
10-17-04
Work has concentrated on developing the program needed to generate the networks for
SNNS. Because the speed of SNNS’ graphical network display is extremely slow as the
network gets large, I have decided it is not practical to attempt designing the networks
within SNNS. Thus the C# program is being developed. To begin, I am writing the code
to simply create a feed forward network of any number of layers, with a specific width
and number of inputs ands outputs…following the structure of the SNNS network file
format. The interface is shown as figure 1.

Figure 1: Network Generator Interface

Debugging has gone fairly smoothly, the main issue being that having a network with
layers more than about 50 nodes tends to become extremely slow. The problem was using
the append member of the richTextBox class to add to the output file. I have found it is
better to create a string for each new line and then insert the string at one time into the
textbox. The code for the program up to this point is viewable as “NetGen1” in the
Journal Files folder. At this point, the next step is to implement the connectivity feature.
Currently, the program produces an output file which is a fully connected feed forward
network.

10-21-04
I will work today on finishing up the network generator for feed forward networks and
also perfect the process to convert PGN games file into EPD, and then into arrays which
may be used in SNNS training and verification files. I will explain the files when I get to
this point, but for now want to finish the program shown first in figure 1.

After some difficulty in getting the Random class to function correctly, I am able to
produce an acceptable output file. A screen shot of the new application is shown in figure
2. The output file format is based on “test.net” located in the Journal Files folder. I expect
to see nodes in the output file with varying source nodes recorded…this is actually
observed very well in figure 2. A fully connected network would have matching nodes
for any given layer.

Figure 2: New Network Generator Showing Partial Connectivity Network

It is clear in the textbox in figure 2 that the nodes are only partially connected at this
time. The key to getting Random to work is to declare a new object of type random at the
top of the network generation routine, and not inside a loop. Each time the new class is
created, the seed is apparently the same, so we end up getting duplicate nodes, which is
obviously not desired. The new version of the code may be seen as “NetGen2” in the
Journal Files folder.

Figure 3 shows the types of networks this application is designed to create. It is a screen
capture from SNNS. It must be noted that the first hidden layer is ALWAYS fully
connected to the input layer, but all following layers are partially connected in some
random configuration.

Figure 3: Network Architecture created by NetGen

With the network generator now fully functional, it is time to start considering the data
file processing. The dataset I will be using is capable of producing PGN (portable game
notation) files, which are algebraic, standardized Chess game recordings. ChessBase 9.0
(NEED TO ORDER!!) should be able to provide a few million games for use in this
project, so the amount of data is obviously massive. An efficient data processing method
is therefore required. A document describing the PGN standard is provided in the Sources
folder (Pgn.pdf).

I decide to use a program I find on www.pgn.freeservers.com in order to convert the PGN
files to EPD files. This application is called PGNposition and is a command line utility.
The PGN file must be specified, and an output EPD file must be supplied at run time.
Unfortunately, the utility is very sensitive to errors in the PGN files…If it comes across
one, it seems to crash. Rather than writing a new conversion utility (not very easy), I
decide to instead write a program which will break the larger PGN database files down

into smaller files to be processed one at a time. This way, an error in one PGN game will
not cause a great deal of failed conversions, and can possibly be found and easily
corrected. This program is called “Breaker” and a screenshot may be seen in figure 4.

Figure 4: Breaker program screen shot…used to split PGN files

The PGN Breaker program is written in Visual Basic 6.0, and is simply a text parser. The
code is shown in the Journal Files Folder as “BreakerCode.” An example of the PGN
format is shown in figure 5.

Figure 5: PGN Format example

[Event "Hastings 8081"]
[Site "?"]
[Date "1980.??.??"]
[Round "01"]
[White "Liberzon,Vladimir"]
[Black "Chandler,Murray"]
[Result "1-0"]

1. e4 d6 2. d4 Nf6 3. Nc3 g6 4. Nf3 Bg7 5. Be2 O-O 6. O-O Bg4 7. Be3 Nc6
8. Qd2 e5 9. d5 Ne7 10. Rad1 Bd7 11. Ne1 Ng4 12. Bxg4 Bxg4 13. f3 Bd7 14. f4
Bg4 15. Rb1 c6 16. fxe5 dxe5 17. Bc5 cxd5 18. Qg5 dxe4 19. Bxe7 Qd4+ 20. Kh1
f5 21. Bxf8 Rxf8 22. h3 Bf6 23. Qh6 Bh5 24. Rxf5 gxf5 25. Qxh5 Qf2 26. Rd1
e3 27. Nd5 Bd8 28. Nd3 Qg3 29. Qf3 Qxf3 30. gxf3 e4 31. Rg1+ Kh8 32. fxe4
fxe4 33. N3f4 Bh4 34. Rg4 Bf2 35. Kg2 Rf5 36. Ne7 1-0

EPD notation is “expanded position description” and is also a standard, although not
nearly as popular as the PGN notation. PGN is far more compressed as it does not record

a complete board description for each move as EPD does. EPD consists of a string for
each move in the game, a typical example of which is shown in figure 6.

Figure 6: EPD File Example

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - pm d4;
rnbqkbnr/pppppppp/8/8/3P4/8/PPP1PPPP/RNBQKBNR b KQkq d3 pm Nf6;
rnbqkb1r/pppppppp/5n2/8/3P4/8/PPP1PPPP/RNBQKBNR w KQkq - pm Nf3;
rnbqkb1r/pppppppp/5n2/8/3P4/5N2/PPP1PPPP/RNBQKB1R b KQkq - pm b6;
rnbqkb1r/p1pppppp/1p3n2/8/3P4/5N2/PPP1PPPP/RNBQKB1R w KQkq - pm g3;
rnbqkb1r/p1pppppp/1p3n2/8/3P4/5NP1/PPP1PP1P/RNBQKB1R b KQkq - pm Bb7;
rn1qkb1r/pbpppppp/1p3n2/8/3P4/5NP1/PPP1PP1P/RNBQKB1R w KQkq - pm c4;
rn1qkb1r/pbpppppp/1p3n2/8/2PP4/5NP1/PP2PP1P/RNBQKB1R b KQkq c3 pm Bxf3;
rn1qkb1r/p1pppppp/1p3n2/8/2PP4/5bP1/PP2PP1P/RNBQKB1R w KQkq - pm exf3;
rn1qkb1r/p1pppppp/1p3n2/8/2PP4/5PP1/PP3P1P/RNBQKB1R b KQkq - pm e6;

Where p is pawn, K is king, etc. Black is lowercase and white is uppercase. It is
obviously required to take the EPD files and convert them one more time, this time into
input vectors to be used by the training mode (in SNNS). Figure 7 demonstrates how the
EPD file is generated, by taking each row of the chess board and merely placing them
next to each other.

Figure 7: EPD Format and how it is generated from the board

The inputs into the neural network will be in the same order as the positions are arranged
for EPD format. Because the inputs to the network must be floating point values between

+1 and -1, I decide to assign values based on the traditional weights given to the pieces in
the game. Black will acquire + values, and white will acquire -. Figure 8 shows the
weights which will be assigned, based on the character present in the EPD file. A
program will be created shortly which will convert the EPD strings into floating point
vectors (training data sets).

Figure 8: Weights assigned for each piece

Piece EPD Char Weight
King k,K 1.0,-1.0

Queen q,Q 0.9,-0.9
Rook r,R 0.5,-0.5
Knight n,N 0.4,-0.4
Bishop b.B 0.3,-0.3
Pawn p,P 0.1,-0.1

Typically, the knight and the bishop are each given a weight of 3, but there is a need to
differentiate these pieces in the input vector, so I decide to assign the knight .4, slightly
more “valuable” than the bishop. However, these “values” may not actually have any
meaning to the NN once it is training, and seem more likely to serve as “placeholders”
than anything else.

The program will be created in C#, once again it is little more than a string parser. The
EPD file will be opened, and each character in the description string must be converted to
a numeric character according to figure 8. Two more important requirements must be
met:
-The program must also produce the “next move” for the player to make, and save only
BLACK TO MOVE positions.
-The output file must be compatible with SNNS (the data file format rules must be
followed).

The format requirements for the SNNS files may be seen in the file “SNNSPattern.pat”
located in the Journal Files Folder. Essentially, a header must specify how many inputs
and outputs we have, as well as the total number of patterns to be found in the file. It is
important to realize that eventually, the move must be replaced by some integer value for
the geographical representation of the game (which will be examined first). The strings
will eventually be classified based on the next move to be made (highlighted in figure 6)
so that the output may be specified as a zero or a one for training (0 means don’t make
the move, while 1 will ‘make it’). See the functional description for more details
regarding the geographical representation of the game.

For now, I will just keep the move to be made in algebraic chess notation. ?? Is this the
best way to do this?

10-28-04

ChessBase 9.0 has been ordered. I am waiting for it to arrive so I can complete work on
the data processing programs. For now I will be working on generating networks of
various dimensions and trying to train them with sample data. This is being done in order
to come up with an estimate of how long it will take to train the network with one data
file, and for one training cycle which may be an important consideration in the near
future.

I begin by using my network generator from figure 2 to create two networks. Each
network is made 50% connected with 64 inputs, 1 output. One network is 64 nodes wide
by 10 nodes deep, and the other is 128 nodes wide by 5 nodes deep. I have noticed a
problem with the network generator. The final layer of nodes must be fully connected to
the previous layer, otherwise a great deal of the network is useless, as it will never impact
the outputs. I need to modify the network generator code to fix this problem. I simply
modify the condition to connect a source node to a destination node by including the case
where the node number is greater than the number of hidden nodes + input nodes:

if ((randval<=connectivity)||(source>(inputlength+hiddenlength*(row-
1))-1)||(node>(hidden_nodes+inputlength)))

The new code may be seen in its entirety as NetGen3 in the journal files folder. Now all
nodes in the network should be ensured to impact the output in some way.

