GPS Signal Simulator

Bradley University Dept. of Electrical and Computer Engineering
May 12, 2006

Anthony Hoehne
Benjamin Herreid

Adyvisor:
Dr. In Soo Ahn

Sponsored By:
Tracking and Imaging Systems, Inc.

Table Of Contents

Abstract 2
Acknowledgements 3
I. Introduction: 4
i) PUIPOSE: ..ttt ettt s bbbt e bt et s st sht e sb e et et eat e e bt e bt e bt e bt et e b saee e 4

ii) TEOTY ettt ettt et e at e b e b e bt et et e at e bt bt e bt et ea bt eh b e bt e bt e e bt eaaeeaeenae 4

ii1) TOp Level SYSEM LaYOUL:....c.ccciiiiiiiieiieteeiteet ettt sttt ettt e b et et st st e sbeenaeeaeenteeas 4
Figure 1: Top level system DIOCK diAQTAM..............cccueeeueeeciiiiieeiiieesieeeceeeieeeeteesteesteesbeesteesbeesaseesnseennsas 5

II. Design Process: 7
1) PO SUDSYSEIM ...ttt ettt ettt e et e st e e it e st eeat e e sab e e sateesabeesabeesabeenateesabeenans 7
Figure 2: Screenshot of GUI APPLICALIONcc..ccoecuieiuiniiiiiiieiieeieeee ettt s 8

Figure 3: PC DA PAtH...........c.ocoeeiuiiiiiiiiiiiiiiiiiieiieet ettt sttt et 9

i) FPGA SUDSYSIEIMIccuuiiiiieiiieiiieieeeitete ettt sttt et ettt s e s et e e e s s e e sate s et esae e st eaneeanesanesaeenneen 10
Equation 1: Basic linear interpolation used in FPGA calculationsccccoccevveevieviecinicncecneenen. 11

Figure 4: Illustration of interpolation wrap-around ProbIemc.oecuveeeeeecieeieeeiieeiieeieeseieeeiaeens 12

1) R SUDSYSIBIN ..ottt ettt ettt ea e s b e s bt e bt et st s bt e sbe e s bt et e et e ebtesbnenbeenbeas 13

III. Results: 15
i) OVEIall SYSEIM SUCCESS: ..uveitiiietieieeteeiteeit ettt ettt ettt st e bt e te et et eub e e bt e s bt e bt e beembesatesaeesbeenueenbeenteann 15

ii) Pl Sl CSS ittt e ettt e ettt e e et e e et aae e e e eaaaaeeetae e e e ataeeeetaaeeetteeeeaataeeeetaaeeetbeeeeantreeeanraeas 15

1) FPGA SUCCESS: .niiiiieiiiieeeciiee ettt e ettt e e et e ettt e e e et eeeessaeeessssaeesssseeeasssaeesassseaesnssaasanssseeeansseessssseeeans 15

IV) R SUCCESS .. ittt ettt e ettt e ettt e e et e e e eetaee e ssaaeesssseaeasssaeesassseaesnsseeeanssseeeassseeessseeenns 16

IV. Conclusions: 17
1) ANALYSIS OF PIODIEIINIS:eoniiiiiiiiiieee ettt ettt e sat e st e st e sbeesbeesabeesabee s 17

i) Suggested FUture WOTK:c.ooiiiiiiiii et e st 17
References 19
Appendix A: Simulations 20
Figure A-1: Showing linear interpolation w/o rollover protection and carrier signal generation........... 20

Figure A-2: Showing generation of C/A code for channel 1, SV #1.cccoccueveeeeiiiiiiieeiieeiieeiiesieeeaeenn 20

Appendix B: FPGA Design Files 21
TOP LeVEl FPGA SUDSYSTEML.......oocveeeiieeiieiiieeieeeieesteesieesteesiteesseessseesssesssseessseessseessseessseesssesssseesssesnsses 21

Linear INLErPOLALION BIOCK.............cccuueveueieiiiieiiieiieeieeeite et et e st e et e steeseteesbeesabeesbeessseesssaesnseesaseesnseens 22

AmPLitude INTEFPOLALION..............coeevuieiieiiiiieieeec ettt e s st saeeaeeane e 23

C/A Code Lookup Tables and INAEXINGcccccoecuieiiiieiiiiiiiiie ettt 24

Shifting in next value of code phase due to distance for interpolationc.cccceeveevvecenvcnceeneenen. 25

Shifting in next signal amplitude value for amplitude interpolation.................c.cccoccovveevieviecinccnseeneenen. 27
Appendix C: GUI Code 28
THAIT_fOTT .ottt ettt ettt e s bt e s a e st esa bt e st eeab e e s abeeeabeesabeeeabeesabeeeabee s 28

THQITL_fOTTI.CPP «evvveeeve et eeaeeeeieeeteesiteeseseeseteessseeasseessseessseesssaessseessseessseesabaeassaessseeasseesasaessseesnsaessseesnseesnseens 29

Abstract

The Global Positioning System (GPS) is a satellite based navigation system that provides
guaranteed coverage anywhere in the world. This project involves the development of a GPS
signal simulator capable of driving a GPS receiver. This process is the reverse of what a GPS
receiver does, as the position is given and the GPS satellite signals are computed. The main
purpose of the simulator is for testing during the development of GPS receivers. Compared to
live testing, a simulator provides convenience, repeatability, and in many scenarios a much lower
cost. There are several existing companies that offer similar devices, but the goal of this project
was to design a low-cost alternative that would not sacrifice a great amount of accuracy. To
operate the simulator, the user supplies the receiver trajectory, antenna characteristics, GPS
almanac file, and the initial date, time, and location. These selections will be made using a GUI-
based Windows application on a PC. The PC communicates with an FPGA board which, in
combination with an up-conversion mixer and a D/A converter, generates an analog GPS signal
such that a receiver will track the specified locations and times. The theory behind the project

has been developed, and significant portions of this project were built and tested.

