
10-17-04

Work has concentrated on developing the program needed to generate the networks for SNNS. Because the speed of SNNS' graphical network display is extremely slow as the network gets large, I have decided it is not practical to attempt designing the networks within SNNS. Thus the C# program is being developed. To begin, I am writing the code to simply create a feed forward network of any number of layers, with a specific width and number of inputs ands outputs...following the structure of the SNNS network file format. The interface is shown as figure 1.

Figure 1: Network Generator Interface

Debugging has gone fairly smoothly, the main issue being that having a network with layers more than about 50 nodes tends to become extremely slow. The problem was using the append member of the richTextBox class to add to the output file. I have found it is better to create a string for each new line and then insert the string at one time into the textbox. The code for the program up to this point is viewable as "NetGen1" in the Journal Files folder. At this point, the next step is to implement the connectivity feature. Currently, the program produces an output file which is a fully connected feed forward network.

10-21-04

I will work today on finishing up the network generator for feed forward networks and also perfect the process to convert PGN games file into EPD, and then into arrays which may be used in SNNS training and verification files. I will explain the files when I get to this point, but for now want to finish the program shown first in figure 1.

After some difficulty in getting the Random class to function correctly, I am able to produce an acceptable output file. A screen shot of the new application is shown in figure 2. The output file format is based on "test.net" located in the Journal Files folder. I expect to see nodes in the output file with varying source nodes recorded...this is actually observed very well in figure 2. A fully connected network would have matching nodes for any given layer.

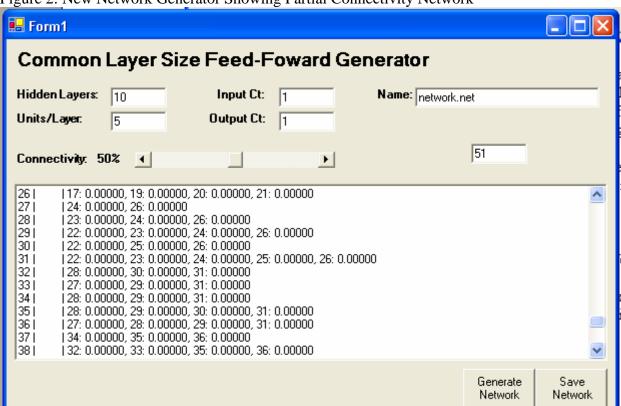
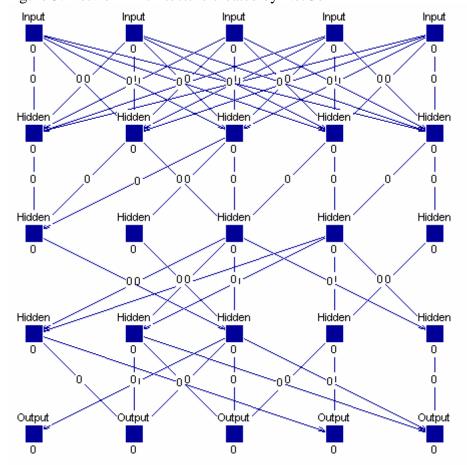
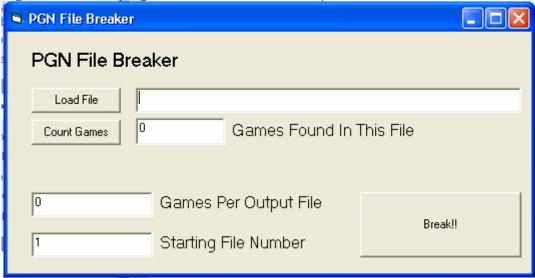


Figure 2: New Network Generator Showing Partial Connectivity Network

It is clear in the textbox in figure 2 that the nodes are only partially connected at this time. The key to getting Random to work is to declare a new object of type random at the top of the network generation routine, and not inside a loop. Each time the new class is created, the seed is apparently the same, so we end up getting duplicate nodes, which is obviously not desired. The new version of the code may be seen as "NetGen2" in the Journal Files folder.

Figure 3 shows the types of networks this application is designed to create. It is a screen capture from SNNS. It must be noted that the first hidden layer is ALWAYS fully connected to the input layer, but all following layers are partially connected in some random configuration.