 I generate network5x128_041028.net and network10x64_041028.net which may be viewed
in the journal files folder.

The goal now is to use the same set of input vectors to train both networks in order to see
which network (with equal number of nodes) trains faster: the wide, shallow networks or
the narrow, deep network. Connectivity is 50% in both case, and node count is equal. The
only variable factor is the dimensions. Although the networks to be used in the real
training will be much larger than these, this experiment will offer some insight into how
the should be designed. More nodes will allow more training samples will be memorized.
However too many nodes may lead to memorization and not schema recognition and
generalization, which is obviously not desired. Therefore some middle ground will be
sought. The number of layers should have some relation to the degree of non-linearity the
network is able to “estimate,” but Dr. Malinowski feels 3 or 4 layers is the maximum that
would be useful in this respect. However, more layers will still “learn” so they are not
totally useless. Making the middle (hidden) layers wider could lead to more relationship
development (we allow more combinations of input data to be assembled). I would
predict the wider network will also train more quickly.

I need to create a training data set. At this point I need to decide if making up random
data would be the best solution, or if I should produce a simple program to convert
existing EPD files into floating point values. I decide to create the program as I will need
this functionality at some point when creating the data processing programs anyway. This

program steps through the EPD string one character at a time and appends the floating
point results to the end of a rich text box. The file may be saved as a .pat file for use in
SNNS. Figure 9 shows a screenshot of this program. The program is called EPD_FP and

complete source code is in EPD_FP_041028.cs , in the journal files folder. I create the

training file which can be seen in training_041028.pat in the journal files folder by using 5
of the EPD strings in figure 6 as samples.

Figure 9: EPD to FP Data Generator screenshot

The training file just created has 5 entries in it. I will begin by opening the 5x128 network
and training it with the data set.

I set the training mode to 100 cycles, 1 step. Learning constant is .2 and dmax is .1.
These values will be kept the same for the rest of the day unless otherwise noted. The
training process takes only 3 seconds (with the graphics window closed). I am surprised
how fast the training is, and was expecting it to take much longer. This result is very
promising…although this data is obviously highly simplified. I now do the same for the
10x64 network. There is no noticeable change in the learning speed, although I definitely
would have expected to see one between the two networks tested. It seems that learning
time is under 1 second per position when a file is run through 100 cycles. I keep the
10x64 network open and try 1000 cycles, step size 1. This takes 7 seconds to complete.
5000 cycles? 33 seconds. I decide to time the training for pattern sets of various sizes. A

new pattern set is created, called training2_041028.pat . It contains 10 patterns, with
outputs 1 or -1 (instead of 1 and 0 used in version 1). I will use SNNS to train 10 patterns
and down and record the time needed for 100, 500, 1000 and 5000 cycles. The results for
the trials are shown in figure 10.

Figure 10: Time (Seconds) needed for training in SNNS

 Cycles 100 500 1000 5000
Patterns

10 2 6 13 65
9 2 6 12 57
6 1 5 8 39
3 1 4 8 40

Figure 11: Plotted Data from Figure 10

Time vs Training Cycles

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

Training Cycles

Ti
m

e
(s

) 10 Patterns
9 Patterns
6 Patterns
3 Patterns

From figure 11, it seems that there is obviously a linear relationship between the number
of training cycles and the time needed to complete them. There is no surprise here. But
what about between the size of the training set and the time needed for a constant number
of training cycles? Figure 12 shows the time needed to train 5000 cycles of various
pattern file sizes.

Figure 12: Time needed to train 5000 cycles of various pattern file sizes

Time vs Pattern Count, 5000 Cycles

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

Pattern Count

Ti
m

e
(s

)

Series1

It seems that the pattern file size has a more non-linear impact on the training time
required. Although only 10 patterns were tested as a max, it seems obvious from this plot
that training time is going to be minimized by keeping a fairly small quantity of patterns
in the training files. It may make sense to create a batch file to do the training, which will
cycle through the data files. How long is training estimated to take?

For one network (geographical approach as described in the functional description), I will
make the following assumptions:

I have about 4 million games to work with. Half will be won by black and usable for
training. I assume each game will have perhaps 40 positions…based on:

“Chess is a fascinating game to both play and study from a psychological perspective. Its
complexity assures that the game will never be completely solved, like tic-tac-toe. Given
an average of 30 possible moves per turn, and an average game length of 40 moves (80
half-moves), we can see that the game tree is at least 3080 nodes big (on the order of

10120).” (Source: Mark Jeays). See A brief survey of psychological studies of chess.htm in
sources folder. Original URL: http://jeays.net/files/psychchess.htm.

Thus, 80,000,000 individual board positions should be trainable for each network. Using
a default of 100 cycles for a single training session, I would predict about 2 seconds
needed for every 10 positions learned based on figure 10. Therefore, approximately 4400
hours would be needed for training each network with all positions! Obviously this is not

going to take place. A sort routine will take place first, which will consider all board
positions, and categorize them based on the move black makes. Of course, in order to
make this calculation the total number of legal moves must be determined. This is M as
described in the functional description. To determine M I will consider a chess piece as
though it is made of a queen plus a knight, which would cover every possible move in the
game at any time. Now, the board is considered empty other than this piece. Therefore, if
this special piece is moved to all 64 spaces, we can record the total number of moves
which are possible. The number of highlighted squares (figure 13) is simply summed for
all 64 squares to get a total. Notice that figure 13 shows the top left corner position and
one of the 4 center positions under consideration.

Figure 13: Determining the total number of legal moves

I decide to do the calculation in Excel. This is shown in figure 14.

Figure 14: Excel move calculations…

1 1 1
 1 1 1
 1 1 1
 1 1 1
 1 1 1
 1 1 1 1 1
 1 1 1 1 1 24 25 26 26
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25 28 30 30
 1 1 1 1 1 26 30 34 34
 1 1 1 1 1 26 30 34 36
 1 1 1 26 30 34 36
 1 1 1 26 30 34 34
 1 1 1 25 28 30 30
 1 1 1 24 25 26 26
1 1 1

 1856

There are 1856 possible moves to be made at any given time. Thus, if I consider that
80,000,000 board positions exist in my training set, about 43100 positions would go into
each category, taking roughly 2.5 hours to train. This is only for the “yes” decisions. An
equal number of “no” cases would also have to be trained, meaning about 5 hours would
be needed to train each network (some will be more or less, as not all moves will have
equal complexity). One PC could train about 4 networks per day in a best case, which
means 100 PCs would take about 4.5 days to train everything. This is possible, but still
daunting. I would like to somehow reduce the problem to take 20 PCs 4 days to train.
This could be accomplished in one lab, and this block of time could realistically be
reserved over weekends, etc…

Although figure 11 seems to give a clear linear relationship between training time and
training cycles, as expected, the results shown in figure 12 were unexpected. It seems that
this relationship should have been linear, and perhaps it will appear as such if larger
training datasets were considered. I will improve the EPD_FP program to accept an entire
file of EPD strings, rather than just one at a time like it does now. I simply add an
external loop to the current string parser, which will go through lines of EPD strings one

by one. The new code may be viewed as EPD_FP2_041028.cs in the journal files folder.
The GUI is slightly modified as shown in figure 15.

Figure 15: Modified EPD_FP program interface to accept multiple EPD strings

10-30-04

I am curious to test the program in figure 15, so I create another training file, which ends

up having 137 games in it. The file may be seen as training137_041030.pat in the journal
files folder. I load the 10x64 network in SNNS and select the above file as the training
pattern set. I am simply curious to see how long 100 training cycles takes, and find 18

seconds are needed to complete the task. This is better than I was expecting, as
previously 10 samples needed 2 seconds. I will work on creating sets of larger pattern
counts shortly to see if I can obtain a linear result for the training times.

Currently, a more pressing matter is the Argonne Symposium where I will be presenting
this project and the current status. I will be presenting the slides found in
“Argonne_041030” in the journal files folder.

I create training files for 137, 332, 432, 730, 1127 and 1127 patterns which I will now use
to train the 10x64 network. The training times (in seconds) are shown in figure 16. 100
cycles, step size 1 is used for all training. The network is always re-initialized between
sets, and all learning parameters are kept at the default settings for this test.

Figure 16: Training time data

Patterns Time (s)
137 18
332 44
432 65
730 130

1127 219
1227 234

Figure 17: Plot of figure 16, showing nearly linear relationship

Training Time vs Pattern Count

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

Pattern Count

Ti
m

e
(s

)

Time (s)

After completing the training, it appears that training time is actually a linear function of
the pattern count, which was what the assumption wad to begin with. The discrepancy
seen with lower pattern count is likely due to loading time, reaction time in starting and

stopping the timer, etc. According to the latest results, it makes more sense to keep a
fairly large number of patterns in the pattern sets in order to reduce the time used in
loading and switching sets. To come up with the equation for this line, the intercept is
forced to 0 in Excel as training 0 patterns must take zero time. The equation is simply:

Time(s) = .186 (Pattern Count)

This equation will be used to approximate the set size needed when training the networks
for a specified amount of time, which will likely turn out to be the most practical
approach to the problem. A plot showing the trend line and the R^2 value is shown in
figure 17.

Figure 17: Figure 15+trend line and R^2 value

Training Time vs Pattern Count

y = 0.186x
R2 = 0.9819

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

Pattern Count

Ti
m

e
(s

)

Time (s)
Linear (Time (s))

The R^2 value is close enough to 1 to have a large degree of confidence in the equation
over the range of this data. Thus, each pattern will be considered to need .186 seconds to
train.

Training time is based on running Java SNNS on a 3.06 GHz P4 (Northwood core)
with hyperthreading and 1GB of DDR RAM. Hard disk is 5400 RPM and FSB runs at
533MHz. Training times are expected to vary considerably when SNNS is run on
different machines!

