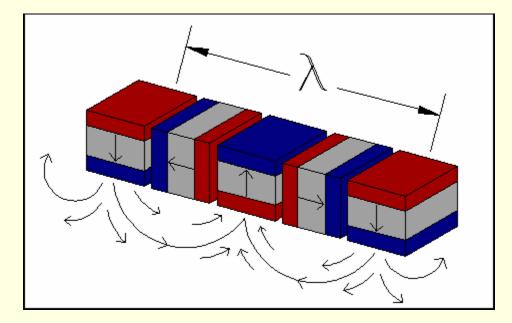
Maglev: A Floating Train

Advantages:

- Passive Train Car
- Low Maintenance
- No Rail Friction
- No Wheel Noise
- Speed
- Fail Safe

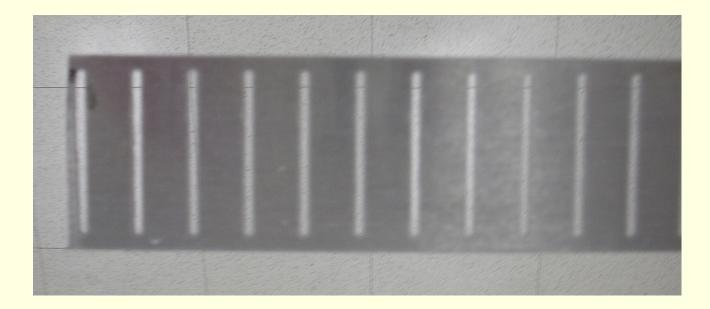
Project Summary

Phase 1:

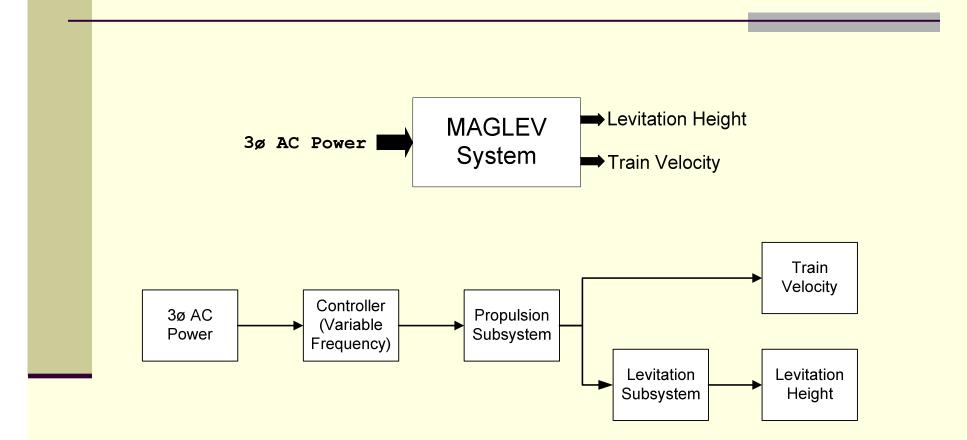

Prove levitation is possible with a Wheel Track

Phase 2:

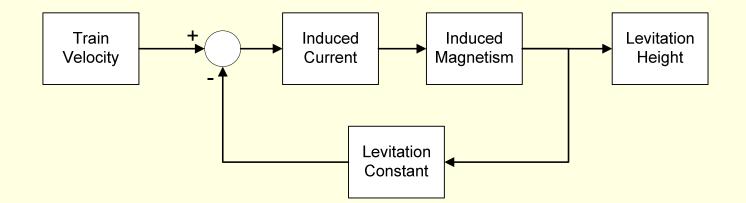
 Build and test Propulsion System on a Circular Track