Figure 3: Network Architecture created by NetGen

With the network generator now fully functional, it is time to start considering the data file processing. The dataset I will be using is capable of producing PGN (portable game notation) files, which are algebraic, standardized Chess game recordings. ChessBase 9.0 (NEED TO ORDER!!) should be able to provide a few million games for use in this project, so the amount of data is obviously massive. An efficient data processing method is therefore required. A document describing the PGN standard is provided in the Sources folder (Pgn.pdf).

I decide to use a program I find on www.pgn.freeservers.com in order to convert the PGN files to EPD files. This application is called PGNposition and is a command line utility. The PGN file must be specified, and an output EPD file must be supplied at run time. Unfortunately, the utility is very sensitive to errors in the PGN files...If it comes across one, it seems to crash. Rather than writing a new conversion utility (not very easy), I decide to instead write a program which will break the larger PGN database files down

into smaller files to be processed one at a time. This way, an error in one PGN game will not cause a great deal of failed conversions, and can possibly be found and easily corrected. This program is called "Breaker" and a screenshot may be seen in figure 4.

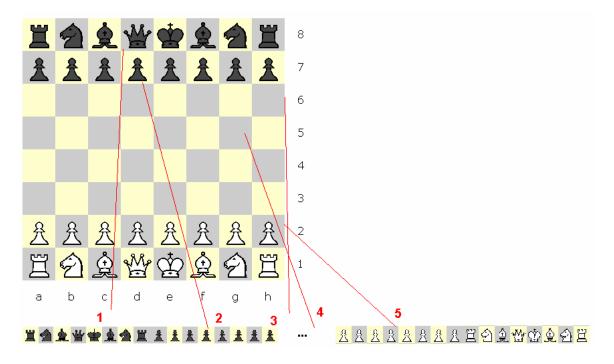
Figure 4: Breaker program screen shot...used to split PGN files

The PGN Breaker program is written in Visual Basic 6.0, and is simply a text parser. The code is shown in the Journal Files Folder as "BreakerCode." An example of the PGN format is shown in figure 5.

Figure 5: PGN Format example

```
[Event "Hastings 8081"]
[Site "?"]
[Date "1980.??.??"]
[Round "01"]
[White "Liberzon, Vladimir"]
[Black "Chandler, Murray"]
[Result "1-0"]
```

1. e4 d6 2. d4 Nf6 3. Nc3 g6 4. Nf3 Bg7 5. Be2 O-O 6. O-O Bg4 7. Be3 Nc6 8. Qd2 e5 9. d5 Ne7 10. Rad1 Bd7 11. Ne1 Ng4 12. Bxg4 Bxg4 13. f3 Bd7 14. f4 Bg4 15. Rb1 c6 16. fxe5 dxe5 17. Bc5 cxd5 18. Qg5 dxe4 19. Bxe7 Qd4+ 20. Kh1 f5 21. Bxf8 Rxf8 22. h3 Bf6 23. Qh6 Bh5 24. Rxf5 gxf5 25. Qxh5 Qf2 26. Rd1 e3 27. Nd5 Bd8 28. Nd3 Qg3 29. Qf3 Qxf3 30. gxf3 e4 31. Rg1+ Kh8 32. fxe4 fxe4 33. N3f4 Bh4 34. Rg4 Bf2 35. Kg2 Rf5 36. Ne7 1-0


EPD notation is "expanded position description" and is also a standard, although not nearly as popular as the PGN notation. PGN is far more compressed as it does not record

a complete board description for each move as EPD does. EPD consists of a string for each move in the game, a typical example of which is shown in figure 6.

Figure 6: EPD File Example

Where p is pawn, K is king, etc. Black is lowercase and white is uppercase. It is obviously required to take the EPD files and convert them one more time, this time into input vectors to be used by the training mode (in SNNS). Figure 7 demonstrates how the EPD file is generated, by taking each row of the chess board and merely placing them next to each other.

Figure 7: EPD Format and how it is generated from the board

The inputs into the neural network will be in the same order as the positions are arranged for EPD format. Because the inputs to the network must be floating point values between

+1 and -1, I decide to assign values based on the traditional weights given to the pieces in the game. Black will acquire + values, and white will acquire -. Figure 8 shows the weights which will be assigned, based on the character present in the EPD file. A program will be created shortly which will convert the EPD strings into floating point vectors (training data sets).