Acknowledgements

The following people provided assistance and shared their knowledge to aid in the completion of
this project:

The Bradley University Electrical and Computer Engineering Department Faculty, Staff, and
Students

Dr. In Soo Ahn

Dr. Donald Schertz

Dr. Prasad Shastry

Dr. Aleksander Malinowski

Mr. Nick Schmidt

Aparna Sankara Subramaniam

Tracking and Imaging Systems, Inc.
Dr. James Sennott
Mr. Dave Seffner

I. Introduction:

i) Purpose:

The purpose of this project was to design a low-cost GPS signal simulator to be used for testing
commercial GPS receivers. This simulator was intended to be a simplified version of those
already on the market, meaning it would be much cheaper without sacrificing too many features.
It was intended that virtually any scenario could be modeled by the simulator, even those not
physically possible in reality, and that every test would be completely repeatable as many times

as desired.

ii) Theory:

The principle behind the design of a GPS signal simulator is the exact opposite of the design of a
receiver. In this case, a known position and trajectory of the receiver is specified by the user.
This information is then used to calculate and generate the signals that a receiver would “see” as
if it were actually receiving them from GPS satellites in orbit. As long as the right data is used to
generate the signals and the signals are generated with the correct codes and frequencies, the
receiver being tested will never know that it is not seeing real signals out of the sky on its

antenna.

iii) Top Level System Layout:

The GPS signal simulator that was designed consists of 3 major subsystems as shown in Figure 1

below.

Code Phase

Trajectory, Simulated . Simulated
Starting Locationy @ channels) > Altera GPS Signal Mixer GPS Signal
Date/Time, Mﬂ-’ Cyclone IF=2.046MHz (L1 Freq) GPS
Almanac PC FPGA board Receiver
ﬁ .
Antenna Patterq Signal Power ~ and D/A
(4 channels)

1675.42 MHz- IF

Figure 1: Top level system block diagram

The three major subsystems are the PC and included software, FPGA board, and the analog, or
RF subsystem, which includes everything from the D/A converter up to the receiver. The PC
subsystem uses a chain of programs that are controlled by a graphical user interface. These
programs take in data such as the receiver’s starting location and trajectory, as well as a number
of parameters and special files that are needed to calculate the desired information. The end
result of the PC subsystem is a set of data that can be transmitted to the FPGA board. This data
includes line-of-sight code phase, satellite ID number, and signal amplitude level for each of four

satellites that are in view of the receiver.

The FPGA subsystem communicates with the PC and uses the received data to index lookup
tables which then provide values for the C/A code and carrier signals for each sample. The C/A
code is a unique sequence of 1023 bits, or “chips,” that is generated by each satellite. This
sequence repeats every 1ms on each satellite, and it is used in GPS receivers to lock on to the
GPS signal and obtain a position measurement in some cases. Since the sampling rate is much
higher than the communication update rate, the FPGA performs a great deal of linear
interpolation on the received data in order to calculate the current values at each sample point.
The calculations for each satellite in view are done in parallel so that the entire operation can

happen in one clock cycle for each sample.

The RF subsystem is the section of the design that actually generates the signals needed to drive
the receiver. The D/A converter takes sample data from the FPGA at 8.184 MHz and generates
an approximation of the analog signal. This signal, after being converted from differential to
single-ended, is then sent to a mixer to mix the signal up to the GPS L1 frequency of 1575.42
MHz. The resulting signal power is too high for a GPS receiver to recognize, so a series of

attenuators is used to lower the signal power. The signal is then routed to the receiver for testing.

II. Design Process:

i) PC Subsystem:

The first major area of focus was the PC subsystem. This is the software portion of the project
which runs on a PC with Windows XP and a parallel port. The main function of the subsystem is
to allow the user to provide the simulation inputs. The subsystem then performs a number of

calculations and formats the data to be sent to the FPGA.

A screenshot of the GUI application can be seen in Figure 2. This screen allows the user to
select and enter all of the necessary inputs. These include a trajectory file, almanac file, antenna
file, starting location, and starting date/time. The trajectory file describes the movement of the
receiver antenna from the starting location, specified in durations of jerk along the axes of yaw,
pitch, roll, and thrust. The initial acceleration, velocity, and attitude are assumed to be zero. The
almanac file is in the industry standard RINEX?2 format, containing ephemeris data for each
satellite. The antenna file models the receiver antenna, containing values for the antenna gain
through the ranges of azimuth and elevation angles. This file can also be used to model antenna

blockage from certain directions.

Once the user has made these selections, he or she can begin the pre-processing and simulation
process. During pre-processing, a series of calculations are performed and the data to be sent to
the FPGA is the end result. The simulation process then becomes simply transmitting this data

to the FPGA sequentially.

“1 GPS Signal Simulator

File Help

Input Selection

Trajectary File: |E:\SDurce\GF‘S Wnput FileshsscBas jerk. frm

Almanac File: |C:'\SDurce\GF‘S Wnput Fileghtest. alm

Antenna File: |C:'\5l:uurce\GF'S Wnput Fileshtest. ant

Starting Location: f Radians Latitude: |1.2345E?39 radians
" Degrees
d Longitude: |1.23455?39 radians
Simulation D ate: Monday . Apil 24, 2006 ﬂ Sirnulation Start Tirme: F3A00PM ==

Run Pre-Processing and Simulation | |

Results

Pre-Processing Progress: NN NRRANRNNNNNNRANNNNNNNRRRENNNNNNRRRNENENRNNDDR

Simulation Progress:

Meszzages:

Wenfying lnputs. S
Input Werification Completed with O Erors and 0w arningsz.

Start of Preprocessing. ..

IMFO: Running Program 'Traj. exe’

IMFO: End af Program

Freprocezzing Completed with 0 Ermorz and 0% arnings.

Start of Simulation. ..

IMFO: Opening LPT1

IMFO: ‘wniting to LPTT...

ERROR: “write to LPT1 Failed, make sure hardware iz properly connected and powered on bl

Figure 2: Screenshot of GUI Application

A diagram of the data path for pre-processing can be seen in Figure 3. This figure shows the
programs and functions that operate on the user supplied data to generate the data for the FPGA.
Most of these programs were supplied by Tracking and Imaging Systems, Inc. Several attempts
were made to shorten the data generation process, such as generating the Position file from the
Traj program directly in ECEF and obtaining a line-of-sight distance output from the EnRAP

v9.0b program. Neither of these methods worked as desired, as the data did not match what was

generated by the original data path. These are calculations that are possible to perform, but there

is some error in the current implementations.