11-4-04

I have spent some time making final changes to the Argonne presentation and also adding
two new slides describing the mathematics behind the functional and geographical design

approaches which were outlined in detail in the functional description document. The
final version of the presentation is saved as “Argone_041104” in the journal files folder.

Yesterday, ChessBase 9.0 arrived. I installed in last night, along with the Mega database
and the Corr database. So far, it seems the database program works as advertised, and
will be suitable for creating data sets for the network modules to use in the learning stage.
The search function allows a specific move (maneuver) to be specified and it will return
all games containing the move in the database. Most likely, this feature will be the most
valuable in creating the individual datasets.

Today I will spend time working with ChessBase in order to understand the abilities of
the program and to come up with the best possible way to extract the data I need for
training. I hope to come up with a complete plan and also start the data gathering process
by the end of the day today.

I also want to keep in mind the following: ChessBase 9.0 ships with an endgame database
on 5 DVDs which contains all endgames for 6 or less pieces on the board. Thus, it is
possible to play these positions 100% perfectly by looking in the database. Do I want to
pursue integrating this database (which is going to substantially improve performance) or
do I only want to base endgame performance on the saved game data. It is not possible to
“extract” endgame positions and train them as the other games, so these seem to be the
only two answers to this question.

I begin by creating a new database, and copy the contents of the Mega database, Corr
database, and the games I gathered this summer (about 100,000) into the new database,
called FULLDATA. The games I gathered are in PGN format, and were downloaded
from the internet at dozens of sites offering saved chess games. Now that a complete
database of ALL data exists in one place, I should be able to process it more quickly and
not have to jump between numerous databases. The copying process takes about 45
minutes in all, which is less than I though it would. In all, the complete experimental
database now has 3,202,623 games stored, which I hope is enough to learn the game! I
now will perform some maintenance on this database:

I begin by removing all games in which the light side wins. Because I will be training the
dark side, I want data in which a win or a draw occurs, which would mean that dark had a
“winning” strategy developed throughout the game. It would be nearly impossible to go
through all of the 1-0 games (white wins) and find the “bad” move for black (which
would allow the rest of the game to be used in training). Thus, it is best to cut this data
(entire games) out of the training set. Doing so does not mean that “bad moves” (or non
optimal moves) will not exist in the data, as they certainly will exist, but it simply means
that such moves did not result in a loss to white and therefore COULD still be considered
a “proper” move to make when considering the board position at that time.

Operating with this large database is very time consuming…in fact deleting the games in
this fashion is not practical at all as it will take over 12 hours to complete…(By sorting
by result and then deleting)…

Due to some concern that the games collected over the summer do not confirm to the
same standard as those in ChessBase, I decide not to use them. I create a new DataBase,
this time with the games from the Mega database and the Corr database. It has as total of
3110269 games. I backup this database. Now, I search for games in which white wins (1-
0 result). Now I delete these games. Once this is done, I remove them from the database,
which only takes about 20 minutes to complete! Obviously, this is the way to remove
games in the future! Now I have a complete set of 1978263 games in which black wins or
draws. Further game removal is not required. Now, I decide to come up with a way to
actually get the datasets required for training. Each network will need its own dataset,
composed of both “yes” decisions and “no” decisions (the geographical, move based
approach is being considered first). ChessBase has a nice search function which will find
the specific moves requested, but it does require that a piece be specified.

I find out at this time that the database also contains a couple hundred text files of
tournament listings (results, etc.) which are “in the way” of the real data, so I decide to
remove them from the database just created. I delete them and repack the database again.
1902248 games are left after the latest repack.

I now will need to remove the annotations from the database, backup the database, and
finally get the datasets required for training. The de-annotation process is successful, and
I now make another backup of the final database. The current games are now ready for
“sorting” or classification by move.

I make copies of a chessboard on paper in order to keep track of the move sets I have
saved. Figure 18 shows a screenshot of how the search is configured.

Figure 18: ChessBase 9.0 search configuration (for moves)

This same search will be performed for each and every move in chess, the total number
which was calculated earlier to be 1856. After performing numerous saves, I find it takes
roughly 1 minute for each move. About 30 hours (of manual searching) will be needed to
collect all of the needed data. I install the database on an older P3 1.0 GHz system so I
can have two searches running at once. I am going to try to have all data collected by
next week, 4-11-04. Backups of all data will be put on DVDs, and then the remaining
preprocessing stages will be carried out.

11-11-04

Currently, data has been extracted from the database for all moves which have initial
positions A1,A2,A3,A4,A5,A6,A7,A8,B1,B2, and B3. The process has been taking much
longer than anticipated. The 2nd computer being used in processing failed on November
10, so it is no longer being used in data extraction.

Fortunately, a slightly improved technique can be used to speed up extraction on a single
PC. ChessBase allows a wildcard search for one of the positions (initial or final).
Therefore, it is possible to create databases which contain all moves from a specific

starting location. These databases are much smaller than the entire database, so searching
them takes much less time. It is possible to extract an entire move in less than one minute
from the smaller database. Figure 19 shows how the smaller databases are generated for
each initial position.

Figure 19: Making smaller (initial position specific) game databases

Today will be spent on data extraction, as it must be completed before any useful training
can be performed. It may be possible to look at only one move, but evaluating this
network as a standalone unit may be highly difficult, as we really need to evaluate
performance over the entire game.

I am backing up the extracted data after every 6 initial positions are evaluated. Zipping
the pgn files reduces the size by about 75%, which will save a great deal of space when
sending the data to the Gdansk.bradley.edu server. The backup does however take some
time to complete (45 minutes for 6 initial positions).

The laboratory directory has agreed to install Java on 4 machines in the lab which will be
a start for my training processes. With any luck this stage of the project should be ready
to proceed in under two weeks, as the lab director has also agreed to install the database
on another machine in lab so that data extraction may once again enjoy increased
efficiency.

I have some concern of the greatly varying game count which appears in the final game
collections. Some popular moves (b7 to b6 for example) have over 100,000 games!
Others, such as corner to opposite corner moves, have as few as 300. I expected from the
beginning that different numbers of games would be found for each move, but I did not
expect quite this much variation. I will need to come up with some idea on how to deal
with this, as it may now require that the networks be made of varying size as well. The
other possibility, which I currently prefer after having had some positive feedback at the
Argonne Symposium, is to proceed as follows:

Create all networks the same size, and large enough to deal with the largest of the
datasets (which is still based on estimation). Then, initialize all networks and only
provide perhaps 10% connectivity (they are still to be feed forward networks of common
layer size). The idea is that lower connectivity, as it trains faster, will provide the same
end result as simply having fewer nodes. By observing the output error plot (example
shown in figure 20), it is possible to determine when the maximum amount of training
has taken place, as the error graph should begin to rise again after having reached some
minimum value. In the cases of the datasets containing very large sample counts, I expect
this will happen far before all samples have been trained. Training with more samples is
expected to give a better network in the end, so I do not wish to simply stop “halfway
through” the data, for example. Because the overly trained network only has 10%
connectivity, I can easily add more connections through editing the .net file. New
connections will be assigned weights of zero. In doing this, the new connections have
absolutely no impact in the network at this point. However, the storage capacity of the
network will have been increased, and new patterns should now be “learned” through
manipulation of the old weights, but more importantly the newly added connections will
be utilized as well. Thus, the process is to be repeated until a given dataset has been
adequately trained.

Figure 20: Example of error graph to determine occurrence of “overtraining” in networks

11-18-04

 This week Dr. Malinowski and I have considered the possibility of employing
radial basis function networks (RBFNs) instead of the current approach which is using
hyperbolic tangent activation functions. The RBFN approach differs in three major ways
from the current approach.

-The activation function is typically the Gaussian distribution function or some similar
function, resembling a band pass filter as shown in figure 21.

Figure 21: Radial basis function network Gaussian activation function (Source:
Mathworks: Introduction to…located in “sources” folder).

-Each node creates an output by determining the “distance” (dot product) between the
input vector and the weight vector…this “distance” is passed as the argument into the
activation function, which means the maximum output exists when the two vectors are at
“right angles” to each other—producing a dot product of zero—in a geographical point of
view (the activation function is centered and maximum at zero). This is described in more

detail in Introduction Radial Basis Networks (Neural Network Toolbox).htm (located in sources
folder).

The structure of the RBFN node is shown in figure 22.

Figure 22: Radial basis function network node structure (Source: Mathworks:
Introduction to…located in “sources” folder).

-The network will only have 1 hidden layer of nonlinear elements. An input layer and a
linear output layer complete the network. Thus, a simple form of this network as
represented in SNNS is depicted in figure 23.

Figure 23: SNNS representation of a simple radial basis function network

RBFNs are particularly promising for this project as they are particularly good at
pattern classification problems if the problem can benefit from the fact that they make
LOCAL APPROXIMATIONS or LOCAL CLASSIFICATIONS in each node (this is
somewhat intuitive by the activation function’s resemblance to a band pass filter rather
than a low or high pass characteristic seen in typical feed forward activation functions).
They also perform function approximation. SNNS is able to work with RBFN networks,
so it should be possible to compare the performance of this design approach to that of the
original approach.

There are a few concerns with RBFNs. The problem in question has 64 elements present
in the training vectors, but there are an essentially infinite number of possible board
patterns. The strength of RBFN networks is that they can determine if an input vector
belongs to a specific pattern category (by measuring the distance from the input vector to
the weight vector). My fear is that the number of nodes required to adequately match
unknown board patterns to known patterns will be impractical (but this may also be the
case with the current approach). It also seems that RBFN networks only work when the
problem is governed by a continuous function: “It has been shown that, given a sufficient
number of hidden neurons, GRNNs [an RBFN] can approximate a continuous
function to an arbitrary accuracy.” (Mathworks). Does this problem satisfy the criteria? I
doubt this at this point, which may mean I want to look into probabilistic neural
networks…which are a subset of RBNs. This will be examined in the near future.