Figure 8: Weights assigned for each piece

Piece	EPD Char	Weight
King	k,K	1.0,-1.0
Queen	q,Q	0.9,-0.9
Rook	r,R	0.5,-0.5
Knight	n,N	0.4,-0.4
Bishop	b.B	0.3,-0.3
Pawn	p,P	0.1,-0.1

Typically, the knight and the bishop are each given a weight of 3, but there is a need to differentiate these pieces in the input vector, so I decide to assign the knight .4, slightly more "valuable" than the bishop. However, these "values" may not actually have any meaning to the NN once it is training, and seem more likely to serve as "placeholders" than anything else.

The program will be created in C#, once again it is little more than a string parser. The EPD file will be opened, and each character in the description string must be converted to a numeric character according to figure 8. Two more important requirements must be met:

- -The program must also produce the "next move" for the player to make, and save only BLACK TO MOVE positions.
- -The output file must be compatible with SNNS (the data file format rules must be followed).

The format requirements for the SNNS files may be seen in the file "SNNSPattern.pat" located in the Journal Files Folder. Essentially, a header must specify how many inputs and outputs we have, as well as the total number of patterns to be found in the file. It is important to realize that eventually, the move must be replaced by some integer value for the geographical representation of the game (which will be examined first). The strings will eventually be classified based on the next move to be made (highlighted in figure 6) so that the output may be specified as a zero or a one for training (0 means don't make the move, while 1 will 'make it'). See the functional description for more details regarding the geographical representation of the game.

For now, I will just keep the move to be made in algebraic chess notation. ?? Is this the best way to do this?

10-28-04

ChessBase 9.0 has been ordered. I am waiting for it to arrive so I can complete work on the data processing programs. For now I will be working on generating networks of various dimensions and trying to train them with sample data. This is being done in order to come up with an estimate of how long it will take to train the network with one data file, and for one training cycle which may be an important consideration in the near future.

I begin by using my network generator from figure 2 to create two networks. Each network is made 50% connected with 64 inputs, 1 output. One network is 64 nodes wide by 10 nodes deep, and the other is 128 nodes wide by 5 nodes deep. I have noticed a problem with the network generator. The final layer of nodes must be fully connected to the previous layer, otherwise a great deal of the network is useless, as it will never impact the outputs. I need to modify the network generator code to fix this problem. I simply modify the condition to connect a source node to a destination node by including the case where the node number is greater than the number of hidden nodes + input nodes:

```
 \begin{array}{ll} \textbf{if} & \texttt{((randval <= connectivity) | | (source > (input length + hidden length * (row-1)) - 1) | | (node > (hidden_nodes + input length)))} \\ \end{array}
```

The new code may be seen in its entirety as NetGen3 in the journal files folder. Now all nodes in the network should be ensured to impact the output in some way.

I generate network5x128_041028.net and network10x64_041028.net which may be viewed in the journal files folder.

The goal now is to use the same set of input vectors to train both networks in order to see which network (with equal number of nodes) trains faster: the wide, shallow networks or the narrow, deep network. Connectivity is 50% in both case, and node count is equal. The only variable factor is the dimensions. Although the networks to be used in the real training will be much larger than these, this experiment will offer some insight into how the should be designed. More nodes will allow more training samples will be memorized. However too many nodes may lead to memorization and not schema recognition and generalization, which is obviously not desired. Therefore some middle ground will be sought. The number of layers should have some relation to the degree of non-linearity the network is able to "estimate," but Dr. Malinowski feels 3 or 4 layers is the maximum that would be useful in this respect. However, more layers will still "learn" so they are not totally useless. Making the middle (hidden) layers wider could lead to more relationship development (we allow more combinations of input data to be assembled). I would predict the wider network will also train more quickly.