Frame File

Traj

Pos FiIeJ—Bin Fil
i i

MV_Trajgen EnRAP v9.0b

[“®—Antenna File

[“®——AImanac File

AVIAD File *
v Vis File

Strapdown

ECEF File

Almanac File—gy| Phasetru

Phase File

v

Select 4 Satellites
to Simulate

'

Format and
Package Data for
FPGA

Figure 3: PC Data Path

10

ii) FPGA Subsystem:

The second major area of focus was the FPGA subsystem. This begins with the communication
setup. The communication was never established in lab, but a methodology was established for
parallel communication. The data for each satellite required 4 bytes total. These bytes were
broken up to carry different types of data in order to utilize space effectively. The required data
included the satellite ID number, signal amplitude, fractional code phase, and two flags to
indicate overflow and underflow for the linear interpolation algorithm. The satellite number
required five bits because there are 32 satellites total. The signal amplitude required seven bits.
This was a design choice that was made because it was believed to provide enough dynamic
range to the signal amplitude. The code phase required 18 bits, 10 integer to account for all 1023
chips of the code, and 8 fractional to provide enough resolution between data points. The two

flags each required one bit each as one would expect.

The transmitted data was set to update at 2 KHz. This allowed a reasonable communication data
rate while not requiring excessive interpolation on the FPGA. The communication scheme was
to send the four bytes for each satellite in a predefined order so that no further encoding would
be necessary to separate the data. Each time data was read in for a new satellite (channel), the
data would be stored in a unique register on the FPGA. At the end of the 2 KHz update cycle,
the new values would be shifted into the interpolator, and communication would continue for the
next set of data. All of this was set to be controlled by handshaking between the FPGA and the

PC using a Centronics printer interface, although this was never implemented in practice.

11

The most critical section of the FPGA subsystem design was the linear interpolation section.
Although this was mathematically the simplest part of the entire project, implementing it on the
FPGA proved to be somewhat complex. The equation that this section used to calculate the

current values was:

(Previous position) — (Next position) x (Current time step) + (Previous position)
(Previous time) — (Next time)

Equation 1: Basic linear interpolation used in FPGA calculations

The interpolation section was implemented using schematic entry exclusively (no VHDL
written). As in the rest of the design, the interpolation section used fixed-point arithmetic, which
added to the difficulty by complicating changes to the design. Once the interpolation section was
completed, the wrap-around problem was discovered, and the whole interpolation design had to

be reconsidered.

The wrap-around problem arose from the fact that fractional code phases were used instead of
whole and fractional numbers. This was done to avoid having to transmit and operate on the
extremely large number of the repetitions of the C/A code, which would be a waste of space on
the FPGA. Since only fractional numbers were used, the transmitted values would only go from
0 to 1023. This meant that if the signal being generated needed to go into the next whole code
cycle, the value used for interpolation would result in a slope in the wrong direction. See Figure

4 for an illustration of this phenomenon.

To avoid this problem, flags needed to be sent from the PC side when the code phase crossed

over into a new code cycle. This problem was fixed in the interpolator by using a combination

12

of subtractors, adders, and multiplexers in conjunction with the two flags sent from the PC. With
this method, alternate values were always calculated to account for overflow (underflow was
never checked for correctness), and the flags and carry bits from the subtractors were used to
select whether or not the adjusted values should be used instead of the standard interpolated
values. The modified interpolator did work for overflow, and the underflow condition was never
completely implemented and verified due to lack of time. However, a problem occurred in the
project file, and the updated version was corrupted. Time did not allow for this problem to be
fixed appropriately, so the current version of the project still contains the original interpolator

without wrap-around protection.

New Code Cycle o ezt code
chip
1023
Previous
code chip
Equivalent
next code chip
B
mm Desired
interpolation
= Current
interpolation

Figure 4: Illustration of interpolation wrap-around problem

At the result end of the interpolator, the interpolated values were used to calculate both the code
chip and carrier signal lookup table indices. The code chip index was a simple conversion. The
integer result from the interpolator was used directly (after going through a series of multiplexers

to get the appropriate value for each channel and satellite number) to index a code chip lookup

13

table that was unique for each satellite. The carrier lookup was slightly more complicated. Here,
the fractional part of the interpolated value was used. Since the carrier frequency, IF, was
designed to be 2.046 MHz, and the code chipping frequency has to be 1.023 MHz, the result was
two complete carrier cycles for each code chip. The decision was made to have a dynamic range
of +/- 64 binary values for each channel (7 bits total for amplitude), meaning 128 values were
needed to represent the whole range of values. To represent a whole carrier cycle, 256 values
were needed. Thus, to get the lookup table index for the carrier table, the fractional interpolated
value is divided by 2 (2 carrier cycles per code chip), and this result is then multiplied by 255 (0

to 255 =256 values) to get a lookup table index between 0 and 255.

iii) RF Subsystem:

The majority of work on the RF subsystem was left unfinished due to time constraints. Some
experiments were performed in the RF lab to confirm that the signals coming from the D/A
converter could be appropriately upconverted and attenuated to the proper frequencies and signal
power levels. There was not a great deal of design involved with this section, and the only major
issue was getting the right parts, such as a mixer that could operate with the necessary input and
output frequency ranges. Some testing was done on the FPGA output pins to determine the
characteristics of the signals at the input to the D/A converter, and this experiment led to one
minor addition to the project. As a result of the high sampling rate (8.184 MHz), the signals at
the output pins, which are OV to 3.3V signals, show a large amount of overshoot and ringing.
The voltage levels on the high side did not present any problems, but on the falling edges of the
signal, the level approached -2V. Since the absolute maximum rating for the D/A converter was

-0.3V below ground, the FPGA output was not safe to run into the D/A converter. In order to

14

solve this problem, a germanium diode clipping circuit was proposed to prevent the levels from
going too low and damaging the D/A converter. An individual version of this circuit was tested
and validated, but 11 of these circuits would be required for full scale operation, one for each of

ten bits and one for the sample clock.