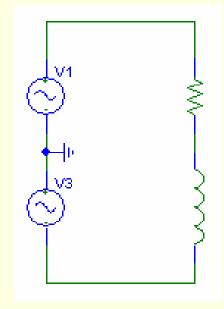

Halbach Array

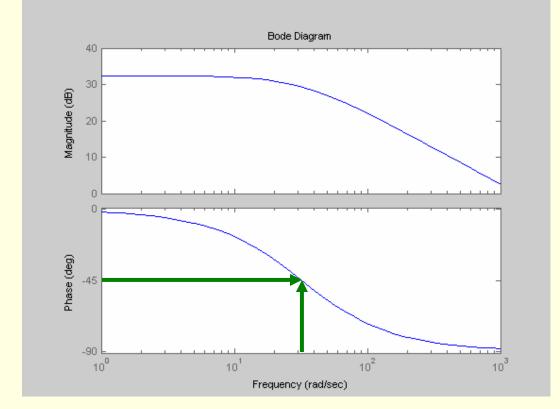
- Simple Halbach Array
- Magnets oriented 90° w/ respect to each other



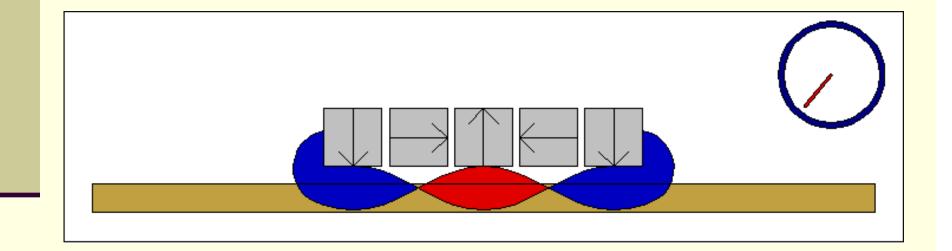
Track


- Copper or Aluminum
- Slits Allow for Current to Flow Transversely
- Magnetic Field is Induced


High Level Block Diagrams



Levitation Height Block Diagram


Levitation Train Simulation

Halbach Array & Track Interact

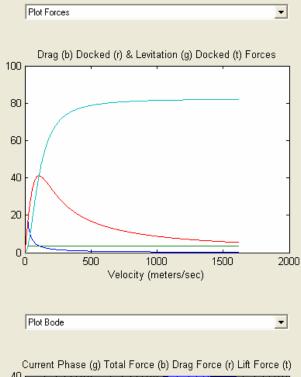
Presentation Content: Levitation

Previous Work

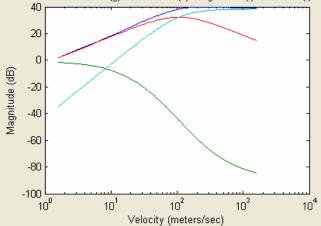
- Current Work
- Results
- Future Work

Previous Work with Maglev

Paul Friend – 2004


- Received help from Dr. Richard Post, PhD
- Created a Matlab Program to calculate various parameters (lift-off velocity, levitation height, etc)
- Constructed Wheel Track to test Levitation