I initially felt the answer was no…but I have now convinced myself that chess is
continuous, at least until check-mate. Discontinuity within the game would mean certain
board positions would exist where a move can not be made legally. The only time this
happens in reality is when a check-mate occurs. Since no moves are defined for a board
position with check-mate, a plot of (the practically impossible) “move as a function of
board position” would end as soon as a check-mate occurred. In the worst case excluding
check-mate, a player will have a move, even though it may not be considered a good
move. This is not a discontinuity. Considering an individual network in the move based
geographical approach, each board position must yield an answer of either yes or no. If
the rules of chess are obeyed, a discontinuous decision output will never occur until
check-mate occurs. Even in this state, producing a “no” output is valid…and it would
therefore not be a discontinuity anymore (it is interesting that this approach leads to
this conclusion of a local continuity despite the global discontinuity).

At the very least, RBFNs are worth considering further. More research is required in the
next week to make the choice between pursuing RBFNs or “traditional” networks—
although at this point the best approach is to probably perform an experiment in training
one of the networks required in this project and comparing the performance of an RBFN
implementation and the feed forward design. Performance rating at this point would have
to concentrate on the memorization of the training data and the observed “error.” Also
important would be the observed training time.

In either case, data will be the same for training. Thus, I will use the remainder of the day
extracting datasets. ChessBase 9.0 has been installed on a machine in the lab (job248g) so
I will be able to work much faster in completing the task.

A note on “error”…most neural networks are evaluated based on some sort of mean
square error or average error. Normally, being +.2 or -.2 from the desired output is an
equal amount of “error.” This may not be such a valid way to look at this problem. First
of all, a single network output is essentially pointless without comparison to other
networks. Training will be done with yes or no, so ideally we would always want +1 and
-1 outputs. This is not going to happen, and we may see values anywhere in between. Is
+0.7 wrong when we want to see +1.0? This can not be determined at this point, and a
true evaluation of performance is not possible until all networks are trained and the
outputs are compared and move choices made. The best method to use in evaluating data
set memorization may be to write a simple program which will determine the number of
correct SIGNS (after all, all + values are yes and all – values are no, which is all we
desired to train). It may also be desired to know how much each correct sign varies from
the ideal value.??

This consideration of error leads to two other considerations:

-Do we really want to train the network with +1 and -1 only? Is there more meaning in
defining some sort of “relative move strength”? Two problems exist here. First of all,
formulas to calculate relative move strength accurately simply do not exist, even though
some versions of them are used in commercially available chess programs. No matter
how complex they are, they are always little more than artificial models of an impossibly
complex system. They are not going to be correct all of the time. Of course, actually
implementing this equation is not a trivial task either, as it would have to examine a full
game leading up to a certain board position for every board position in the training
set...that is if an equation could even be derived in the first place since many of the better
ones are proprietary information.

Most importantly however, this function would defeat the point of this project all along
by adding some sort of external “expert knowledge” when the original goal was to use
ANNs alone. Because of this fact alone, I will not pursue this further. However, I will
leave open the possibility of adding additional network inputs at a future time so long as
they are clearly visible on the board or in the game. Perhaps piece proximity data, last
move made, etc.

12-1-04

A schedule is produced which may or may not be followed exactly, but it is a rough
estimate of relative time needed for each task. This is the schedule which will be
presented in the proposal presentation on Thursday (figure 24). Any changes to this
timeline will be noted as they occur. The presentation also requires an equipment and
cost list, which is provided in list 1.

Figure 24: Proposed schedule

Date Goals and progress

May-04 Decide overall purpose of the project

Jun-04 to Jul-04 Work on neural network framework

Aug-04
Redefine project goals and choose to use SNNS instead of new
framework

Sep-04
Data processing functions designed and Chessbase 9.0 identified as
database

21 Oct-04
Network generator program is created and data processing defined
further

28 Oct-04 Order ChessBase 9.0 and evaluate training speeds

4 Nov-04
Argonne presentation and ChessBase 9.0 arrives, begin data
extraction.

11 Nov-04
Extract Data, begin investigating possible network sizes and
connectionisms

18 Nov-04 Extract Data, begin investigating radial basis function networks.

25 Nov-04 Extract Data, work on proposal

2 Dec-04 Extract Data, proposal presentation

9 - 16 Dec-04
Extract Data and begin to look at feed forward and radial basis
comparison

23 Dec-04 Extract Data and work on rule logic and ANN integration module

30 Dec-04 Process Data (PGN to EPD), journal paper?

6 Jan-04
Process Data (EPD to FP), create and initialize all networks, journal
paper?

13 Jan-04
Design a process for training and test on 4 or 5 machines, journal
Paper?

20 Jan to

24 March-04
Train on maximum number of PCs, evaluate performance/make
changes

31 Mar-04
Integrate remaining modules (final interface), test against human
players

7 Apr-04 Continue testing system, evaluate rating if possible

14 – 28 Apr-04 Begin preparing for final presentations and expo + finish loose ends

List 1: Current equipment and costs

• ChessBase 9.0 Database: $389.00
• DVDRs

– Roughly 20 will be needed to backup data: $20.00
• 160 GB external hard disk

– For local data storage: $150.00
– Personally purchased

• CPU Time
– Off-hour access to laboratories will be required for training on as

many PCs as possible
– A full estimate of requirements will be made shortly

Currently I do not foresee any modifications to this equipment list.

It seems that if any sort of spatial relationships are to be included in the training vectors,
there are a couple approaches which may be taken. One of the more obvious approaches
would be to consider the nearest threats to the piece involved in a specific move. Figure
25 demonstrates. The other approach would be to create a perimeter around the piece in
question, which will cover some set number of squares. Any enemy pieces in these
squares will be used as additional input into a network. Figure 26 demonstrates this.
Unfortunately, as is clear from figure 26, this approach does not allow all possible threats
to be taken into consideration, as the white knight in this example is not located within
the “perimeter” even though it is a threat to the black pawn. In order to always be
effective, the perimeter would have to include the entire board, which is essentially the
same as considering the nearest threats.

Figure 25: Utilizing knowledge of nearest threats in training vectors

Figure 26: Utilizing a perimeter check in training vectors

It is also possible that the training vectors themselves would not end up being composed
of floating point values at all, but instead binary representations would be used for each
piece. This is somewhat like the approach described in the paper “Neural Network
Learning In a Chess Endgame” located in the sources folder. The coding scheme used in
this paper in shown in figure 27. As can be seen, this coding is essentially a form of one-
hot binary.

Figure 27: Binary coding used in “Neural Network Learning In a Chess Endgame”

These ideas will be presented with the proposal as possible alternatives to the main
approach to be described (the geographical paradigm with floating point training vectors
and feed-forward, hyperbolic tangent activation functions).

The rest of the day is spent creating the presentation, which can be seen in the journal
files folder as “Proposal Presentation.”

12-4-04

I have some concerns with the data processing. At this point, over 70 hours have been
spent extracting data and it has only proceeded to about 50% of completion. There must
be a better way to do this. I decide to try a somewhat new approach. I will extract every
game in the database in which black wins or draws (1,978,263) in sets of 20,000 games.
Roughly 100 files will be created in PGN format. I was able to locate an improved PGN
to EPD converter application, called PGN2EPD.exe, downloaded from
http://remi.coulom.free.fr/ . This application does not seem to be prone to the same
crashing problem as PGNPosition.exe and may apparently process a list of 20,000 games
without problem, but I still need to know what it does to games with errors (I will look at
this shortly).

In any case, the idea is to write a batch file which will convert all games to EPD. Then,
the EPD_FP.exe application I have created will be improved significantly in the
following ways:

-Output decision based on move choice

-Text file load rather than copy/paste design

-Ability to work with file lists and move queues

Therefore, I will try to automate my floating point training vector creation program to
handle batch processing of moves. My goal is to have the program create all datasets
without supervision. I will need to produce a list of all moves for the program to parse
when initializing searches. The additional functions which will be needed:

-Load file/convert to string

-determine “yes/no” output based on searched move

-move “parser”—obtain the move from a text file, then determine numeric locations for
EPD string selection

-Method for determining “yes\no” decision ratio stored in the output. The program is
designed to locate “yes” choices based on EPD string comparison. However, “no”
choices to moves must also be placed in the output files. Four ways are considered:

1. Based on ratio selection (user input), wait until all “yes” patterns are found, then
store “no” choices at the end of the file (make 2nd pass over the EPD file).
Training will be set to use random pattern order.

2. Use a set ratio (50/50?) and randomly choose “no” patterns after each “yes”
pattern is located. The file contains many more “no” for each “yes,” so the ratio
may be changed. This approach would “mix” the patterns while they are being
created.

3. Save every pattern in every training set. The hard disk space needed would be
enormous…so this may not be possible, even though it would probably provide
the best data.

4. Only save “yes patterns” for each move. When training, use all other datasets to
train the “no” patterns. Another application would be needed to switch the output
value to “no” in these pattern sets as they would of course be stored with a “yes.”
Currently, I prefer this method as it would also use the least disk space and still
allow all possible patterns to exist in each dataset. The final conversion of “yes”
to “no” decisions in the training data would be done locally on a training machine.

The modifications to EPD_FP.exe are now started. The change is slightly more complex
than anticipated as many functions used are inherent to the textbox control objects only,
and new methods for handling text must be implemented in a string only version. The
results are worthwhile however, as speed enjoys an enormous increase. I also add a
progress meter so it is easy to evaluate how much time will be needed to complete a
processing task. Currently, the application shown in figure 28 is capable of loading files,
saving files, and deals entirely with strings. I am working now on the “yes\no” decision
making, which involves determining the piece at the initial move location, then checking
the next pattern’s final location to see if the following two conditions are met:

1. The initial location must be empty
2. The final location must have the piece identified in the last string

If these are met, then the output is “yes.” Otherwise, the output is “no.” Programming for
this functionality is near completion. The next stage is to add an automation “layer”
which will parse a move file, and work with numerous EPD files stored in a single folder.
I estimate the application will be ready within 5 hours of further work.