15

ITII. Results:

i) Overall System Success:

The overall project was only partially successful due to time constraints and the broad scope of
the project. Every subsystem section that was implemented was either tested or simulated

successfully, but not every subsystem was completed.

ii) PC Success:

The GUI portion of the PC was completed successfully. All of the necessary user controls and
inputs were present and functional. The computation behind it was not completed, however. Of
the data path shown in Figure 3, only the Traj program was fully integrated into the GUI. The
remaining programs were functional when run manually and individually, and valid Visibility
and Phase files could be generated. The last two functions, picking satellites and formatting the

data, were not completed.

iii) FPGA Success:

On the FPGA subsystem, a communication link was never established with the PC, and although
a method was designed for communication, the actual hardware was never implemented. The
majority of the calculations on the FPGA were completed for one channel. Once one channel is
completed, the only thing left to do would be to copy the schematic once for each channel
needed, although a few minor modifications may be needed. The current version of the project
file does not include the interpolation with the wrap-around problem fixed, nor does it include
the amplitude interpolation. Both of these sections were implemented and simulated

successfully, but a problem occurred in the Quartus II software, the design tool for the FPGA,

16

which prevented further compilation of the project, meaning it was necessary to revert to an
older version of the project. The only other section not implemented on the FPGA was the
addition of the phase due to time calculation. This calculation could be implemented easily

using a counter and a few other minor components.

iv) RF Success:

All of the RF subsystem was tested in the lab except for the inclusion of the D/A converter and
the conversion to a single-ended signal. Instead, a second signal generator was used to model the
expected signals until the D/A converter was running successfully. It was proven experimentally
that the specified mixer could handle the necessary signal frequencies and power levels. Also,
data was acquired to indicate that some of the attenuation for the signal power levels could be
accomplished by adjusting the power levels on the RF signal generator, thereby reducing the
amount of attenuation needed after the mixer. In summary, the bulk of the RF subsystem was
tested and ready to be added into the overall system, and the only section missing was the D/A

converter and conversion to a single-ended signal.

17

IV. Conclusions:

i) Analysis of Problems:

The primary problem that prevented the completion of this project was time constraints.
Essentially, all of the important theory behind the design of the project was established and
confirmed in some fashion, but not every subsystem that was proposed could be implemented
completely in the available time. All of the steps for the completion of this project are laid out,

and provided more time, all of the subsystems could be combined successfully.

ii) Suggested Future Work:

The current status of this project lends itself to the possibility of a continuation project by
students next year. Outside of wrapping up minor parts of the FPGA and PC software design,
the first major step would be to establish the communication link between the PC and the FPGA.
Again, the method for this has already been established, and all that remains is the actual

implementation.

Another major step would be to add the navigation data to the generated signals. With the
current configuration of this project, the best result that could be expected would be to see a
commercial GPS receiver lock on to all four visible satellites individually, but no actual
navigation would be possible. For the receiver to obtain a position measurement, the navigation
message would have to be present on the generated signals. The addition of this part of the
signal is not conceptually difficult, but it requires a large amount of very specific data
formatting, meaning that the process would take a great deal of time, and the current FPGA chip

may be filled quickly, perhaps not even allowing for the four required channels to be

18

implemented on the chip. In this case, either a larger FPGA or multiple FPGA chips would be
required because the navigation message is useless to the receiver if less than four satellites

(channels) are available for tracking and navigating.

In addition to the completion of the project in its current form, a number of features could be
added to the system to increase the accuracy of the scenario being modeled and to enhance the
control of the system for the user. A more realistic scenario could be modeled by including the
effects of the ionosphere and troposphere, as well as problems associated with multipath. The
addition of these features would not only require further calculations, but some of the
assumptions made for the current calculations would no longer be valid, such as the calculation
of the carrier signal from the code phase. On the PC side of the system, another interesting
feature would be the addition of some type of instrument panel connected with the GUI. This
could show items such as an altimeter and speedometer, a scalable map of the earth with the
current position shown, as well as the GPS time and the signal power levels being generated.
This interface would not affect the generation of the GPS signals in any way, but it would allow
the user of the simulator to get additional feedback on the simulation to confirm the correctness

of the scenario being modeled.

19

References

1) United States Patent and Trademark Office. http://www.uspto.gov/main/sitesearch.htm

(24 Jan. 2006).

2) Misra, P. and Enge, P. Global Positioning System : Signals, Measurements, and

Performance. Lincoln, MA: Ganga-Jamuna Press, 2004.

3) GPS Software Package. Includes: Traj, MV_Trajgen, Strapdown, Phasetru, and EnRAP

v9.0b. Tracking and Imaging Systems, Inc. St. Petersburg, FL. 2006.

4) “FPGAs, CPLDs, & Structured ASICs: Altera, the Leader in Programmable Logic” [online].

San Jose, CA. Available : http://altera.com/

20

Appendix A: Simulations

lation mode: Timing |

i Time Bar: 14.2 ns 1| +| Pointer: 534,32 ns Interval: 52012 ns Start; Ops End: 501.0 us
Ops 1600rs 3200ns 4800ns B400ns B000ns 3600ns 112w 128w 144us TBus 176w 10w 200w 224w |¢
Name 142ns
M
ok {Hpm S R B I R [i e (e B R S S IR
zero_cht
Cur_int 1022
Cur_fract 0
Freyv_int 100
Prev_fract 0
out_int 100 100 10) ST 102) { 102 W03 } S }
out_fract 0p 160 8 B4 3 224 pl28 g 32 §192 3 % i I D GED) A2 S U 160 § B4 §224
B &Il D ED 5B 655 W8 1
Chl_carrier 0 W B Y R0y 3] ; X]] S
Chi_code | |

Figure A-1: Showing linear interpolation w/o rollover protection and carrier signal generation.

Figure A-2: Showing generation of C/A code for channel 1, SV #1.