I need to create a training data set. At this point I need to decide if making up random data would be the best solution, or if I should produce a simple program to convert existing EPD files into floating point values. I decide to create the program as I will need this functionality at some point when creating the data processing programs anyway. This

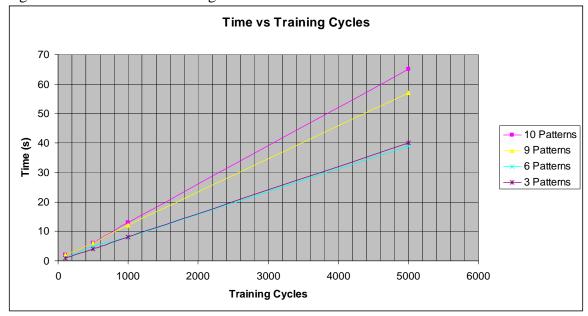
program steps through the EPD string one character at a time and appends the floating point results to the end of a rich text box. The file may be saved as a .pat file for use in SNNS. Figure 9 shows a screenshot of this program. The program is called EPD_FP and

complete source code is in EPD_FP_041028.cs , in the journal files folder. I create the

training file which can be seen in training_041028.pat in the journal files folder by using 5 of the EPD strings in figure 6 as samples.

Figure 9: EPD to FP Data Generator screenshot

The training file just created has 5 entries in it. I will begin by opening the 5x128 network and training it with the data set.


I set the training mode to 100 cycles, 1 step. Learning constant is .2 and dmax is .1. These values will be kept the same for the rest of the day unless otherwise noted. The training process takes only 3 seconds (with the graphics window closed). I am surprised how fast the training is, and was expecting it to take much longer. This result is very promising...although this data is obviously highly simplified. I now do the same for the 10x64 network. There is no noticeable change in the learning speed, although I definitely would have expected to see one between the two networks tested. It seems that learning time is under 1 second per position when a file is run through 100 cycles. I keep the 10x64 network open and try 1000 cycles, step size 1. This takes 7 seconds to complete. 5000 cycles? 33 seconds. I decide to time the training for pattern sets of various sizes. A

new pattern set is created, called $^{training2_041028.pat}$. It contains 10 patterns, with outputs 1 or -1 (instead of 1 and 0 used in version 1). I will use SNNS to train 10 patterns and down and record the time needed for 100, 500, 1000 and 5000 cycles. The results for the trials are shown in figure 10.

Figure 10: Time (Seconds) needed for training in SNNS

	Cycles	100	500	1000	5000
Patterns					
10		2	6	13	65
9		2	6	12	57
6		1	5	8	39
3		1	4	8	40

Figure 11: Plotted Data from Figure 10

From figure 11, it seems that there is obviously a linear relationship between the number of training cycles and the time needed to complete them. There is no surprise here. But what about between the size of the training set and the time needed for a constant number of training cycles? Figure 12 shows the time needed to train 5000 cycles of various pattern file sizes.

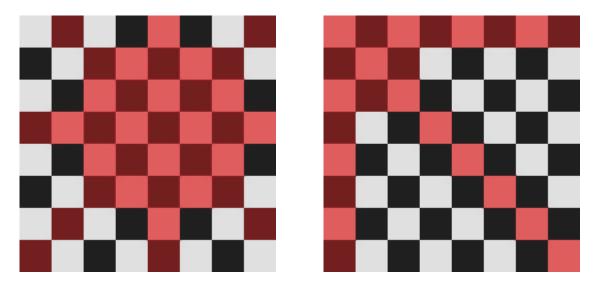
Time vs Pattern Count, 5000 Cycles 70 60 50 Time (s) 40 Series1 30 20 10 0 0 2 6 8 10 12 **Pattern Count**

Figure 12: Time needed to train 5000 cycles of various pattern file sizes

It seems that the pattern file size has a more non-linear impact on the training time required. Although only 10 patterns were tested as a max, it seems obvious from this plot that training time is going to be minimized by keeping a fairly small quantity of patterns in the training files. It may make sense to create a batch file to do the training, which will cycle through the data files. How long is training estimated to take?

For one network (geographical approach as described in the functional description), I will make the following assumptions:

I have about 4 million games to work with. Half will be won by black and usable for training. I assume each game will have perhaps 40 positions...based on:


"Chess is a fascinating game to both play and study from a psychological perspective. Its complexity assures that the game will never be completely solved, like tic-tac-toe. Given an average of 30 possible moves per turn, and an average game length of 40 moves (80 half-moves), we can see that the game tree is at least 30⁸⁰ nodes big (on the order of

10¹²⁰)." (Source: Mark Jeays). See A brief survey of psychological studies of chess.htm in sources folder. Original URL: http://jeays.net/files/psychchess.htm.