The source code thus far is seen in the journal files folder as “EPD_FP_041205.cs.”

Figure 28: Initial screenshot of the updated EPD_FP application

12-12-04

All games in the database are extracted and saved in PGN format. Sets of 10,000 games
are taken, by game ID numerical order. These are backed up, and then three batch files
are created to process the games into EPD strings. The batch files are located in the
journal files folder, as PGN_EPDBatch1, PGN_EPDBatch2, and PGN_EPDBatch3. The
entire process takes a couple of hours, but a full set of EPD strings has finally been
obtained! Unfortunately, they are mixed up.

The EPD_FP program is now a console application, and all functionality described above
has been implemented. The greatest problem is now execution speed. The source code up
to this point is stored as EPD_FPV2_041212.cs in the journal files folder. I meet with Dr.
Malinowski to find ways to make the code more efficient, and several improvements are
implemented. First, the string objects (in EPD_FPV2_041212.cs) are changed to
“stringbuilder” as an initial size can be specified. This prevents new strings objects from
being created from existing strings whenever a new value is assigned. It seems this
improvement does help, saving about 5 to 7 seconds for each set of 10,000 EPD strings (a
“.” is drawn every 10,000 processed EPD lines as a progress indicator). Each file contains
about 400,000 strings, and there are 198 EPD files in all. Thus, total time savings from
this improvement alone would be about 3.2 hours in all. It is also recommended that the
“getposition” function (bottom of EPD_FPV2_041212.cs) be modified to work only with
ASCII values, and not have the case statement currently implemented. This change is
made, and the new function is shown in figure 29.

Figure 29: Improved function to get a numeric position from a row and file

private static int getposition(char file, char row)
 {
 try
 {
 int position=0;
 int file_value=Convert.ToInt32(file)-97;
 int row_value=Convert.ToInt32(row)-48;

 position=((8-row_value)*8)+file_value;
 //MessageBox.Show(position.ToString());
 if ((position>63)||(position<0))
 {
 position=0;
 //Console.Write("!");
 }
 return position;
 }

 catch
 {
 MessageBox.Show("Error in row, file");
 return 0;
 }
 }

Once again, a speed increase is realized, of a couple seconds per 10,000 EPD lines. In all,
a few hours of processing time is saved by making this simple change. Although it is also
suggested to use the close method on the streamwriter objects, further research show that
“using” automatically implements the close method. It is therefore not required in this
application. Another suggested improvement is to create arrays of streamwriter objects so
that they may be kept open, which could eliminate the need to create them and also
prevent the program from having to search for a file each time it is requested for writing.
Clearly, major speed increases could be achieved by doing this, but here I decide not to
carry out the implementation as processing time has now been cut down to about 2 days.
It only has to be performed once, so there will be no recurrent time savings. Therefore, I
consider the EPD to FP application complete. However, a few notes about the details of
running it must be made:

1. The application is divided into 8 parts, which each process 25 EPD files (Except
the last one, which only does 23). This improves performance as the output files
get larger. This is also done because 24 GB of storage would be needed to save all
files as once. I have tried the process working directly with the USB hard disk,
but it is horrendously slow. It is better to simply move the data in stages.

2. The .exe files must be in the same directory as the 198 EPD files to run.
3. All outputs are set to “-1”. Another application will be developed shortly which

will be run in the training stage in order to convert the “-1.0” outputs to “+1.0” for
a given move. This application will also randomly choose patterns from all other
pattern sets and save everything in a training file for presentation to SNNS. The
whole purpose of this extra step is to save storage space. If all pattern sets were
saved in there entirety (and non-compressed), nearly 48 terabytes or storage
would be needed! Only 24 gigabytes are needed with the current method!

The final source code for EPD_FP, version 2 is located in the journal files folder as
EPD_FPV2_041213.cs. The 8 executable files are located in the programs folder,
under EPD_FPV2. Also, PGN2EPD is located in the programs folder.

12-14-04

Now, the data processing is started again! This time however, it does not have to be
supervised. All 8 EPD to FP executables are executed, an example of which is shown in
figure 30.

Figure 30: EPD_FPV2 console window

This process is continued in the background, and other work can be completed at the
same time. It will take a few days to finish this data conversion.

1-02-05

A training automation proposal was sent out around the last notebook entry. See
CPUMemo in the journal files folder.

It has once again proven to take longer to work with the data than was expected, but the
data has been fully processed at this time. The computer used for most of this data
processing has been overheating fairly often, and turns itself off midway in the
processing. It is required to restart in these cases to prevent the risk of a corrupted data
file which may not load in SNNS when the time comes to start training.

In the next couple of days, all of the data will be uploaded to the GDANSK server.
However, it is first required to remove any files which exist in the 8 data folders which do
not represent legal moves. It seems that several mistakes existed in the raw data, as over
3500 moves exist in each folder! There should only be about 1800 in all. Therefore, it is
required to write a program which will combine every initial position with every final
position on the board and determine if the two constitute a legal move. The program will

simply move the legal files into another folder, and the illegal moves will be deleted. This
program’s main legality check function will also serve as the legality check later on when
the playing interface is created.

In order to make the legality check function, I create a class in C# which will be called
“Position.” A position has an x coordinate and a y coordinate, and 64 Position objects
will be created in all. Figure 31 demonstrates the logic of the legality check.

Figure 31: Legality check logic

The program is created without incident, and is placed in each of the 8 directories
containing .PAT files. After running, the valid files are uploaded to GDANSK. The
source code for the program may be seen in the program files folder as LegalCheck.cs,
and the Position class is included as Position.cs. It is likely that the position class will be
used again shortly. The executable file is located in the Programs folder, as
LegalCheck.exe.

1-10-05

There is now some concern regarding formation of the training sets themselves.
Currently, all data has been sorted by move, but is stored in individual files. In order to
train, samples from each file must be combined in some ration of yes/no decisions and
the “yes” moves must have the output pattern changed to +1.0 from the current -1.0. A
program will be needed to automatically do this, which will somehow fit into the
proposed automated training process, which is described in figure 33.

The original idea for the learning automation was proposed in a memo sent on December
10, as seen under journal files “CPUMemo1.” It was revised and the final version came

out on December 13, 2004. It is available in the journal files folder as CPUMemo2. The
text is shown as Figure 32, for ease of reference (it was omitted earlier).

Figure 32: CPUMemo2, requesting CPU time in the computer labs

ECE Department
Bradley University
December 10, 2004

To: Chris Mattus
 Dr. Aleksander Malinowski
 Dr. Brian Huggins

From: Jack Sigan

Subject: CPU Time and Laboratory Access Requirements

For my senior project, “Complex Decision Making With Neural Networks: Learning Chess,”
extensive computation time will be required. 1858 neural networks will have to be trained, and
possibly multiple times. Initial predictions show that 100 3.06 GHz systems would need roughly 4
days to perform the proposed training in a maximum, worst case estimate (if 80,000,000 training
patterns were trained on each network). It is hoped to drastically cut the time requirements,
however it is clear at this point that many computers will be needed for the training stage.

The training procedure itself involves three components. The training environment runs in Java
and is called SNNS (Stuttgart Neural Network Simulator), and is freeware. The second
component is the training data which is currently being created. The third component is the
automation layer, which will consist of a client application which will communicate with a central
server. The client will download the training data and any configuration files needed to perform a
training session. SNNS will produce a unique data file for each neural network trained, and after
all training is complete the network files are to be harvested and integrated together in the final
system.

During second semester, I am requesting provisions to perform this training on the computers
belonging to the Department of Electrical and Computer Engineering at Bradley University. I am
proposing that SNNS be available on as many laboratory machines as possible (whether locally
installed or on a shared drive), preferably all Windows machines in Jobst 144, and Junior and
Senior laboratories. The training data is to be downloaded as needed by each client machine from
a single server. The initial space requirement per machine is estimated at roughly 5 GB of local
hard disk space in a worst case scenario. The server will need roughly 50 GB of dedicated
storage.

In order to perform training, it is proposed to take advantage of the time when the labs are closed,
specifically at night between the hours of 11:00 pm and 7:00 am. The process will possibly require
some human interaction to start (although ideally it will not), but will be fully automated after
initializing. In short, the requested provisions are:

1. SNNS is to be installed or accessible on as many Windows machines as possible
2. Login privileges (depending on the extent of automation possible) and access 24 hours

per day to all machines with SNNS
3. 5 GB hard disk space per machine
4. Installation of any automation/supporting programs required to perform training
5. Server space (already procured on “Gdansk”)

The level of automation will determine the extent of access required during off hours. Ideally, a
single task will be scheduled to run on the machines using Windows’ task scheduler. The
automation program, upon launch, will download a list of tasks from the server and will proceed to

download the data files needed. Training will be planned to minimize download times, and training
files will be stored locally once downloaded if they will be needed in the future. Once data is
downloaded, the client will perform a simple output pattern remapping on the files based on the
training assignment and then launch SNNS to start the training. “Key stuffing” will be required to
allow the client to navigate the interface of SNNS automatically, and is currently the greatest
technical challenge in getting the automation layer set up. If everything works as expected, the
training will run completely unsupervised, and will not require a user to be logged in.

The full training plan will be developed by the early weeks of the spring semester and will be
provided prior to starting training. Please contact me with any questions at 847-997-4402. It may
be mutually beneficial to discuss this issue further in person within the coming weeks.