21

Appendix B: FPGA Design Files

clk T
S <[
Go g
=33 @
83 = flg
la &2 E
g5 —o— o
S5 =
5| EH o
5 <% E
5 g e =
g 48
5 R
§|
main_cntf [
|
3| £
main_cntlt 5
=% 9] code_tables
4 5 ¢ E clk Chi|——BHEELE 5 Chi cod
E EEE chi, selld.(ioream Chi_sel[4..0] Ch: WEBL— > Ch2 cod
J o | €] Ch2 selia.([O—RiRd Ch2_sel[4..0] Ch LTET > Ch3 cod
< - E’E Ch3 selid.(~ T—>—Ihel Ch3_sel[4..0] Ch4| WU Ch4 cod
&l e Chasella.(>R Cha_sell4.0] Ch LTS Ch5 o
g5 8 Chs self4.(i QUITELE Ché _co
e L=t Chs_sel[4..0] Che|— 2220
B Cho selld.(> Il Ché_sell4..0] Oh Ch7 co
< € Ch seifd (> I Ch7_sell4..0] Ch UEEL Ch8 co
E| Chs selld.(DX Ch8_sel[4..0]
- Chi[9..0]
H @ Ch2[9..0]
Z k] Ch3[9..0]
Add phase due to time Cha[9..0]
count to 8184 . stopped On(o..0]
use lower 2 bits for carter 409 Cufis.6] slopp e
I ..
) use upper bits for code table 0l s Broviia.o] chale. o]
i LB 5 code inf
[18 bit insi de. IntD-0 inst
ins Cur io Prev clone i i
bm multé
wiap g ek wrap_reg [~ G801 K LOS_prev{19..0] interp_int[9..0] [~ ifte Gataa[15..0] altsvncram(
new_phasel17.0] bitnew_phase[17.0] | wrap cur18.0] ~T5r5yTE, 8. LOS _cur(19..0] interp_fract[15..0] (15..0] ~ result[15..0]: -0) == Chi_carrieri?-
New_phase[17..0] I:)—‘VE{;“«—L new_phase[18.0] prev{18..0] count[11..0] distance Unsiane
LOGICAL left shif Itipl
NSO inst : gt multiolicati¢
c £ Block Tvpe: AUTC
& inste Block Tvoe
Garrier_addr(7.0]
ERER]
w =
3
< g
5| £
3 o
3
8
Cur_io_Prev_Amp Amp_interp
Cur_amp(6.0] | |sign.Cur_ampl6..0]
i clk curl6.0) Frov amplo.0] s‘gn,p,evimf]ﬁ Cur_amp[7.0] Interp_Amp[6..0] m— Amp_lnterp(6.0]
New_amp[6.0] [O>—Hi& new_amp[6..0] prev(6..0] —=1Prev_amp[7..0]
{ Count{11..0]
inst7 5

Top Level FPGA Subsystem

22

£
<
] intprp_phase[25..16]
EE
ERRE
] 1/2M2,22,32 wrap_out_mux
div 4092 iz 0 — interp_phase[26.0]
5 i 1es[40.8] dataa[32..0
T % sult[65..0mul[65.0] E sel E
d - ¢_zer0.const 4092031.0] | databf32.0b”/Sgne o L 3
lom AHROIagHRE Interpolate_mul mgh licat
1 dud™ = N uliplicati] =
9.9 lom_muto |qmﬂ1 om0 inst mul[63]mul[48..38]mul[39..24] E aNI E
i19.0] DIf19.0] . I g wrap_sub b
- . a0 0‘ dataa[27.p E
instt . igne _es[40.. " hsul[27..0] suble7.0]
p— plicaf v ; Iom_add sub1 261632
. onstan
Imm(6.0 erolglmain a0z w ulEd]mul6. 36 ins8
- ins ¢
e ¢ | : o 6 z17.0) Y prev{19.0]zer(7.0] U
T main cnffi1. s q
v (prev{19.0)

intern..fract15..01

Linear Interpolation Block

TCur_amp[7.0] T BN

dif x cnt
: dataa[7..0
Prev_amp[7..0] [_>—{RHE Sult[20..0] i A00A res[20.0),
datab[12..0 ST data[20..0] — result[20..0] —K
- = motilicat — distance[3..0]
instt | LOGICAL right sh
instZ
add_prev
I 9 zero zero,main_cnt[11..0] shi P} (os(7.0] | dataal7. 0 P
s ins ?‘4 A+B esult[7..0]. interp[7..0
datab(7..0] "
inst10

interp[6..0]

e OUTRPL 5 Interp_Ampl[6..0]

% main_cnt[11..0]

“Count[11..0]

Amplitude Interpolation

C/A Code Lookup Tables and Indexing

25

Shifting in next value of code phase due to distance for interpolation

--Anthony Hoehne
--3/6/06
--GPS Signal simulator, shift current values of code phase into previous registers for calcs

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

Entity Cur_to_Prev is

Port(
clk, wrap : IN std_logic;
wrap_reg : OUT std_logic;
--count : IN std_logic_vector(11 downto 0);
new_phase : IN std_logic_vector(18 downto 0);
cur, prev : OUT std_logic_vector(18 downto 0)
);

End Cur_to_Prev;
Architecture syn of Cur_to_Prev is

signal temp_cur, temp_prev, cur_add : std_logic_vector(18 downto 0);
signal count : integer range 0 to 4092;
signal wrap_sig : std_logic;

Begin
Process(clk)
Begin
if(rising_edge(clk)) then
count <= count + 1;
if(count = 0) then
cur_add <=new_phase + "0111111111000000000";--register
current value w/ 1022 added(for wrapping)

temp_prev <= temp_cur; --register last code phase
temp_cur <= new_phase; --register current phase unmodified
--wrap_sig <= wrap; --register wrap bit

wrap_reg <= wrap;
prev <= temp_prev;,
if(wrap = '1") then

cur <= cur_add;
else

cur <= temp_cur;
end if;

elsif(count = 4092) then

count <= 0;

end if;
end process;

end syn;

end if;

26

Shifting in next signal amplitude value for amplitude interpolation

--Anthony Hoehne
--3/6/06

27

--GPS Signal simulator, shift current values of signal amplitudes into previous registers for calcs

library ieee;
use ieee.std_logic_1164.all;

Entity Cur_to_Prev_Amp is

Port(
clk : IN std_logic;
--count : IN std_logic_vector(11 downto 0);
new_amp : IN std_logic_vector(6 downto 0);
cur, prev : OUT std_logic_vector(6 downto 0)
);

End Cur_to_Prev_Amp;

Architecture syn of Cur_to_Prev_Amp is

signal temp_cur, temp_prev : std_logic_vector(6 downto 0);

signal count : integer range 0 to 4092;

Begin
Process(clk)
Begin
if(rising_edge(clk)) then
count <= count + 1;
if(count = 0) then
temp_prev <= temp_cur;
temp_cur <= new_amp,
interpolation
elsif(count = 4092) then
count <= 0;
end if;
end if;
end process;
cur <= temp_cur;
prev<=temp_prev;
end syn;