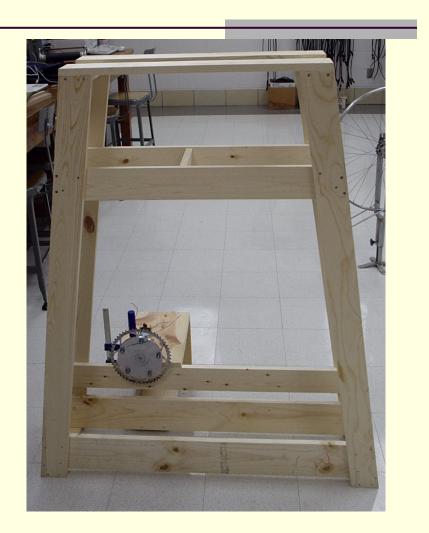
Inductrack


by: Paul R. Friend

Train Parameters		
Magnet Strength Br =	1.21	Tesla
Magnet Thickness d =	0.012	meters
Magnets per Halbach Wavelength M =	4	magnets
Number of Vertical Oriented Magnets Is =	3	
Halbach Wavelength lamda =	0.055	meters
Width of Halbach Array w =	0.06	meters
Length of Halbach Array Im =	0.06	meters
Total Train Mass tm =	0.375	kg
Track Parameters		
Thickness of One Layer deltac =	0.0005334	meters
On Center Strip Spacing dc =	0.0105	meters
Width of Track Pc =	0.11	meters
Laminated Sheets	0.11	
Electric Resistivity rc =	171.3	micro p-I/m ²
Width of Conductive Strip Nt =	0.005	meters
Number of Laminated Layers Ns =	1	layers
Inductive Loading		
Conductor Bundle Height Loaded al =	0.0005334	meters
Total Ferrite Tile Width h =	0.0000004	meters
Train/Track Relation		
Rolling Clearance y1 =	0.01	meters
, Unan lanaut		
User Input Train Velocity vu =	10	meters/sec
	10	
Create the desired plot in a	e conservato ficturo	
	a separate rigure	•
Plot Bx & By		

Train Outputs		
Halbach Peak Strength Bo =	0.81281	Tesla
Area Under Halbach Array A =	0.0036	m^2
Force Required for Levitation tf =	3.6788	Newtons
System Outputs		
Distributed "1 Turn" Inductance Ld =	5.7619e-008	Henrys
Added Inductance from Loading LI =	0	Henrys
One Turn Inductance L =	5.7619e-008	Henrys
"1 Turn" Resistance R =	0.00070652	ohms
R/L Pole RLpole =	12261.99	rad/sec
Oscillation Frequency omegaosc =	47.3433	rad/sec
Oscillation Velocity vosc =	0.41442	meters/sec
Break Point Analysis		
Levitation Break Point Velocity vb =	23.2038	meters/sec
Levitation Break Point Speed sb =	51.9054	miles/hr
Levitation Break Point Frequency omegab =	2650.7964	rad/sec
Drag Forces at Break Point Fxb =	17.0171	Newtons
Lift to Drag Ratio L2Db =	0.21618	
Transition Analysis		
Transition Velocity (Lift = Drag Forces) vt =	107.3356	meters/sec
Transition Speed st =	240.1029	miles/hr
Transition Frequency omegat =	12261.99	rad/sec
Levitation Height at Transition Lht =	0.020573	meters
Levitation Force = Drag Force = Fxyt =	41.198	Newtons
Lift to Drag Ratio L2Dt =	1	
User Outputs		
Frequency omegau =	1142.3973	rad/sec
Speed su =	22.3694	miles/hr
Levitation Force Fyu =	3.6788	Newtons
Drag Force Fxu =	39.4861	Newtons
Levitation Height Lhu =	0.002794	meters
Fixed Levitation Force Fyuf =	0.70903	Newtons
Fixed Drag Force Fxuf =	7.6104	meters
Lift to Drag Ratio L2Du =	0.093166	