Thus, 80,000,000 individual board positions should be trainable for each network. Using a default of 100 cycles for a single training session, I would predict about 2 seconds needed for every 10 positions learned based on figure 10. Therefore, approximately 4400 hours would be needed for training each network with all positions! Obviously this is not

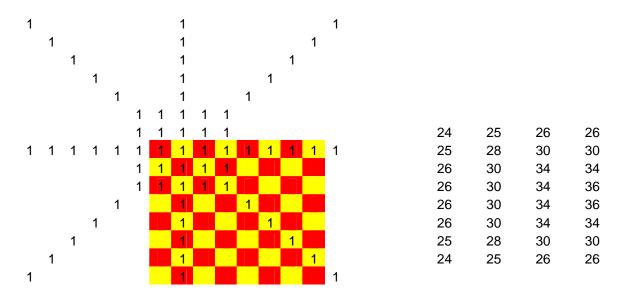
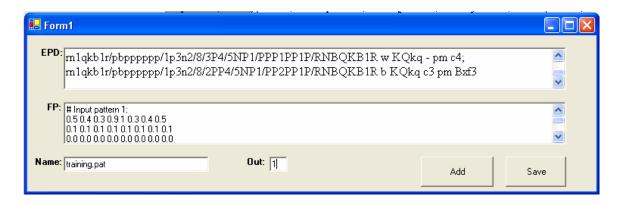

going to take place. A sort routine will take place first, which will consider all board positions, and categorize them based on the move black makes. Of course, in order to make this calculation the total number of legal moves must be determined. This is M as described in the functional description. To determine M I will consider a chess piece as though it is made of a queen plus a knight, which would cover every possible move in the game at any time. Now, the board is considered empty other than this piece. Therefore, if this special piece is moved to all 64 spaces, we can record the total number of moves which are possible. The number of highlighted squares (figure 13) is simply summed for all 64 squares to get a total. Notice that figure 13 shows the top left corner position and one of the 4 center positions under consideration.

Figure 13: Determining the total number of legal moves

I decide to do the calculation in Excel. This is shown in figure 14.

Figure 14: Excel move calculations...



There are 1856 possible moves to be made at any given time. Thus, if I consider that 80,000,000 board positions exist in my training set, about 43100 positions would go into each category, taking roughly 2.5 hours to train. This is only for the "yes" decisions. An equal number of "no" cases would also have to be trained, meaning about 5 hours would be needed to train each network (some will be more or less, as not all moves will have equal complexity). One PC could train about 4 networks per day in a best case, which means 100 PCs would take about 4.5 days to train everything. This is possible, but still daunting. I would like to somehow reduce the problem to take 20 PCs 4 days to train. This could be accomplished in one lab, and this block of time could realistically be reserved over weekends, etc...

Although figure 11 seems to give a clear linear relationship between training time and training cycles, as expected, the results shown in figure 12 were unexpected. It seems that this relationship should have been linear, and perhaps it will appear as such if larger training datasets were considered. I will improve the EPD_FP program to accept an entire file of EPD strings, rather than just one at a time like it does now. I simply add an external loop to the current string parser, which will go through lines of EPD strings one

by one. The new code may be viewed as EPD_FP2_041028.cs in the journal files folder. The GUI is slightly modified as shown in figure 15.

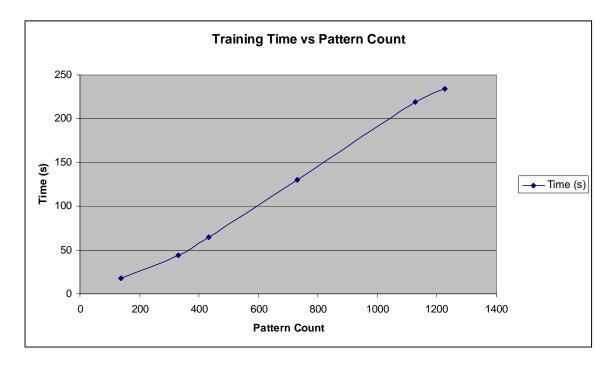
Figure 15: Modified EPD_FP program interface to accept multiple EPD strings

10-30-04

I am curious to test the program in figure 15, so I create another training file, which ends

up having 137 games in it. The file may be seen as training 137_041030.pat in the journal files folder. I load the 10x64 network in SNNS and select the above file as the training pattern set. I am simply curious to see how long 100 training cycles takes, and find 18

seconds are needed to complete the task. This is better than I was expecting, as previously 10 samples needed 2 seconds. I will work on creating sets of larger pattern counts shortly to see if I can obtain a linear result for the training times.