--store last code phase
--prepare next code phase for

Appendix C: GUI Code

main_form.h

#ifndef main_formH
#define main_formH

#include
#include
#include
#include
#include
#include
#include
#include

#include

<Classes.hpp>
<Controls.hpp>
<StdCtrls.hpp>
<Forms.hpp>
<ComCtrls.hpp>
<Menus.hpp>
<Dialogs.hpp>
<ExtCtrls.hpp>

<stdio.h>

class TMainForm : public TForm

{
__publis

B

TL
TP
B

hed: // IDE-managed Components
utton *RunButton;

TLabel *Labell;

TEdit *TrajectoryFileEdit;

TButton *TrajectoryFileSelectButton;
TLabel *Label2;

TEdit *AlmanacFileEdit;

TLabel *Label3;

TEdit *AntennaFileEdit;

TButton *AlmanacFileSelectButton;
TButton *AntennaFileSelectButton;
TButton *StopButton;

TProgressBar *SimulationProgressBar;
TLabel *Label4;

TMainMenu *MainMenul;

TMenultem *Filel;

TMenultem *Exitl;

TMenulItem *Helpl;

TMenultem *Aboutl;

TOpenDialog *TrajectoryFileOpenDialog;
TOpenDialog *AntennaFileOpenDialog;
TOpenDialog *AlmanacFileOpenDialog;
abel *Label5;

rogressBar *PreprocessingProgressBar;
utton *ReRunButton;

TRichEdit *MessageEdit;

TL
D
D
TL
TL
TG

abel *Labelob;
ateTimePicker *DatePicker;
ateTimePicker *TimePicker;
abel *LabelT7;

abel *Labels;

roupBox *InputsGroupBox;

28

29

TGroupBox *OutputsGroupBox;
TBevel *Bevell;
TLabel *Label9;
TEdit *RadiansLatEdit;
TLabel *RadiansLatLabel;
TEdit *RadiansLonEdit;
TLabel *RadiansLonLabel;
TLabel *Labell2;
TLabel *Labell3;
TRadioButton *RadiansRadioButton;
TRadioButton *DegreesRadioButton;
TEdit *DegreesLatEdit;
TEdit *DegreesLonEdit;
TLabel *DegreeslLatlabel;
TLabel *DegreesLonLabel;
TEdit *MinutesLonEdit;
TLabel *MinutesLonLabel;
TLabel *MinutesLatLabel;
TEdit *MinutesLatEdit;
TEdit *SecondsLatEdit;
TEdit *SecondsLonEdit;
TLabel *SecondsLonLabel;
TLabel *SecondsLatLabel;
TComboBox *DegreesLatDropdown;
TComboBox *DegreesLonDropdown;
void _ fastcall TrajectoryFileSelectButtonClick (TObject *Sender);
void _ fastcall AlmanacFileSelectButtonClick (TObject *Sender);
void _ _fastcall AntennaFileSelectButtonClick (TObject *Sender);
void _ fastcall ExitlClick (TObject *Sender);
void __ fastcall RunButtonClick (TObject *Sender);
void __ fastcall ReRunButtonClick (TObject *Sender);
void _ fastcall RadDegClick (TObject *Sender) ;
private: // User declarations
void Message (TMsgDlgType type, AnsiString msg);
void ReadMessagesFromFile (void) ;
bool GetFileLine(FILE* cf, AnsiString* Line);
bool RunPreprocessing(void);
bool RunSimulation(void) ;
bool VerifyInputs(void);
AnsiString ProgramDir;
int Errors;
int Warnings;
public: // User declarations
__fastcall TMainForm(TComponent* Owner);

#endif

main_form.cpp

#include <vcl.h>

#pragma hdrstop

#include "main_form.h"

#include <SysUtils.hpp>

#include <stdio.h>

#define PI ((double)3.1415926535898)

#pragma package (smart_init)
#pragma resource "*.dfm"
TMainForm *MainForm;

void

{

void

{

fastcall TMainForm: :TMainForm(TComponent* Owner)

TForm (Owner)

//Initialize Class Variables
Errors = 0;
Warnings = 0;
ProgramDir = GetCurrentDir();

//Set initial state of controls
DatePicker—->Date = Date();

TimePicker—->Time = Time () ;
RadDegClick (this);
DegreesLatDropdown->ItemIndex = 0;

|
o
~

DegreesLonDropdown->ItemIndex =

__fastcall TMainForm::TrajectoryFileSelectButtonClick (TObject *Sender)

if (TrajectoryFileOpenDialog->Execute())
TrajectoryFileEdit->Text = TrajectoryFileOpenDialog—->FileName;

_ fastcall TMainForm::AlmanacFileSelectButtonClick (TObject *Sender)

if (AlmanacFileOpenDialog->Execute())
AlmanacFileEdit->Text = AlmanacFileOpenDialog->FileName;

__fastcall TMainForm::AntennaFileSelectButtonClick (TObject *Sender)

if (AntennaFileOpenDialog->Execute())
AntennaFileEdit->Text = AntennaFileOpenDialog->FileName;

_ fastcall TMainForm: :RadDegClick (TObject *Sender)

if (RadiansRadioButton—->Checked) {
RadiansLatEdit—->Visible = true;
RadiansLatLabel->Visible = true;
RadiansLonEdit—->Visible = true;
RadiansLonLabel->Visible = true;

30

31

DegreesLatEdit->Visible = false;
DegreesLatLabel->Visible = false;
DegreesLatDropdown->Visible = false;
DegreesLonEdit->Visible = false;
DegreesLonLabel->Visible = false;
DegreesLonDropdown—->Visible = false;
MinutesLatEdit->Visible = false;
MinutesLatLabel->Visible = false;
MinutesLonEdit->Visible = false;
MinutesLonLabel->Visible = false;
SecondsLatEdit->Visible = false;
SecondsLatLabel->Visible = false;

SecondsLonEdit->Visible = false;
SecondsLonLabel->Visible = false;
} else {

DegreesLatEdit->Visible = true;
DegreesLatLabel->Visible = true;
DegreesLatDropdown->Visible = true;
DegreesLonEdit->Visible = true;
DegreesLonlLabel->Visible = true;
DegreesLonDropdown->Visible = true;
MinutesLatEdit->Visible = true;
MinutesLatLabel->Visible = true;
MinutesLonEdit->Visible = true;
MinutesLonLabel->Visible = true;
SecondsLatEdit->Visible = true;
SecondsLatLabel->Visible = true;
SecondsLonEdit->Visible = true;
SecondsLonLabel->Visible = true;