Newtons


Default

The New Wheel

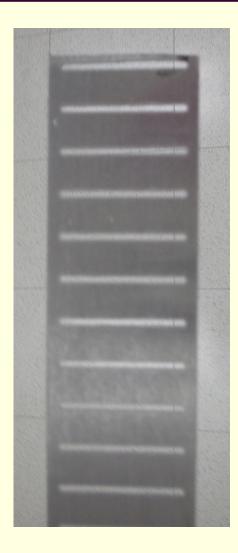
The New Frame

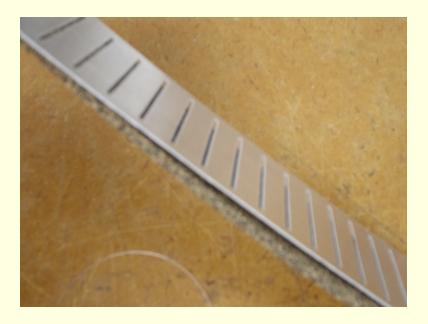
Wheel Inside Frame

The New Car

Car vs. Wheel

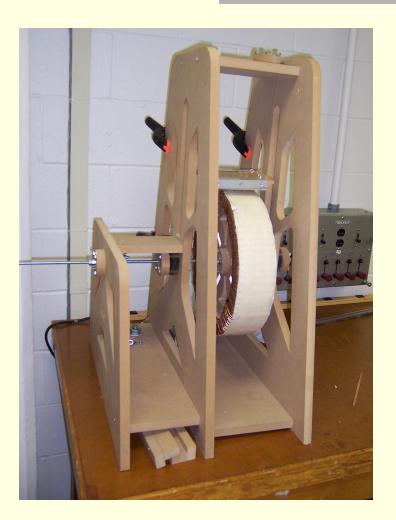
Side Stabilizer




The New Track

- Aluminum
- Double Layer
- Chicago WaterJet

The New Track



Already smallest slots possible Better with more slots per centimeter

Wheel & Track

Levitation Summary: New vs. Old

- Lightened the car: 160g vs. 630g
- Shrunk size of car (better curve fit)
- Increased wheel speed & stability
- Increased car stability
- Similar track parameters

Required Velocity for 1cm of levitation: Previous: 23 m/s My Goal: 9 m/s

Current Results

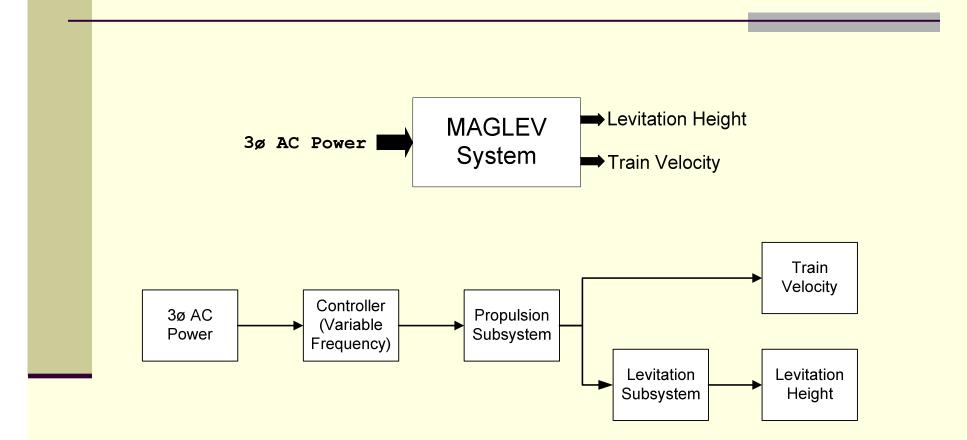
- Track spins smoothly up to 15 m/s alone.
- Unable to achieve even 5 m/s with car.
- Drag force too much for the Pittman motor
- Implementing an A/C servomotor

Other Work To Do

- Data collection
- Compare results to Matlab GUI
- Add 2nd Layer of Track
- Create theoretical design to implement levitation with propulsion

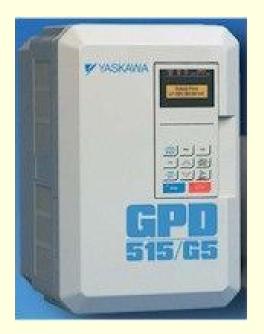
Presentation Content: Propulsion

Concepts

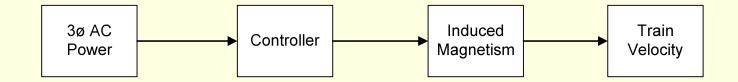

- Implementation
- Work Accomplished
- Future Work

Goal

Goal


Be able to propel a car to 9 m/s (20.1 MPH)

High Level Block Diagrams



Controller

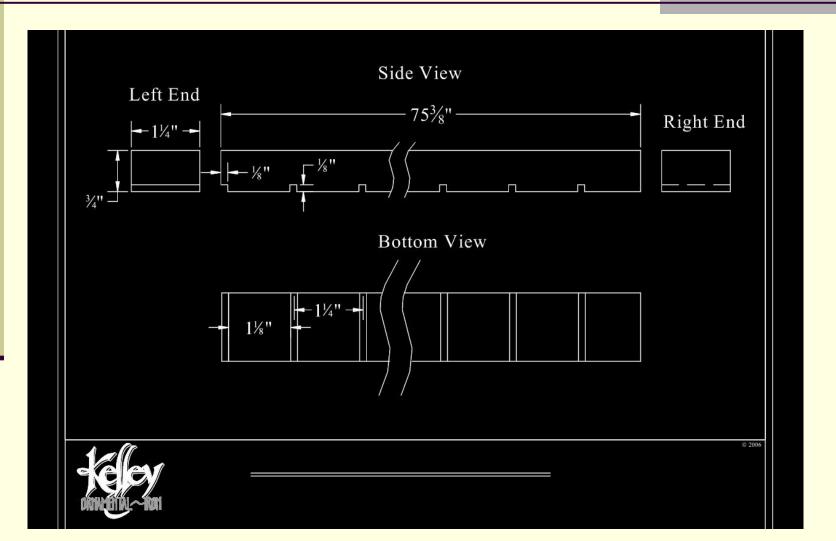
Ratings: 2 -> 200 HP at 600 VAC Output Frequency: 0.1 -> 400 Hz