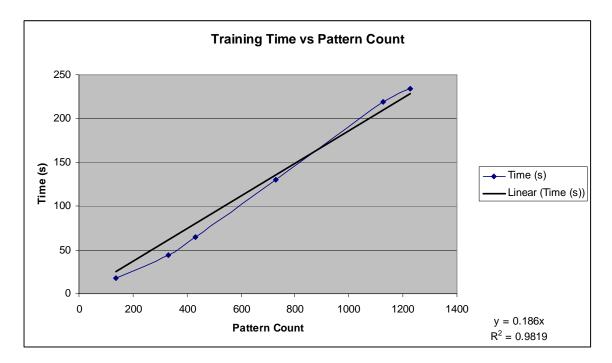

Currently, a more pressing matter is the Argonne Symposium where I will be presenting this project and the current status. I will be presenting the slides found in "Argonne_041030" in the journal files folder.

I create training files for 137, 332, 432, 730, 1127 and 1127 patterns which I will now use to train the 10x64 network. The training times (in seconds) are shown in figure 16. 100 cycles, step size 1 is used for all training. The network is always re-initialized between sets, and all learning parameters are kept at the default settings for this test.

Figure 16: Training time data

Patterns	Time (s		
137	18		
332	44		
432	65		
730	130		
1127	219		
1227	234		

Figure 17: Plot of figure 16, showing nearly linear relationship



After completing the training, it appears that training time is actually a linear function of the pattern count, which was what the assumption wad to begin with. The discrepancy seen with lower pattern count is likely due to loading time, reaction time in starting and stopping the timer, etc. According to the latest results, it makes more sense to keep a fairly large number of patterns in the pattern sets in order to reduce the time used in loading and switching sets. To come up with the equation for this line, the intercept is forced to 0 in Excel as training 0 patterns must take zero time. The equation is simply:

Time(s) = .186 (Pattern Count)

This equation will be used to approximate the set size needed when training the networks for a specified amount of time, which will likely turn out to be the most practical approach to the problem. A plot showing the trend line and the R^2 value is shown in figure 17.

Figure 17: Figure 15+trend line and R^2 value

The R^2 value is close enough to 1 to have a large degree of confidence in the equation over the range of this data. Thus, each pattern will be considered to need .186 seconds to train.

Training time is based on running Java SNNS on a 3.06 GHz P4 (Northwood core) with hyperthreading and 1GB of DDR RAM. Hard disk is 5400 RPM and FSB runs at 533MHz. Training times are expected to vary considerably when SNNS is run on different machines!

11-4-04

I have spent some time making final changes to the Argonne presentation and also adding two new slides describing the mathematics behind the functional and geographical design approaches which were outlined in detail in the functional description document. The final version of the presentation is saved as "Argone_041104" in the journal files folder.

Yesterday, ChessBase 9.0 arrived. I installed in last night, along with the Mega database and the Corr database. So far, it seems the database program works as advertised, and will be suitable for creating data sets for the network modules to use in the learning stage. The search function allows a specific move (maneuver) to be specified and it will return all games containing the move in the database. Most likely, this feature will be the most valuable in creating the individual datasets.

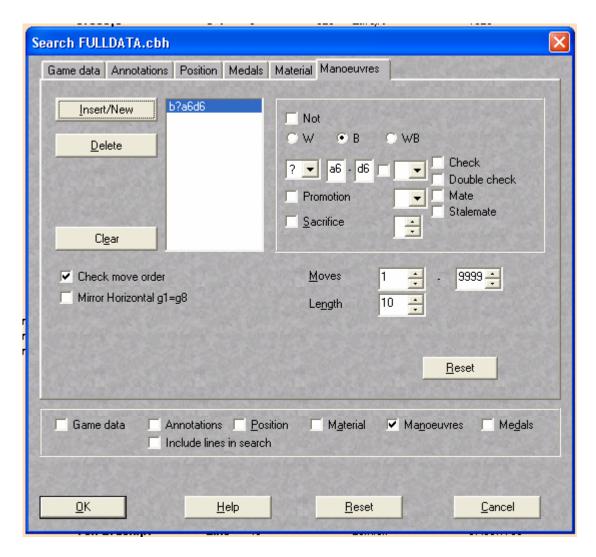
Today I will spend time working with ChessBase in order to understand the abilities of the program and to come up with the best possible way to extract the data I need for training. I hope to come up with a complete plan and also start the data gathering process by the end of the day today.