RadiansLatEdit->Visible = false;
RadiansLatLabel->Visible = false;

RadiansLonEdit->Visible = false;
RadiansLonLabel->Visible = false;

void ___fastcall TMainForm::ExitlClick (TObject *Sender)

Application->Terminate () ;

void TMainForm: :Message (TMsgDlgType type, AnsiString msg)
{

if (type == mtInformation) {

MessageEdit->SelAttributes->Color = clBlack;
MessageEdit->Lines->Add ("INFO: " + msqg);

} else if (type == mtError) {

MessageEdit->SelAttributes->Color = clRed;
MessageEdit->Lines->Add ("ERROR: " + msqg);
Errors++;

} else if (type == mtWarning) {

MessageEdit->SelAttributes—->Color = clBlue;
MessageEdit->Lines—->Add ("WARNING: " + msg);

Warnings++;

32

} else if (type == mtCustom) {

MessageEdit->SelAttributes->Color = clGreen;
MessageEdit->Lines->Add (msg) ;

}

MessageEdit->Update () ;

void TMainForm: :ReadMessagesFromFile (void)

AnsiString Line;
AnsiString MessageType;
char ¢ = NULL;

//open file
Line = ProgramDir + "\\output.txt";

FILE* mf = fopen(Line.c_str() ,"r");

if(I'mf) {

Message (mtError, "Error reading data from program");
return;

}

//read file
while (GetFileLine (mf, &Line)) {
TMsgDlgType type;
MessageType = Line[l];
try A
type = (TMsgDlgType) MessageType.ToInt () ;
} catch (...) {
Message (mtError, "Error reading data from program");
return;
}
Line = Line.SubString(2,Line.Length() - 1);
Message (type, Line);
}

//clean up
fclose(mf);

void _ fastcall TMainForm::RunButtonClick (TObject *Sender)

//Clear message window
MessageEdit->Clear () ;
bool OK = true;

/*********************

* Input Verification *
*********************/

Message (mtCustom, "Verifying Inputs...");

//Reset error counts
Errors = 0;
Warnings = 0;

OK = VerifyInputs();

if (OK) {

Message (mtCustom, (AnsiString) "Input Verification Completed with " +
Errors + " Errors and " + Warnings + " Warnings.");

Message (mtCustom, "") ;
} else {

Message (mtCustom, (AnsiString) "Input Verification Failed with " +

Errors + " Errors and " + Warnings + " Warnings.");
return;

/****************

* Preprocessing *
****************/

Message (mtCustom, "Start of Preprocessing...");
//Reset error counts

Errors = 0;

Warnings = 0;

ReRunButton->Enabled = false;

//Call PreProcesing function

OK = RunPreprocessing();
if (OK) {
Message (mtCustom, (AnsiString) "Preprocessing Completed with " +
Errors + " Errors and " + Warnings + " Warnings.");
Message (mtCustom, "") ;
} else {
Message (mtCustom, (AnsiString) "Preprocessing Failed with " +
Errors + " Errors and " + Warnings + " Warnings.");
return;

/*************

* Simulation *
*************/

Message (mtCustom, "Start of Simulation...");
//Reset error counts

Errors = 0;

Warnings = 0;

StopButton->Enabled = true;

//Call Simulation function
OK = RunSimulation();

StopButton->Enabled = false;
if (OK) {

Message (mtCustom, (AnsiString) "Simulation Completed with " +
Errors + " Errors and " + Warnings + " Warnings.");

Message (mtCustom, "") ;
} else {
Message (mtCustom, (AnsiString) "Simulation Failed with "
+ " Errors and " + Warnings + " Warnings.");
return;

void _ fastcall TMainForm::ReRunButtonClick (TObject *Sender)
{

//Clear message window

MessageEdit->Clear();

bool TMainForm::VerifyInputs (void)

{
bool OK = true;

if(!FileExists (TrajectoryFileEdit->Text)) {
Message (mtError, "Trajectory File Not Found");
OK = false;

if (!FileExists (AlmanacFileEdit->Text)) {
Message (mtError, "Almanac File Not Found");
OK = false;

if (!FileExists (AntennaFileEdit->Text)) {
Message (mtError, "Antenna File Not Found");
OK = false;

if (RadiansRadioButton—->Checked) {

//verify radians input
double test;
bool flag;

//verify latitude value
flag = true;
try {
test = RadiansLatEdit->Text.ToDouble () ;
} catch(...) {
OK = false;
flag = false;
Message (mtError, "Latitude value is not a valid numbe

}

if(flag) {
if(test < 0.0 || test > 2 * PI) {
OK = false;
Message (mtError, "Latitude value is not valid.
enter a number between 0 and 2 pi.");

}

+ Errors

r.");

Please

34

}

//verify longitude value
flag = true;

try {
test = RadiansLonEdit->Text.ToDouble () ;
} catch(...) {

OK = false;
flag = false;

Message (mtError, "Longitude value is not a valid number.");
}
if(flag) {
if(test < -PI || test > PI) {
OK = false;
Message (mtError, "Longitude value is not valid. Please
enter a number between -pi and pi.");

}
}

} else {

//verify degrees input
double test;
int testi;
bool flag;

//verify latitude degrees value
flag = true;

try{
testi = DegreeslLatEdit->Text.ToInt();
} catch(...) {

OK = false;
flag = false;
Message (mtError, "Latitude Degrees value is not a valid

number.") ;
}
if(flag) {
if(testi < 0 || testi > 90) {
OK = false;
flag = false;
Message (mtError, "Latitude Degrees value is not wvalid.
Please enter an integer between 0 and 90.");

