Complex Problem Solving With Neural Networks: Learning Chess

Mr. Jack Sigan

Dr. Aleksander Malinowski, Advisor

Dept. of Electrical and Computer Engineering

BRADLEY UNIVERSITY

November 5, 2004
Outline

- Neural network introduction
- Chess and neural networks
- Chess-specific network architectures
 - Geographical approach
 - Functional approach
- Data representations and input vectors
Neural Networks

Figure 1: Node structure with hyperbolic tangent activation function

Figure 2: Simple partially connected neural network structure from Stuttgart Neural Network Simulator (SNNS)
Chess and Neural Networks?

- Demonstrates complex decision making
- Highly nonlinear problem
- Schemas
- Widely studied
- Massive amounts of available data
- Success with checkers
- Mixed results with chess in the past
Parallel Network Designs

- Decrease learning cycle time
- Less destructive learning process
- Multiple “suggested” moves may be returned
- Simpler network architectures
- 2 paradigms for deconstructing chess
 - Geographical “move based”
 - Functional “piece based”
- External logic is applied to both paradigms to filter out illegal moves or impossible moves
Parallel Network Designs

Figure 3: Mapping the legal moves in chess, using overlay consisting of queen + knight moves

Excluding castling, there are 1856 moves possible — ignoring the piece type which is moved

Example: Moving from d3 to d4 is considered ONE possible move, whether the piece is a pawn, queen, king, etc.
Approach A: Geographical

Figure 4: Design with “move specific” neural networks—
the geographical approach
Approach B: Functional

Figure 5: Design with “piece specific” neural networks—the functional approach
Data Representations

1. e4 d6
2. d4 Nf6
3. Nc3 g6
4. Nf3 Bg7
5. Be2 O-O
6. O-O Bg4
7. Be3 Nc6
8. Qd2 e5
9. d5 Ne7
10. Rad1 Bd7
11. Ne1 Ng4
12. Bxg4 Bxg4
13. f3 Bd7
14. f4Bg4
15. Rb1 c6
16. fxe5 dxe5
17. Be5 cxd5
18. Qg5 dxe4
19. Bxe7 Qd4+
20. Kh1f5
21. Bxf8 Rxf8
22. h3 Bd6
23. Qh6 Bh5
24. Rxf5 gxf5
25. Qxe5 Qf2
26. Rd1e3
27. Nd5 Bd8
28. Nd3 Qg3
29. Qf3 Qxf3
30. gxf3 e4
31. Rh1+ Kh8
32. fxe4 fxe4
33. N3f4 Bh4
34. Rh4 Bf2
35. Kg2 Rf5
36. Ne7 1-0

Figure 6: Example of the PGN (algebraic) standard

```
rnbqkbnr/pppppppp/8/8/8/8/PPPPPPP/RNBQKBNR w KQkq - pm d4;
rnbqkbnr/pppppppp/8/8/3P4/8/PPPPPPP/RNBQKBNR b KQkq d3 pm Nf6;
rnbqkb1r/pppppppp/5n2/8/3P4/8/PPPPPPP/RNBQKBNR w KQkq - pm Nf3;
rnbqkb1r/pppppppp/5n2/8/3P4/5N2/PPPPPPP/RNBQKB1R b KQkq - pm b6;
```

Figure 7: Example of the EPD (string) format
Figure 8: The game data preprocessing procedure

• Board positional data, plus a ‘yes’ or ‘no’ decision in regards to making the specific move must be in the floating point vector.

• A 50/50 mix of ‘yes’ and ‘no’ samples will be used in all training sets

• The geographical approach does not differentiate between pieces to be moved, only the initial and final positions are important
Input Vector Creation

<table>
<thead>
<tr>
<th>Piece</th>
<th>EPD Character</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black, white</td>
<td>Black, white</td>
</tr>
<tr>
<td>King</td>
<td>k,K</td>
<td>1.0, -1.0</td>
</tr>
<tr>
<td>Queen</td>
<td>q,Q</td>
<td>0.9, -0.9</td>
</tr>
<tr>
<td>Rook</td>
<td>r,R</td>
<td>0.5, -0.5</td>
</tr>
<tr>
<td>Knight</td>
<td>n,N</td>
<td>0.4, -0.4</td>
</tr>
<tr>
<td>Bishop</td>
<td>b,B</td>
<td>0.3, -0.3</td>
</tr>
<tr>
<td>Pawn</td>
<td>p,P</td>
<td>0.1, -0.1</td>
</tr>
</tbody>
</table>

Figure 9: “Standard” values for pieces used in the floating point input vector creation

```
# Input pattern 1:
0.5  0.4  0.3  0.9  1.0  0.3  0.4  0.5
0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.5 -0.4 -0.3 -0.2 -0.1 -0.3 -0.4 -0.5

# output pattern 1:
1
```

Figure 10: Floating point input vector for the initial board position
Questions?

Additional questions and comments are invited. Please contact:
Jack Sigan, jsigan@bradley.edu
Parallel Network Designs

• starting position i
• final position f
• $m_{if}=f(b_i)$ represents all legal moves for a board position b_i
• game g of n moves may be expressed as a set of board positions b_i, $b_i \in g$, where i is the position number 0 to n.

$$L = \sum_{i=0}^{n} f(b_i)$$ \hspace{1cm} \text{Legal moves for a game of n positions}

$$M = \sum_{i=0}^{\infty} (L_i)$$ \hspace{1cm} \text{Legal moves for chess (all games)}

• In this design, it is required to create an individual ANN structure for all moves t, $t \in M$. $M=1856$, ignoring castling
Parallel Network Designs

• starting position i
• final position f
• piece p
• $m_{if} = f(p, b_i)$ represents all legal moves for a piece in b_i
• game g of n moves may be expressed as a set of board positions b_i, $b_i \in g$, where i is the move number 0 to n.

$$L = \sum_{i=0}^{n} f(p, b_i)$$
Legal moves for a game of n moves

$$M = \sum_{i=0}^{\infty} (L_i)$$
Legal moves for a piece (all games)

• In this design, it is required to create an individual ANN structure for all pieces p, $p=16$