

Complex Decision Making With Neural Networks: Learning Chess
Functional Description

Jack Sigan
Bradley University ECE Dept

Dr. Aleksander Malinowski, Advisor
October 28, 2004

Objective and System Description:
 Although mainly a research endeavor, the end goal of this project is to produce a
system based on artificial neural networks (ANNs) which will play chess (as the dark side

only) effectively against a human
opponent. The dark side is chosen
simply because it prevents the
system from having to make the
first move. To meet the objective,
research will be centered on
artificial neural network (ANN)
topology specifically for the
purpose of creating a topology
appropriate for complex decision
making in a massively dimensional
problem. Functionality of the
system may be broken into three
parts: the learning mode will be an
automated process where the
ANNs learn how to play from an
extensive external database of
games; while the playing and
advisory modes of operation accept
user interaction, taking move
inputs from the player and
providing the move(s) chosen by
the system. Playing mode returns
one move while advisory returns
multiple. Figure 1 illustrates the
operating modes. The training
mode must precede the playing and
advisory modes. The performance
of the playing and advisory modes

is clearly a direct reflection of the learning mode, as well as the internal structure of the
ANN module.

Input and Output Descriptions:
 As shown in figure 1, four main components will make up the system; the
interface module, the ANN module, and the preprocessing and database systems. The
ANN module is shared by both the learning and the playing/advisory modes. The only
difference in the output between regular playing mode and advisory mode is that a list of
“good” moves will be returned in advisory mode, while only one will be returned in play
mode. Table 1 displays the connections and IO paths which will comprise the modes of
operation. This same information is shown graphically in figure 1. Note that this IO plan
is very high level, and that far more complexity is to be found within the individual
modules, which themselves will be broken down into components. The ANN module in
particular will be discussed shortly in much more detail.

Figure 1:
System Block Diagrams for Operating Modes

Table 1:
Input/Output Descriptions by Module

Learning mode:

Module External Input External Output Inter-Modular Input Inter-Modular
Output

Game
Database/

Preprocessing
NA NA NA Game records to

ANN module

ANN Module NA NA Game records from
database/preprocessing NA

Playing/Advisory mode:

Module External Input External Output Inter-Modular Input Inter-Modular
Output

Interface
Module Player's move ANN's move(s) ANN move(s) choice Board description to

ANN

ANN Module NA NA Board description from
interface

Move choices to
interface

Motivation and Preliminary Proof of Concept:
 The real question to be asked; can chess really be implemented with ANNs as
opposed to the traditional approach of exhaustively searching game trees?

Applied correctly and appropriately designed, artificial neural networks have
extraordinary potential for solving problems involving generalization, trend recognition,
and pattern matching. Game play, which often involves non-linear strategies or decision
making, is a particularly good area to demonstrate the ANN as a way of approximating
otherwise inexpressible functions [1]. To date, the promise and lofty expectations of this
artificial intelligence approach have yet to be fully realized, demanding further research.
Work on complex problem solving, such as that required in classical board games such as
chess, has been limited, although many of the available research results [1-4] are
tantalizing.

Numerous published studies serve as motivation and a starting point for this
research. Chekkapilla and Fogel, in developing an ANN to play checkers, indicated that
there is feasibility in teaching ANNs games of some complexity [1,2]. Although chess is
clearly a leap forward from checkers, it seems a logical next step in the evolution and
development of the ANN, as chess is one of the most widely studied and researched
games. A demonstration of strategy in such a game is also recognized as a direct measure
of logical decision making ability [1]. Chess as an ANN problem is not a new idea; in
fact, ANNs have already been proven to be highly effective in playing chess endgames,
although it is ironic that the author also states that chess is too difficult for ANNs to learn
in its entirety [3]. The “Distributed Chess Project,” when considering the full game of
chess, reported approximately 75% accuracy in choosing the “proper” move when
confronted with a chess problem external to the training domain. While not fully
successful as implemented, the study does appear to indicate that chess schema may be
learned by ANNs [4].