I also want to keep in mind the following: ChessBase 9.0 ships with an endgame database on 5 DVDs which contains all endgames for 6 or less pieces on the board. Thus, it is possible to play these positions 100% perfectly by looking in the database. Do I want to pursue integrating this database (which is going to substantially improve performance) or do I only want to base endgame performance on the saved game data. It is not possible to "extract" endgame positions and train them as the other games, so these seem to be the only two answers to this question.

I begin by creating a new database, and copy the contents of the Mega database, Corr database, and the games I gathered this summer (about 100,000) into the new database, called FULLDATA. The games I gathered are in PGN format, and were downloaded from the internet at dozens of sites offering saved chess games. Now that a complete database of ALL data exists in one place, I should be able to process it more quickly and not have to jump between numerous databases. The copying process takes about 45 minutes in all, which is less than I though it would. In all, the complete experimental database now has 3,202,623 games stored, which I hope is enough to learn the game! I now will perform some maintenance on this database:

I begin by removing all games in which the light side wins. Because I will be training the dark side, I want data in which a win or a draw occurs, which would mean that dark had a "winning" strategy developed throughout the game. It would be nearly impossible to go through all of the 1-0 games (white wins) and find the "bad" move for black (which would allow the rest of the game to be used in training). Thus, it is best to cut this data (entire games) out of the training set. Doing so does not mean that "bad moves" (or non optimal moves) will not exist in the data, as they certainly will exist, but it simply means that such moves did not result in a loss to white and therefore COULD still be considered a "proper" move to make when considering the board position at that time.

Operating with this large database is very time consuming...in fact deleting the games in this fashion is not practical at all as it will take over 12 hours to complete...(By sorting by result and then deleting)...


Due to some concern that the games collected over the summer do not confirm to the same standard as those in ChessBase, I decide not to use them. I create a new DataBase, this time with the games from the Mega database and the Corr database. It has as total of 3110269 games. I backup this database. Now, I search for games in which white wins (1-0 result). Now I delete these games. Once this is done, I remove them from the database, which only takes about 20 minutes to complete! Obviously, this is the way to remove games in the future! Now I have a complete set of 1978263 games in which black wins or draws. Further game removal is not required. Now, I decide to come up with a way to actually get the datasets required for training. Each network will need its own dataset, composed of both "yes" decisions and "no" decisions (the geographical, move based approach is being considered first). ChessBase has a nice search function which will find the specific moves requested, but it does require that a piece be specified.

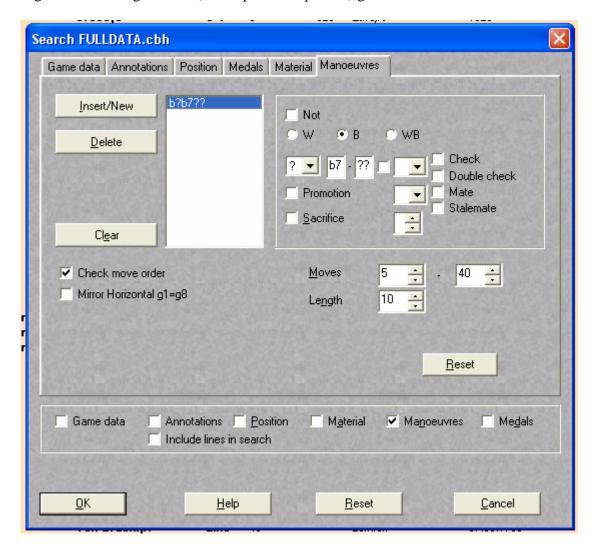
I find out at this time that the database also contains a couple hundred text files of tournament listings (results, etc.) which are "in the way" of the real data, so I decide to remove them from the database just created. I delete them and repack the database again. 1902248 games are left after the latest repack.

I now will need to remove the annotations from the database, backup the database, and finally get the datasets required for training. The de-annotation process is successful, and I now make another backup of the final database. The current games are now ready for "sorting" or classification by move.