Figure 33: Proposed training automation process

Before winter break, it was mentioned briefly that the training files must be composed of
both yes and no decisions. Because the .PAT files are currently saved with only ‘yes’
decisions, it would be required to mix these with some ‘no’ patterns in order to prevent
the network from reaching the incorrect, but simplest solution of always saying “yes” to
any pattern presented to it. Earlier, it was stated that training could take place with all
other files…unfortunately this does not seem to be a likely possibility. An assortment will
have to be chosen to represent a sample of the total training data, as far too much exists to
hope to train each network with everything. A method will have to be developed to solve
this problem before the automation can be realized.

Also, it will be required to develop an application which will download all of the data off
of the Gdank server and to a local client for training purposes.

It has been decided that training will utilize a scripting language for the majority of
keyboard interaction steps required to start training, particularly in SNNS. A third-party
scripting language is being utilized (found at http://home1.gte.net/res0mbu5/index.htm),
which can be found in the Programs folder as Script. The language itself is described in
the document SriptLanguageDescription found in the programs folder. Script.exe runs the
script files, and must be executed via the command line. A batch file is created to launch
a given script, and has the syntax:

script.exe AutoScript.scr

In order to launch SNNS, a script is created which will take the place of a person
interacting with the keyboard to load a given training file and network, and start the
training. Trial and error leads to a working version of the script, which is shown in figure
34. The script is executed by the batch file described above (a directory change is also
required).

Figure 34: Script to load SNNS and start the training process

start,StartSNNS.bat
delay,20
send,Error message,\s
delay,450
send,JavaNNS,%w
delay,50
send,JavaNNS,a
delay,10
send,JavaNNS,^c
delay,40
send,JavaNNS,\t
delay,5
send,JavaNNS,\t
delay,5
send,JavaNNS,\t
delay,5
send,JavaNNS,\t
delay,5
send, JavaNNS,\s
delay,5
send,JavaNNS,\t
delay,5
send,JavaNNS,\>
delay,5
send,JavaNNS,\>
delay,5
send,JavaNNS,\>
delay,5
send,JavaNNS,\t
delay,5
send,JavaNNS,\t
delay,5
send,JavaNNS,\s
delay,5
send,JavaNNS,\^
delay,5
send,JavaNNS,\s
delay,5
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t

delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\<
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\s
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\s
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\t
delay,1
send,JavaNNS,\s
delay,1800
send,JavaNNS,%w
delay,50
send,JavaNNS,a
delay,1
send,JavaNNS,%f
delay,1
send,JavaNNS,d

The script is provided in the programs folder as AutoScrpt.scr. It is editable through notepad. In
order to launch SNNS, the script calls another batch file, which is called StartSNNS (located in
the program files folder). This batch file contains:

java -jar javaNNS.jar open network5x128_041028.net Test.pat Test4.pat

Of course, the file names network5x128, test.pat, test4.pat will be replaced in the final version
with the real file names.

1-20-05

The focus today is to create the program which will create the training data sets from the .PAT
files stored on Gdansk. The training files themselves will be 5000 patterns long. I have read that
SNNS has problems loading extremely large pattern sets—hopefully 5000 is small enough. I
decide that the training files will be created by taking 2 patterns from each of the 1791 pattern
sets stored on Gdansk which do not match the “yes” move being trained. Therefore, 3582 patterns
will have the “no” output trained, leaving 1418 patterns for the “yes” output. The problem is that
all patterns must be chosen at random from within the individual .pat files. The overall process is
described in figure 35.

Figure 35: Training file creation program

I write a program, called “merger” which should perform this function. The legality check
function is used from the file moving program created last week to cycle through the list of legal
move files. These files are opened one at a time with streamreader, and 2 random numbers are
chosen which are less than the total number of patterns located within the given file.

Once the numbers are chosen, the program scrolls through lines until a counter reaches the lowest
number of the set. The counter increments when the line “# Input pattern” is read. Once the first
pattern is located, the pattern is read line by line and written to another test file using
streamwriter. When completed, the .pat file is scrolled through line by line until the counter
reaches the highest of the two random numbers. The counter does not reset after finding the first
pattern. In the case of the “yes” pattern file, the number list contains 1418 values, which must be
sorted prior to finding patterns. In the “yes” case, the program works in exactly the same fashion
as it does with 2 patterns, except 1418 are written to the training file, and the last line (output
line) is changed to 1.0 instead of -1.0.

The source code for the final program is located in the journal files folder as “mergerv3.cs.” The
compiled program is located in the program folder as “mergerV3.exe.” The program must be
executed from the command line, and the command has the syntax:

Mergerv3.exe [yes-move]

Where yes-move must take a pattern file name, in the format [start-end.pat]. The resulting
training file is stored in the same directory, and will have the name Train_start-end.pat. The
program runs as shown in figure 36.

Figure 36: Mergerv3.exe running

Everything is now in place to actually start the training (at least manually).

I decide to train a network to see if learning can take place before continuing. I use the 5x128
network which was previously created, and create 2 training sets: one for training and one for
verification.

From the training file creation, another concern comes up: the files are taking about 5 to 6
minutes to generate. I was hoping that all training data could possibly be created on a single
machine and downloaded to each client, but this will be impossible given the time which would
be required. Instead, it looks like the training files will have to be created on the client when
training is to actually take place, after the raw data (.pat files) have been downloaded from
Gdansk.

The two training sets now created are called: Train_0-1(Train).pat and Train_0-1(Verify).pat.
The network file is renamed TestNet.net. In SNNS, all 3 files are loaded. All three files may be
found in the journal files folder.

Before continuing, I need to create another simple program which will open the results files
created by SNNS and perform a simple analysis procedure on this data. SNNS produces results
files which have the format shown in figure 37.

Figure 37: Sample of results file format

SNNS result file V1.4-3D
generated at Thu Jan 20 15:23:00 2005

No. of patterns : 1604
No. of input units : 64
No. of output units : 1
startpattern : 1
endpattern : 1604
teaching output included
#1.1
1
1
#2.1
1
0.94571
#3.1
1
0.94571
#4.1
1
1
#5.1
1
-1

The program will simply locate a # symbol, and then read the next 2 lines. The first line is the
desired output while the last line is the actual output. The signs will be compared in the initial
version. Each time the signs do not match will be considered an error, and the total number of
errors will be returned along with the error percentage. Although very crude, this method will
allow a basic determination as to whether or not training is actually occurring. The program is
called ResultsChecker, and the source code may be found in the journal files folder as
ResultsCheck.cs. The executable is located in the programs folder. The program is capable of
running with a command line argument or by itself, in which case it will ask for the name of the
results file to verify.

Figure 38 shows the program execution with a command line argument.

In the future, it will likely be required to improve this application and add functionality to check
the amount of divergence from the ideal value, and possibly other still unknown characteristics.
More will be discussed as the need arises for improved results analysis.

The file loaded in figure 38 is called verify1. It does not have any meaning so it is not being
included in the journal files folder.

Figure 38: Results Check application running with a command line argument

Now that a method exits to actually analyze the training results and progress, the network
TestNet.net is initialized in SNNS, and then results files are created for both pattern sets
previously mentioned.

The results files indicate that the “train” data produces 52.2% error, and the verify set is
producing 56.82% error. This is without any training, so the result is expected to be about 50%,
since yes or no decisions would be evenly distributed in an untrained network. Now, the network
is trained with the “Train” file, for 100 cycles, using Resilient Propagation as the training
algorithm. It has been observed that this training algorithm produces the most rapid change in the
error plot, after trying all algorithms. The difference between Resilient Propagation and regular
BackProp must still be investigated. Default settings are used, but the “shuffle” option is chosen
for the training pattern order. After the training is completed, the results file is saved (with output
patterns) and the error is determined to be 8.5%. Clearly, learning has taken place. How well will
the verification set do? I load this is SNNS, and save the results file. The error is determined to be
13.2%. Although this is higher [possibly] than desired, it does at the very least serve as evidence
that the learning is indeed taking place. All four results files (pre and post training) are located in
the journal files folder, as Train_0-1(Train)_Results, Train_0-1(Verify)_Results, Train_0-
1(Train)_Results2, Train_0-1(Verify)_Results2.

Further questions certainly remain regarding the training procedure. These will be addressed in
the near future. The learning automation program must also be completed so that training may
begin on several computers at once.

1-25-05

Prior to considering training details any further, I will be working on the application which will
be used to download the raw data files off of Gdansk. The raw data files are the .pat files used by
the merger application to generate the final training files.

Gdansk has 8 folders which each contain enough data to generate a training file. In other words,
every one of the 8 folders contains different versions of the same files. I decide that the training
files should be as “random” as possible, so the downloader application will construct a full set of
files by downloading from the 8 directories randomly. Once all 1792 files are downloaded, the
application will exit. Essentially, this program is exactly the same as the program used in the file
moving application made earlier. The only difference is that the line which moved the file is now
changed to create a WebClient object and then call the DownloadFile() method. The source code
is in the journal files folder as Downloader_050125.cs. The executable file is located in the
programs folder (as DataDownloader.exe).

The question which now comes up is whether or not the training data is being chosen in a
“proper” manner. The concern is that the “no” positions may not provide an effective sample to
use in training. The problem arises for the simple fact that all ‘yes’ decisions have a common
trait: There is a piece present at the start position. The ‘no’ positions have a majority of this same
start position as empty. I am concerned that the networks may make the incorrect association that
a piece being present automatically would translate to a “yes” move. It may be required to also
train the networks with a higher ratio of “filled” start position ‘no’ patterns in order to achieve a
quality generalization. After talking to Dr. Malinowski, we have agreed this is indeed the safest
solution. I will now be modifying the MergerV3 application to create a pattern mixture. The goal
will be a 50/50 mix of filled and unfilled positions, although this is only a guess. It may prove
necessary to adjust this number later on once training actally begins.