The published studies therefore seem to give a mixed opinion of whether a
solution is possible in this problem. However, three points must be emphasized here.
Technology has improved exponentially since [3] was published in 1994, which allows

vastly more complex networks to be implemented. Also, breaking the game down as
proposed in this project has not, in the author’s knowledge or opinion, been considered or
researched before. Finally, the success (and failures) of [4] can only be seen as relevant to
the approach used, which is derivation of ANNs through genetic algorithms. A vast
training set was apparently not utilized, and external rule control was not applied.
Considering the facts, proposed improvements, and possible implications of this kind of
research to the field of artificial intelligence, the project is worth pursuing.

Structure of the ANN Modules:
 Figure 1 depicts the ANN module in both the learning and playing/advisory
mode, and it must be emphasized that the design of this component is the primary focus
of the project’s research. Presently, two major design paradigms are being examined.

The first will involve a geographical breakdown of all possible moves in the game

based on the starting position i and the final position f. An entire game g of n moves may
be expressed as a set of board positions bi where i is the move number from 0 to n. Of
course, each biЄg has a set of possible legal moves based on the piece p located at all i
positions held by the game participant’s side. Therefore, it is possible to define the set of
legal moves as mif=f(bi) since complete knowledge of p, i, and f may be obtained from
any bi in addition to the rules of chess. For now it is required to consider the castling
moves to be special cases, as they involve more than 1 piece. If considering a whole

Figure 2:
Geographically Derived ANN System Design

game of n moves, then all legal moves made throughout may be expressed

as ∑
=

)(=
n

i
ibfL

0
All legal moves in chess may therefore be found as ∑

∞

=

)=
0

(
i

iLM . It is not

difficult to determine mif through simple logic for any biЄg. M is finite, obviously having
a value less than 64x63 moves. This idea is fundamental to justifying the design in figure
2. In this design, it is required to create an individual ANN structure for all moves t, tЄM.
Thus, each ANN will be trained to make a ‘yes’ or ‘no’ decision for its own move t based
only on bi. It is possible that some networks may say ‘yes’ for making a move, even if the
move is illegal based on the rules of chess for the given bi ,even though mifЄM! For
example, the move for the left black rook may say ‘yes’ to move from square D4 to D6
even though square D5 is held by an enemy. D4 to D5 may also report a ‘yes’ decision,
so how will an action be chosen? This is where knowledge of mif as defined above for the
specific board position is applied. It is possible to deactivate the ANNs which want to
make illegal moves. Once this is done, the ANN with the highest output level (from a
hyperbolic tangent function, range +/- 1) is chosen as the move to make.

Over time, it should in theory be possible to modify the ANNs so they do not

make these illegal moves anymore by using an implementation of adaptive resonance. In

Figure 3:
Functionally Derived ANN System Design

short, the input bi will be saved in a file along with a ‘no’ output for any illegal moves. A
special training session will then be held to improve the network.
 The second approach initially proposed is to break the game of chess apart by
piece, thereby allowing a more “functional” approach to the same problem. It is required
to define 16 networks which represent all pieces for the dark side. Each network will

have m outputs, which are defined by ∑
∞

=

)=
0
(

i
ilm where ∑

=

)=
n

i
ibpfl

0
,(. Defining l is only

slightly different from how L was defined above, as it must have emphasis placed on p
(the piece) in addition to bi. Once again n is the number of turns in a single game. There
will still be the same number of outputs in total (M). Outputs will still be deactivated in
the same fashion as described above. Adaptive resonance will still be applied to improve
the network decisions over time. Figure 3 shows a block diagram of the functionally
derived approach.

In general, both design approaches may be viewed as parallel approaches to
complex problem solving. Many benefits are achieved in a parallel approach, including
shortened training time and simplified internal network design. Although it is not known
in advance how large the networks must be for either approach, it seems that the
networks for the geographical approach will be significantly smaller (in terms of node
count) than those in the functional design, simply because they have only one output, thus
the simulated function is assumed to be less complex, thereby requiring fewer nodes to
achieve accurate approximation results. It is expected that all networks will be the same
size for the geographic approach, although it may also seem valid that the moves
involving edge positions as initial positions will not need as many nodes as they simply
do not have as many legal moves to make, while moves in the center could require a
greater number of nodes. Unfortunately, theory does not exist to accurately predict ANN
size for problems such as this, so it will be left largely to trial and error. Functional
networks clearly will have varying sizes, simply because queen movement, for example,
is more complex than that of the pawn.
 Another benefit of the parallel approach is that learning is anticipated to be less
destructive than it would be for a single network having to process all moves. In such a
situation, involving a highly dimensional problem and dataset, adjusting the weights and
thresholds to make one output converge could cause divergence of the other outputs. Not
only would learning take much longer, but it would seem that accurate results may be far
more difficult to come by.