}
}

//verify latitude minutes value
if(flag) {
try {
testi = MinutesLatEdit—->Text.ToInt();
} catch(...) {
OK = false;
flag = false;
Message (mtError, "Latitude Minutes value is not a valid
number.") ;

valid. Please enter an integer between 0 and 60.");
}
}
}
//verify latitude seconds value
if(flag) {
try {
test = SecondsLatEdit->Text.ToDouble () ;
} catch(...) {
OK = false;
flag = false;
Message (mtError, "Latitude Seconds value is not a valid
number.") ;
}
if(flag) {
if(test < 0.0 || test > 60.0) {
OK = false;
flag = false;
Message (mtError, "Latitude Seconds value is not
valid. Please enter a number between 0 and 60.");
}
}
}
//special case
if(flag) {
if (DegreesLatEdit->Text.ToInt () == 90 && MinutesLatEdit-
>Text.ToInt () != 0 && SecondsLatEdit->Text.ToDouble() !'= 0.0) {
OK = false;
Message (mtError, "Total latitude is greater than 90
degrees.");
}
}
//verify longitude degrees value
flag = true;
try{
testi = DegreeslLonEdit->Text.ToInt();
} catch(...) {
OK = false;
flag = false;
Message (mtError, "Longitude Degrees value is not a valid
number.");

if(flag) {
if(testi < 0 || testi > 60) {
OK = false;
flag = false;
Message (mtError, "Latitude Minutes value is not

}

if(flag) {
if(testi < 0 || testi > 90) {
OK = false;
flag = false;

36

Message (mtError, "Longitude Degrees value is not wvalid.
Please enter an integer between 0 and 90.");
}
}

//verify Longitude minutes value
if(flag) {
try {
testi = MinutesLonEdit->Text.ToInt();
} catch(...) {
OK = false;
flag = false;
Message (mtError, "Longitude Minutes wvalue is not a valid

number.") ;

}

if(flag) {

if(testi < 0 || testi > 60) {
OK = false;
flag = false;
Message (mtError, "Longitude Minutes value is not

valid. Please enter an integer between 0 and 60.");

}
}
}

//verify Longitude seconds value
if(flag) {
try {
test = SecondsLonEdit->Text.ToDouble();
} catch(...) {
OK = false;
flag = false;
Message (mtError, "Longitude Seconds value is not a valid

number.") ;
}
if(flag) {
if(test < 0.0 || test > 60.0) {
OK = false;
flag = false;
Message (mtError, "Longitude Seconds value is not
valid. Please enter a number between 0 and 60.");

}
}

//special case

if(flag) {
if (DegreesLonEdit->Text.ToInt () == 90 && MinutesLonEdit-
>Text.ToInt () != 0 && SecondsLonEdit->Text.ToDouble() !'= 0.0) {

OK = false;
Message (mtError, "Total longitude is greater than 90
degrees.");

}

37

38

return OK;

bool TMainForm: :RunPreprocessing(void)

/****************

* Preprocessing *
****************/

SimulationProgressBar—->Position = 0;
PreprocessingProgressBar->Position = 0;
FILE *TrajFile, *AlmFile, *AntFile;

//open files
bool OK = true;

TrajFile = fopen(TrajectoryFileEdit->Text.c_str(),"r");
if (!TrajFile) {
Message (mtError, "Error Opening Trajectory File");
OK = false;

AlmFile = fopen(AlmanacFileEdit->Text.c_str(),"r");
if (!'AlmFile) {
Message (mtError, "Error Opening Almanac File");
fclose(TrajFile);
OK = false;

AntFile = fopen(AntennaFileEdit->Text.c_str(),"r");
if (!'AntFile) {
Message (mtError, "Error Opening Antenna File");
fclose(TrajFile);
fclose (AlmFile) ;
OK = false;

if (!OK) return 0;

//Run TISI Programs
AnsiString command;

//run Traj

Message (mtInformation, "Running Program 'Traj.exe'");

ChDir (ProgramDir + "\\TISICode\\Traj");

command = "Traj.exe —fn\"" + TrajectoryFileEdit->Text + "\"";
system(command.c_str());

ReadMessagesFromFile () ;
if (Errors) return O;
PreprocessingProgressBar->Position = 10;

//clean up
fclose(TrajFile);
fclose(AlmFile);

39

fclose (AntFile);

PreprocessingProgressBar->Position = 100;
return 1;

TMainForm: :RunSimulation (void)
SimulationProgressBar—->Position = 0;

//Verify Input
FILE *PhaseFile, *VisFile;

//Open Parallel Port
HANDLE hParallelPort;
DWORD OK;

Message (mtInformation, "Opening LPT1");
hParallelPort = CreateFile (
"LPT1", // file or device name
GENERIC_WRITE, // access mode: write only
NULL, // sharing mode: no sharing
NULL, // must be NULL, not supported on all

platforms

OPEN_EXISTING, // whether to create a new file
NULL, // attributes
NULL // must be NULL, not supported on

all platforms

for

)i

if (hParallelPort == INVALID_HANDLE_VALUE) {

Message (mtError, "Unable to open LPT1, make sure device is not in
")

return 0;

}

//Set Timeout to 1 second per byte to transfer plus 3 seconds

COMMTIMEOUTS ct = {0,0,0,1000,3000};

OK = SetCommTimeouts (hParallelPort, &ct);

if ('OK) {
Message (mtWarning, "Unable to set LPT1 Timeouts, program may hang

several minutes on write failure.");

}

char buffer[10];
DWORD size = 10;
DWORD done;

for(int 1 = 0; 1 < size; i++)
buffer([i] = 1i;
Message (mtInformation, "Writing to LPT1...");
OK = WriteFile(
hParallelPort, // file or device handle
&buffer, // address of buffer with data to send

size, // how many bytes should be sent

40

// how many bytes were actually written

&done,
// must be NULL, not supported

NULL
)i

if (!0OK) {
Message (mtError, "Write to LPT1 Failed, make sure hardware is

properly connected and powered on");
CloseHandle (hParallelPort);
return 0;

Message (mtInformation, (AnsiString) "INFO: Wrote " + done + " Bytes");

//Clean Up
CloseHandle (hParallelPort);

SimulationProgressBar—->Position = 100;
return 1;

//unbuffered (dynamic) alternative to fgets, does NOT include \n at end of
line
bool TMainForm::GetFileLine (FILE* cf, AnsiString* Line)
{
*Line . "";
char NextCharacter;

while (1) {
NextCharacter = fgetc(cf);
if (NextCharacter == EOF)
return(0);
if (NextCharacter == '\n'")
break;
*Line = *Line + NextCharacter;
}
return(l);