I make copies of a chessboard on paper in order to keep track of the move sets I have saved. Figure 18 shows a screenshot of how the search is configured.

Figure 18: ChessBase 9.0 search configuration (for moves)

This same search will be performed for each and every move in chess, the total number which was calculated earlier to be 1856. After performing numerous saves, I find it takes roughly 1 minute for each move. About 30 hours (of manual searching) will be needed to collect all of the needed data. I install the database on an older P3 1.0 GHz system so I can have two searches running at once. I am going to try to have all data collected by next week, 4-11-04. Backups of all data will be put on DVDs, and then the remaining preprocessing stages will be carried out.


11-11-04

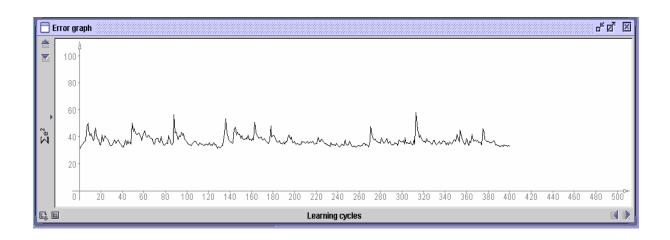
Currently, data has been extracted from the database for all moves which have initial positions A1,A2,A3,A4,A5,A6,A7,A8,B1,B2, and B3. The process has been taking much longer than anticipated. The 2nd computer being used in processing failed on November 10, so it is no longer being used in data extraction.

Fortunately, a slightly improved technique can be used to speed up extraction on a single PC. ChessBase allows a wildcard search for one of the positions (initial or final). Therefore, it is possible to create databases which contain all moves from a specific

starting location. These databases are much smaller than the entire database, so searching them takes much less time. It is possible to extract an entire move in less than one minute from the smaller database. Figure 19 shows how the smaller databases are generated for each initial position.

Figure 19: Making smaller (initial position specific) game databases

Today will be spent on data extraction, as it must be completed before any useful training can be performed. It may be possible to look at only one move, but evaluating this network as a standalone unit may be highly difficult, as we really need to evaluate performance over the entire game.


I am backing up the extracted data after every 6 initial positions are evaluated. Zipping the pgn files reduces the size by about 75%, which will save a great deal of space when sending the data to the Gdansk.bradley.edu server. The backup does however take some time to complete (45 minutes for 6 initial positions).

The laboratory directory has agreed to install Java on 4 machines in the lab which will be a start for my training processes. With any luck this stage of the project should be ready to proceed in under two weeks, as the lab director has also agreed to install the database on another machine in lab so that data extraction may once again enjoy increased efficiency.

I have some concern of the greatly varying game count which appears in the final game collections. Some popular moves (b7 to b6 for example) have over 100,000 games! Others, such as corner to opposite corner moves, have as few as 300. I expected from the beginning that different numbers of games would be found for each move, but I did not expect quite this much variation. I will need to come up with some idea on how to deal with this, as it may now require that the networks be made of varying size as well. The other possibility, which I currently prefer after having had some positive feedback at the Argonne Symposium, is to proceed as follows:

Create all networks the same size, and large enough to deal with the largest of the datasets (which is still based on estimation). Then, initialize all networks and only provide perhaps 10% connectivity (they are still to be feed forward networks of common layer size). The idea is that lower connectivity, as it trains faster, will provide the same end result as simply having fewer nodes. By observing the output error plot (example shown in figure 20), it is possible to determine when the maximum amount of training has taken place, as the error graph should begin to rise again after having reached some minimum value. In the cases of the datasets containing very large sample counts, I expect this will happen far before all samples have been trained. Training with more samples is expected to give a better network in the end, so I do not wish to simply stop "halfway through" the data, for example. Because the overly trained network only has 10% connectivity, I can easily add more connections through editing the .net file. New connections will be assigned weights of zero. In doing this, the new connections have absolutely no impact in the network at this point. However, the storage capacity of the network will have been increased, and new patterns should now be "learned" through manipulation of the old weights, but more importantly the newly added connections will be utilized as well. Thus, the process is to be repeated until a given dataset has been adequately trained.

Figure 20: Example of error graph to determine occurrence of "overtraining" in networks