Either approach will be trained using the same dataset, which is a database of
several million recorded games of varying skill levels. An interesting characteristic is that
the level of play the ANN is capable of may be related to the skill level of the games used
in training. If so, then it would be possible to pre-specify the quality of performance
when training the network! Although the initial goal is to simply train the system to play
without regard to skill level, this could be a very interesting area to look into if time and
success permits.

Implementation Considerations and Current Progress:
 Work thus far has led to the project’s description as described in this document. A
major focus over the summer of 2004 was to develop a generic and versatile ANN
framework, including all processing, learning, and management functionality. Some time

has also been spent determining the best way to store training records, including the data
representation, as well as normalization and standardization considerations. Although
work on the ANN platform is estimated to be roughly 80% complete at this point, the
choice was made recently to discontinue work on the ANN framework and instead utilize
the existing Stuttgart Neural Network Simulator (SNNS) with Java interface [5]. Work is
now focusing on network topology design, network size considerations, and integrating
the rule logic with the ANN components.
 It is required to have some form of data processing in addition to the ChessBase
9.0 software being utilized for the training data. The processing function will take the
games stored in PGN files (portable game notation, a common algebraic chess notation
standard) and convert them to extended position description (EPD) format. The result for
one game would be a series of strings with one string for each board position in the game.
These strings are then to be parsed by another application which will convert them into a
series of 64 signed floating point values corresponding to the traditional weights given to
chess pieces. The value of the move to be made will be concatenated with the resulting
vector to produce a training record. Once a set of training records is generated, they will
be presented randomly to the ANNs for training.
 The networks themselves will be generated to work with SNNS, as will the
training records. Multiple PCs will process the training files in the learning stage, and
human supervision will not be required. It is expected that learning will take hours to a
couple of days for the entire system. Rule logic is not considered in the initial training
process.
 A separate application will be created for the interface to be used in the playing
mode. The application should present the user with a graphical view of the board, and be
able to read the SNNS files and process the network after a new input vector is generated
when the user makes a move. The resulting move must then be shown on the board.
 The networks themselves are currently being considered with hyperbolic tangent
activation functions, using classical back propagation learning. It may become clear in
the near future that another learning style is more appropriate (perhaps back propagation
with momentum, etc), but for now as many simplifications as possible are being sought,
so learning will be kept simple for the time being. Positive elements on the input vectors
will be scaled to the dark side (ANN) while negative elements will be scaled to the light
(human) player. A zero means no piece is present on the square in question. The outputs
of the ANN (tanh) are to be considered ‘yes’ if they are positive, and ‘no’ if they are
negative. More positive moves (approaching +1.0) are the ones most likely to be made,
while the most negative (-1.0) are illegal or very poor can never be made. As research
and design continues, it will doubtlessly become apparent that numerous additions and
modifications to the preliminary concepts will be required.

Bibliography:
[1] K. Chellapilla and D.B. Fogel. “Evolution, Neural Networks, Games and Intelligence.”
 Proceedings of the IEEE, vol. 87, no. 9, pp. 1471-1496, Sept. 1999.
[2] K. Chellapilla and D.B. Fogel. "Anaconda Defeats Hoyle 6-0: A Case Study Competing

an Evolved Checkers Program Against Commercially Available Software,” in Proceedings
of the 2000 Congress on Evolutionary Computation, 2000, vol. 2, pp. 857-863.

[3] C. Posthoff, S. Schawelski and M. Schlosser. “Neural Network Learning In a Chess
Endgame,” in IEEE World Congress on Computational Intelligence, 1994, vol. 5,
pp. 3420-3425.

[4] R. Seliger. “The Distributed Chess Project.” Internet: http://neural-chess.netfirms.com/
HTML/project.html, 2003 [Aug. 26, 2004].

[5] University of Tübingen. “Stuttgart Neural Network Simulator.” Internet: http://www-
ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html, 2003 [Aug 30, 2004].