After further consideration, I decide to create the training files by looking at the initial position in
the file name. If this matches the “yes” move, 100 patterns will be copied from the file to a
training file. The .pat file which contains the “yes” move will have 1000 patterns copied. The
total number of patterns in the training file will be around 5000, but will vary based on the
number of files which share the initial position. This decision was made mainly for the speed
advantage, and for the fact that most occupied initial positions show up in the files which share
the same start position. When looking at files with a mismatched start position, it seems the
desired square is occupied very infrequently, perhaps as low as 2% of all patterns, which is based
on examination of a few .pat files. I feel this infrequent occurrence justifies omitting the files
from the training set creation. By only opening the pattern files with the same initial position and
copying a relatively large number of patterns from them, the execution time of the program is
dramatically reduced. While it is true that this is not a totally ideal training set, I do feel enough
files are going to be involved in the training set creation to produce a fairly representative
training set.

1-27-05

The new version of the Merger program is in the programs folder as Mergerv3(final).exe. The
source code may be seen in the journal files folder as “Mergerv3(final).cs”. I create several

datasets and open them with SNNS to ensure that the files being created do not have errors in
them. All tests are completed successfully.

Now, another speed improvement becomes possible for the training program. Because the
training files are based only on the .pat files which share the same starting position as the “yes”
move, it is possible to dramatically reduce the amount of data required for training. In fact, only
the pattern files with the particular starting position in their name will be required. I will now
work on a schedule for training. I will assume 14 PCs will be available in Jobst room 248. In
addition to this, I will provide 2, Dan Leach will provide 2, and Dr. Malinowski will provide 2 as
well. This gives 20 PCs in all which can be used in training. To start, I will set the schedule up so
that each PC will create all training files of a given starting position. Thus, 64 sets of training
exist to be divided out between PCs.

Currently, the list of computers names available are:

Job248a
Job248b
Job248c
Job248d
Job248e
Job248f
Job248g
Job248h
Job248i
Job248j
Job248k
Job248l
Job248m
Job248n
ECS732g
?1
?2
?3
?4
?5

There are 5 PCS which have unknown names at this time. Figure 39 shows the training schedule.
Modifications will be made if the number of available PCs changes. Training will be done in
rounds. Each round will train each network with one set of training data. In all likelihood, it will
be required to run several rounds of training to achieve quality playing performance. Each round
of training will have an essentially random set of training data (as described with the merger
program).

Figure 39: Training schedule (showing starting position in each set)

job248a job248b job248c job248d job248e job248f job248g

0 3 6 9 12 15 18
1 4 7 10 13 16 19
2 5 8 11 14 17 20

job248h job248i job248j job248k job248l job248m job248n
21 24 27 30 33 36 39
22 25 28 31 34 37 40
23 26 29 32 35 38 41

ECS732g ?1 ?2 ?3 ?4 ?5

42 49 52 55 58 61
43 50 53 56 59 62
44 51 54 57 60 63
45
46
47
48

I decide to make task lists for each PC, which will have a list of the training tasks. The tasks will
not be date-dependent, but will instead be executed in sequence as quickly as possible. After one
training task is complete, the next task will start after it is verified that enough time is available.
When a task is complete, the task will be placed in a local data file which will hold all completed
tasks. This file will be emailed to me each day so I can track the training progress. I will also
have the completed network files mailed to me. The newest version of the automation process is
shown in figure 40.

I have discussed a potential problem with Nick Schmidt this morning. Yesterday I realized
that all PCs will need the .NET framework installed in order to run this automation process.
The PCs in the lab do not currently have .NET installed, but it appears that it is possible to install
in fairly quickly with a “bootstrap” version. It may also be possible to install it on an image and
re-image the PCs in the lab in the morning or on a weekend. Nick does not feel there will be any
problem with this. I will be talking to Mr. Mattus, Nick Schmidt and Dr. Malinowski later today
to make arrangements for setting up the training programs.

Figure 40: Automation process flowchart

Start

Download updates

Obtain data files

Make network files

Make scripts

Make batch files

Time
available?

End

Train network Email network

Email the
completed task list

Talking with Mr. Mattus proved somewhat disastrous as he refuses to install the .NET
framework. Although he has agreed to allow the installation of the various training programs,
most of the software is useless without .NET. Before training can begin, I must consider my
options for making the modifications to the training process.

1. Programs can be rewritten in C++ so they will run on the lab PCs. Data can be processed
on the server to produce training files so raw data is not manipulated on the clients. The
training program will only launch SNNS, send files, and generate training scripts.

2. The C#.NET approach can still be used, but the lab PCs will not be used. Training will be
performed by volunteers on their own PCs.

3. Some combination of the two can be used.

Currently, I am leaning strongly towards option 2. This would allow far greater flexibility in
training software, and would allow training to be started more rapidly. Of course, it would be best
to use the lab PCs and the volunteer’s PCs. However, the lab PCs will require that software be
rewritten—there does not seem to be a way around this fact.

2-1-05

At this point, I am working to complete the software in C#. Several people have offered to run
this software on their personal PCs, which will have several benefits. Mainly, screensavers and
power save features can be disabled. After running the SNNS automation on the lab PCs, I find it
does not reliably start and complete the tasks, although I am not sure why. All programs start, but
the script does not seem to activate the training process. Most of the “volunteer PCs” are newer
and “faster” than the lab PCs as well, which may lead to a slight improvement in training speed.

If time permits and training would benefit a great deal, I will probably modify the software by
rewriting in C++ once training has started.

The updater application is now complete, which operates according to the flowchart seen in
figure 41. This application is the first to run in the automation process, and will simply write over
any existing applications which are to be updated (a list is downloaded). All updated applications
will be stored on the Gdansk server. The update application is called Updater.exe and is found in
the programs folder, and the source code is named Updater.cs and is found in the journal files
folder.

Figure 41: Update process flow chart

Start

Get update list off
of Gdasnk

Success? Read list

More lines?

Read a line and
Download file

End

Yes

Yes

Now, the next requirement is to create the process which will determine the data files to
download in order to create the training files. The training scripts will also need to be created.

Before continuing with this, I look into the various methods which could be used to transfer the
completed network files back to me. I rule out e-mail for the reason that an SMTP server will
have to be specified on a system not running Windows 2000 or XP professional. I decide to use
FTP based on the extremely simple process—I will probably use a script and use command line
FTP to send the files.

The question which remains is what FTP server to use. Typsoft.exe is a good FTP server which I
could run on my PC, and provide write access to one folder only for all clients. Another option is
to use Gdansk, and provide write access to only one folder as well. There may be some security
issues with this, so I will have to talk to Dr. Malinowski. The other solution is to use a third party
hosting service, and pay about $3.00 per month. This may be the best solution, as it eliminates the
security risk to my personal computer and Gdansk, but does not lose any functionality. I am also
assured it will be online at all times.

I will be looking into the best solution to this problem some more, after getting advice from Dr.
Malinowski and other students. My reservation with using Typsoft.exe is twofold: I do not want
to grant access to my personal computer and open it up for security issues, and I also do not want
networking services calling me about running a server on the campus network.

I need to solve this problem first, because I will need to somehow assign computer IDs which
will determine the training schedule assigned to each client. My idea is that each client, when
they start to run, will generate a random number and send it to the server. This number will serve
as their unique ID. Each client will download training schedules with file names matching this
number. Thus, each client will have a “configuration file.” The other option is to make unique
copies of installation CDs which will have a custom configuration file already built in with a
training schedule.

For the time being, I create two files. One of them is called “configuration.dat.” This file will
contain a list of networks which will be trained. The other file is called “finished.dat,” which will
contain the names of networks already trained. As training proceeds, the automation software will
check to see if the network name exists in the finished list. If it does not, then a new network will
be created, trained, and sent via ftp back to me. After training is complete, the network name is
added to the finished list.

I now modify the network generator program so it will be easily automated. It may eventually be
converted to a command line application, but for now it will stay as the GUI application. The
changes are seen in figure 42. The main change is that all parameters are now specified, and the
tab order of the bottom three buttons was changed to 0,1,2. I also added the quit button, so exiting
the program is easily automated. The new source code is in the journal files folder as netgen2.cs,
and the application is found in the programs folder as NetGen2.exe.

Figure 42: Modifications to the network generator program

2-3-05

The overall automation “shell” will be created today. With any luck, it will be working by the end
of the day. I am pretty sure all components required are now ready, so the automation process
described in Figure 40 should be attainable.

The shell will first check for the next network to generate. The name is found by looking in the
“finished.dat” file for the next entry in the “configuration.dat” file. If it is not found, then a
network is created and the training process is started.

After a network is found, the shell will create all of the training scripts and batch files. This is
simply done by using streamwriter to overwrite the existing files, which will of course contain
paths and file references to the network file mention above. The scripts and batch files which
need to be created at each training round include:

StartSNNS.bat:
cd C:\Documents and Settings\Owner\My Documents\EE\SNNS
java -jar javaNNS.jar open network5x128_041028.net Test.pat Test4.pat

FTP.scr:
start,ftpcmd.exe
delay,20
send,*ftpcmd*,open 65.13.58.239\n

send,*ftpcmd*,jsigan\n
send,*ftpcmd*,*******\n
sned,*ftpcmd*,put xxxxx

RenameNet.bat:
Rename [test1.net] [test2.net]

DataDownload.bat:
DataDownloader.exe [network name]

merge.bat:
mergerv3.exe [network name]

--

Basically, each file is created to match the name of the network to be trained.

The code for Autoshell is found in the journal files folder as Autoshell.cs. The application is
found in the programs folder. All that remains is to link everything together one last time and
create a program to update the finished files list after a successful network transmission back to
the server.

2-10-05

I now am working on putting a distribution together, which will be easy to install for all users. I
will also include the java run-time environment in case a user does not have it installed. I have
decided to make the learning “program” available for download, so I will hopefully find several
users willing to install it. I have a couple of remaining concerns:

1. How will the user get the list of files to train?
2. How to safeguard my password to the upload server?
3. How will the process start again once it is complete?