Propulsion Block Diagram

Propulsion

Linear Synchronous Motor (LSM)

- Used for Low-Speed Urban Maglev Program
- Solid copper cables and laminated iron rails
- Halbach arrays on train
- Varied 3-phase frequency for control
- Allows for large air gap between train and coils ~ 25 mm


Circular Synchronous Motor

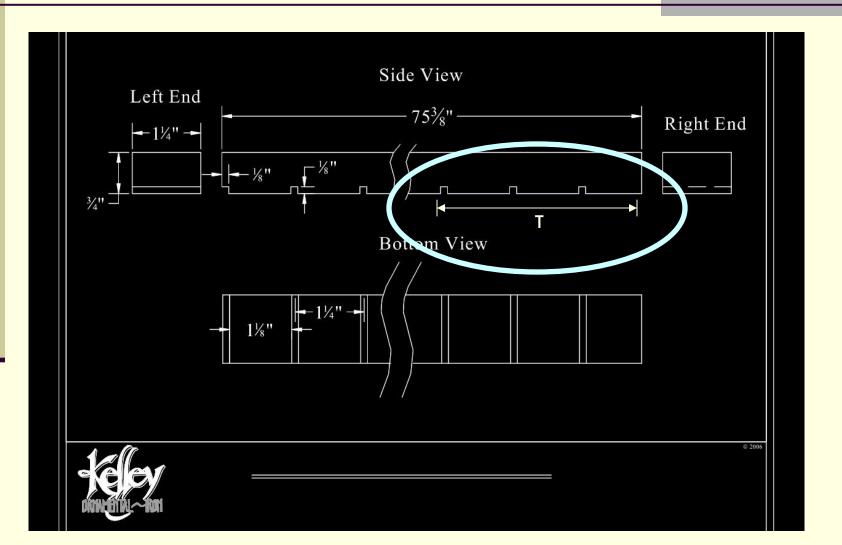
Magnet Wire (3 - 18 gauge twisted)

Built in Quarter Sections

Built by Kelley Ornamental and Peoria Awning w/ Hot Rolled Steel

Circular Synchronous Motor

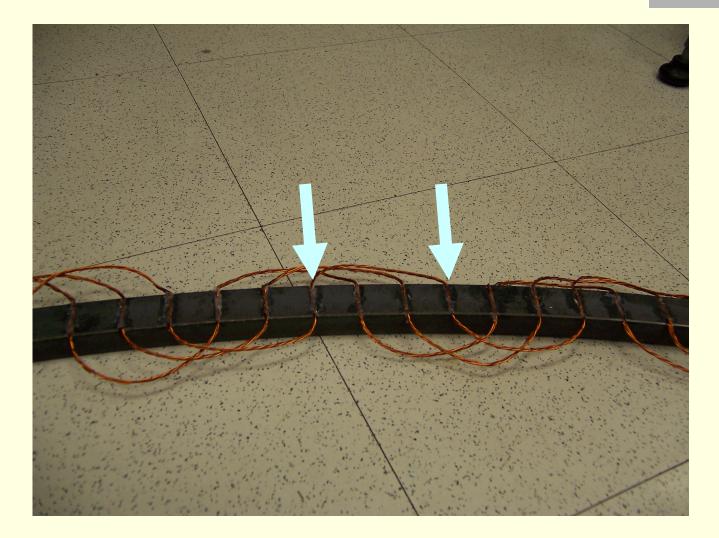
Equations


Train Velocity

■ V = 2тf

- V = synchronous speed (m/s)
- τ = pole pitch (m)
- f = supply frequency (Hz)