Luckily, my Updater application will allow me to play with #1 after the release. The first users to
agree to installation will get personal training lists. If enough users agree to install it, I will
release a “patch” which will generate the training lists automatically.

I modify the paths within all of the .bat files to work off of the hard disk. However, when I do
this, the SNNS-starting application (and the automation script) seem to be out of sync. SNNS
starts, but the script does not perform correctly. Instead of going through the prescribed sequence
of keystrokes, the program goes out of control, and unpredictable keystrokes seem to be returned!
Obviously, training does not start correctly. It takes me some time to find the problem, but I
realize that within the AutoShell.exe application, I am writing the startSNNS.bat file with a path
specified as “C:/autolearnrelease/” which is resulting in an error. I change it to
“C:\autolearnrelease\” and now everything seems to work again! The auto-learning package is

now included with the rest of the journal in the “autolearnrelease1” folder. Significant
modifications will be given new folders.

It is decided that Hassan’s server will no longer be utilized in the learning process as it is not
reliable enough. Gdansk will have a folder “uploads” which will work as anonymous ftp. This
also solves the password protection concern (I may also delete the ftp script when it is finished).

I now create the instructions file for the training software, as seen below.

Instructions for Chess Learning Automation Software

STOP! Before continuing, please ensure that you have the .NET Framework installed on your
PC. If you do not, please download and install this from:

http://msdn.microsoft.com/netframework/downloads/framework1_1/

1) Go to: http://cegt201.bradley.edu/projects/proj2005/nnchess/.
2) Click on “Download Automated Training Client”
3) Download and Un-zip this file. Do not change anything!
4) Place the folder under the C drive (root). It must go here or it will not work correctly. The

folder’s path should be C:\autolearnrelease\.
5) Learning requires several programs and scripts to run. Many of these require internet

access. If you have a firewall or application/script blocking software, please double click
the batch file which is called “StartTraining.bat.” Make sure you allow access for each
program which runs. Set the “remember box” if relevant (as in ZoneAlarm’s case). The
.bat file you need to run is located within the autotrainrelease folder.

6) Please ensure your computer is “unlocked” and will stay unlocked. It is also required to
disable any screensavers. Please turn off your monitor instead. The screensaver currently
confuses the automation script, but this problem may be solved in a future upgrade.

7) Create a new task to run in Windows Task Scheduler. The file to run is
“StartTraining.bat.” This file is located in the folder which you just dragged to the C
drive. Any schedule is fine, but more time is better!

If you need to quit the training process, simply close any open windows. Training will resume
from where you stopped it. Please report any problems you have! Call me anytime at 847-997-
4402 or e-mail jsigan@gmail.com. Thank you for your participation.

The release is almost ready. I need to simply discuss with Dr. Malinowski how the new server
set-up will be implemented. A password should no longer be required. The folder contents should
also be accessible via http. This will allow the easiest download process later on. A write only
folder is created on Gdansk (uploads) which will store all of the trained networks. I will be
modifying the FTP script shortly to deal with this change.

The complete autolearning package is now burned to a CD and is installed on a new PC. The
computer is an Athlon 64 3500+ with 1GB of PC3200 RAM and a 250GB SATA hard disk. I
expect the training speed on this system to be significantly faster than the older P4 3.06 GHz
system, and am hoping it can process a network in around 5 minutes. I modify the
“configuration.dat” file to contain every network with a name starting in “0.” The finished.dat file
is emptied. When training starts, I do not notice any errors. SNNS loads in about 3 seconds, while
this same task takes about 20 on the older PC. All datasets are downloaded without incident, and
the training file is assembled for 0-1.pat without any problems. I have set the training time to
3000 (which is 5 minutes) in the automation script. The first network trains and is uploaded to the
server, and then 0-2 starts the process. Again, no problems are encountered. However, when the
third network starts training, there is a problem with the save routine! I notice that the automation
script does not press the “ok” button as seen in figure 43.

Figure 43: Save dialogue box, showing “ok” button which is not being activated

The problem is clearly timing related from my other experiences with this scripting language, so I
modify the portion of the script which interacts with the save dialogue. The changes I make are
shown in figure 44.

Figure 44: Changes to the script which interacts with the save dialogue box

Delays have been placed between each “keystroke” to allow SNNS time to update itself. After
this change, I do not notice any further problems. I let the training run into the night.

2-11-05

I wake up and find all networks starting with position 0 (top left of board) trained! Everything is
up on the server as well. There is however a slight problem. My screen is showing an error and is
asking me to debug. I can see the cause right away. The end of the configuration file was reached,

and the training file generator has tried to create a pattern for a “null” network. It has absolutely
no impact on the training, but I will probably get some phone calls about it later so I will try to
fix it before releasing the autolearning software to the “public.” For now it is added to the list of
bugs.

The severe bug that I notice is that the networks are being uploaded, but they all have 0 weights!
I am not sure why this is happening, but I come across the cause while experimenting with
SNNS. I notice that the ‘save’ dialogue is different if I wait for the training to complete before
saving. Currently, the network is being saved while training is still taking place (a time limit is
used to control the amount of training). The difference is that the dialogue after complete training
has two check boxes: one for the log file and one for the network. The previous dialogue did not
include a provision for the network.

I make a change to the autolearn script, which now controls training time based on the number of
epochs (pattern presentations). The change is shown in figure 45.

Figure 45: Changes to the AutoScript file, which add a ‘for’ loop

set,counter,50

:Startpoint
send,JavaNNS,\s
delay,150
dec,counter
onzero,counter,done
goto,Startpoint
:done

By changing the set training time to a set number of training epochs, I am ensuring that the
network is completely trained prior to saving. SNNS will work better with this method. Currently
I am allowing 15 seconds for each epoch. I feel this should be more than enough on any PC
which will be used in training. If not, there will be problems with synchronization, and
corrections will have to be made at this time.

Testing verifies that the software now works as expected.

2-13-04

After running the training application for around 48 hours, I have decided it is probably stable
enough to begin to perform actual training—and distribute to volunteers willing to assist with this
project. I have decided to create the configuration files manually for now, as only a handful of
PCs will actually be involved. I have found that training a network takes exactly 16:25
(minutes:seconds) plus around 1:30 for saving, initialization and ftp commands. Thus, 18 minutes
are required for each network (with feedforward , partially connected architecture using RPROP
algorithm). More details of the initial network topology will follow shortly. To train all 1792

networks (the most recent and final count of legal moves), 538 CPU hours are needed (on an
Athlon64 3500+ w 1GB RAM). One PC running 24/7 could complete the task in less than 23
days. I have one PC available 24 hours per day, plus another which is available for 12 hours per
day. 15 days would be required with just these 2 PCs. Shom Bandophadaya has also installed the
training program and will run it for 8 hours per day. This brings the training time down to 12
days. I would like to reduce training time to 7 days, which means I need to find 33 CPU hours per
day to add to my existing 44. My goal is to simply locate three people able to run the program for
11 hours+ per day. Given that only 6 machines will be involved in training, it makes sense to
supply customized training schedules—these are easy to make by copying and pasting from the
list of all possible legal moves, which I already have from when the pattern files were moved to a
new directory.

At the request of Shom, the training program has been modified again to display a timer and an
easy “quit” button. One of the bugs in the original release of the AutoTrain software was that
each cmd window had to be closed separately, and then the Task Manager had to be used to kill
the script.exe process. The timer application fixes this problem. When the quit button is pressed,
the application identifies all running processes with the names “cmd” or “script.” It then kills the
processes before exiting itself. The timer is simply a “timespan” object which counts down so the
user is able to see how much time remains in a particular training task.

2-15-04

I have realized that I included an older version of the ftp script in the last notebook sent to Dr.
Malinowski. I have been trying to destroy any copies of this as it contains login information for
read and write access to the server. He has been notified and all other copies have been destroyed.

2-17-05

A screenshot of the timer modification to the AutoLearn process is shown in figure 46.
The timer will display the countdown so the user may decide whether to continue training or stop
training—which is useful if they need to go somewhere with a laptop, etc…

Figure 46: Timer addition in the AutoLearn software

The source code for this timer (and the new quit button) is located in the journal files folder as
timer.cs and the application is located in the programs folder as LearnTimer.exe.

Dr. Malinowski has brought up the potential problem with multiple logins to the server.
Currently, only two are allowed. With several clients, there is some chance that access could be
denied. I will probably want to build in some safeguards to ensure that all data is uploaded
correctly if access is denied the first time. For now, it is decided that the number of total logins
allowed will be changed to 10.

I have been thinking more about the customized training schedules—it may be better to modify
the shell program to choose a random training file and then check to see if it already exists on the
server. If not, it will be trained. If it does exist, it will be skipped. The configuration file would no
longer be needed. I will look into this shortly, but most likely this will be a version 2 feature
(which will train the next generation of networks).

Right now, I will be fixing two problems. First, the ftp script must be deleted when a user quits
the application. I add this functionality by:

System.IO.File.Delete("ftp.scr");
Application.Exit();

This is simply placed within the current exit routine inside the LearnTimer application. Next, I fix
the trouble mentioned previously that the debugger opens when the configuration file is
completely read/finished. I add the same code which executes by pressing the quit button (in the
AutoTimer) to the ‘if’ statement where the “file complete” condition is detected inside the

AutoShell application. Now, when the end of the file is reached, all of the training software will
be shut down instead of attempting to train a “COMPLETE” network.

A complete version of the most up-to-date training software is located in the
autolearnreleaseV1.1 folder. This version is being distributed to Dr. Malinowski, Dan Leach, and
Shom B. The training assignments are included on the CDs as:

Me: Start positions 0-31 (60% complete)
Dan: Start positions 32-47
Shom: Start positions 48-55
Dr. Malinowski: Start positions 56-63

Depending on how long it takes each part to train, re-assignments may be made in some cases.