Requires f = 47.24 Hz to reach 9 m/s

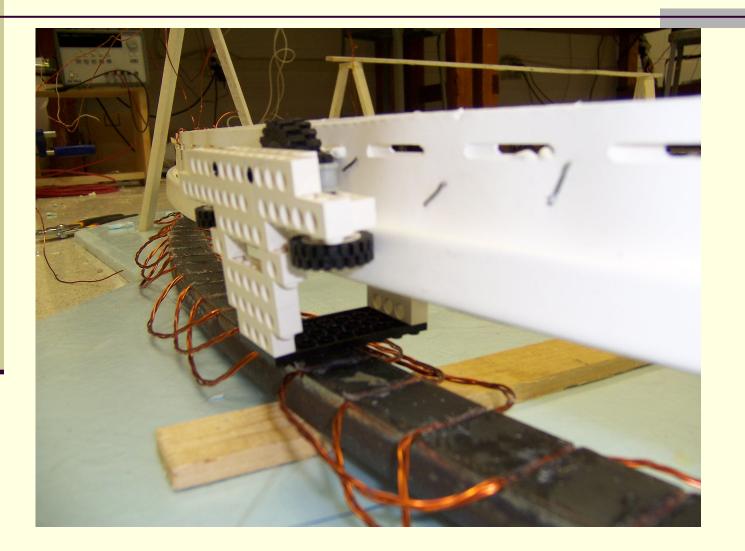

Circular Synchronous Motor

Linear Synchronous Motor

Linear Synchronous Motor

Circular Track

J-Channel Vinyl Siding


Car will wrap underneath track

Propulsion Car

Legos

- 10x3 Double Halbach Array (1/8" cube magnets)
- Halbach Array Glued to Lego Piece and Placed on top of car

Car on Track

Track System

Work Accomplished

System has been completely built

Testing of the system is in progress

Possible Future Work

Combine Levitation design w/ Propulsion design

Design a controller to control train movement on track (stop, reverse, forward)

Thank You!

Companies: Chicago WaterJet Kelley Ornamental Peoria Awning Faculty: Dr. Anakwa Mr. Gutschlag Mr. Schmidt Mr. Mattus Mr. Miller Dr. Irwin

Thanks to all supporters!

Questions?

Standards

Standards used by the Low-Speed Urban Maglev Program

Max. Speed	160 km/hr	Max Jerk	2.5 m/s^3
Throughput	12000/hr/direction	Inside Noise Level	< 67 dB
Max Acceleration	1.6 m/s^2	DC Mag. Field in Car	< 5 Gauss
Min Curve Radius	18.3 m (60 ft.)	Availability	> 99.99%
Max Grade	10%	Ride Quality	ISO 2631 (1987)

Will be used for concepts to keep in mind

Patents

Richard F Post Magnetic Levitation System for Moving Objects U.S. Patent 5,722,326 March 3, 1998

Richard F Post Inductrack Magnet Configuration U.S. Patent 6,633,217 B2 October 14, 2003

Richard F Post Inductrack Configuration U.S. Patent 629,503 B2 October 7, 2003

Richard F Post Laminated Track Design for Inductrack Maglev System U.S. Patent Pending US 2003/0112105 A1 June 19, 2003

Howard T Coffey Propulsion and stabilization for magnetically levitated vehicles U.S. Patent 5,222,436 June 29, 2003

Howard T Coffey Magnetic Levitation Configuration Incorperating Levitation, Guidance and Linear Synchronous Motor U.S. Patent 5,253,592 October 19, 1993

Enrico Levi, Zivan Zabar Air cored, linear induction motor for magnetically levitated systems U.S. Patent 5,270,593 November 10, 1992

Karl J Lamb, Toby Merrill, Scott D Gossage, Michael T Sparks, Michael S Barrett U.S. Patent 6,510,799 January 28, 2003