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1. Project Summary

To determine the attitude of a land vehicle with respect to navigation coordinates, angular
rates and translational accelerations are measured using an inertial measurement unit
(IMU).  This attitude and position determination system can function as a stand-alone
system or supplement a global positioning system in time when there is no line of sight to
GPS satellites.  Similar systems can be implemented to record the movement of the
vehicle to prevent it from leaving a set course or from moving into an unstable or
dangerous environment.  These systems may help a driver by triggering increased
traction control and air bag deployment as the accelerations and attitude angles change
while driving.  The block diagram of this system is shown in Fig. 1.1.1.
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Figure 1.1.1 Overall Block Diagram of the system

2. Project Description

2.1. Inertial Measurement Unit

Movement of the land vehicle causes the output of the three accelerometers and three
gyroscopes within the IMU to output the translational accelerations and angular rates
with respect to the body axis.  Gravity is shown as acceleration on one or more of the
acceleration outputs depending upon how the IMU is attached to the land vehicle (see
figure 2.1.1).
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Figure 2.1.1 Inertial Measurement Unit

2.2. Attitude Computer

Euler angles or platform angles (roll, pitch, and yaw) are calculated by a series of
equations that can be seen in Fig. 2.2.1 on the following page.  The turn rate of the earth
with respect to the navigation frame and the turn rate of the navigation frame with respect
to the earth in the navigation frame are added together and multiplied by a directional
cosine matrix to relate it to the body frame.  In order to obtain the updated directional
cosine matrix, the previous matrix is added to the change in directional cosine matrix
multiplied by the skew matrix of the turn rate of the body with respect to the navigation
frame in the body frame.  From this new directional cosine matrix value, the Euler angles,
or updated platform angles, can be calculated.  When the system is first started, initial
attitude angles must be entered in order to obtain the initial directional cosine matrix.

2.3. Resolution of Specific Forces

In order to resolve each of the translational acceleration terms as well as the angular rates,
a series of filters must be used to eliminate noise present on the outputs of the inertial
measurement unit.   These filters will be implemented using Matlab.  Disturbances that
need to be filtered are output noise, accelerometer bias, angular rate bias, and acceleration
with respect to gravity.  After the IMU outputs are filtered, the acceleration outputs must
be integrated to get velocity with respect to the body frame.  Velocity can be integrated to
get the position of the vehicle. The integration must also include the current attitude
information, known as Euler angles, in order to yield the correct velocity and position.
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Figure 2.2.1 Attitude Computer

2.4. Navigation Computer

In order to properly compute the attitude of the land vehicle, the attitude computer must
be updated continuously as the vehicle moves.  Also, gravity and Coriolis force must be
properly factored in to give velocity and position estimates in the local navigation system.
With these corrections the movement of the land vehicle can be fed back to the attitude
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computer to obtain the attitude angle.  This navigation computer will be implemented in
Matlab.  For the block diagram of the Navigation Computer see Fig. 2.4.1.

Figure 2.4.1 Navigation Computer

2.5. Completed Work

2.5.1. Product Research

A thorough search for literature and IMU manufacturers using Internet was done.
Most manufacturers make military grade IMUs.  This means that they are
extremely expensive and, thus, beyond Bradley’s limited capstone project budget.
Two companies that sell inertial measurement units around $3,000 were found.

Crossbow has two products near this price range.  The IMU300CC is priced at
$2,995.00 and the IMU400CC is priced at $3,995.00.  The IMU400CC has a
significantly smaller angular rate bias than the IMU300CC.  The Crossbow
company also offers a 10% educational discount.  BEI Systron Donner also has an
IMU product in the price range.  The MotionPakII is priced at $2,500, but its
angular rate bias is more than twice the IMU300CC from Crossbow.  BEI does
not offer any educational discount and the data sheets for their inertial
measurement units were very poor.

Navigation Computer

Gravity Correction

Coriolis correction

Position and Velocity Estimates

To Attitude Computer



7

These products are significantly less expensive than military grade products
because they are manufactured with silicon chips.  These chips are prone to
increased biases and random walk noise.  For the purposes of this project the
IMU300CC was purchased.

2.5.2.   Practice Matlab Code

To get familiar with writing Matlab functions, sample data taken from a GPS
receiver was analyzed.  The data file was read into Matlab.  This data was in
earth-centered earth fixed coordinates.  This means that the location of the
receiver was measured with respect to the center of the earth.  The goal of the
exercise was to convert the ECEF coordinates to local navigation coordinates.
Also, another function was written to convert the local navigation coordinates
back to the ECEF coordinates.  The Matlab code written for this exercise and the
results from the code are attatched in Appendix A.

2.5.3.  Attitude Computer Matlab Code

The attitude computer of the attitude determination system is written and
functional.  Each block of the diagram is written as individual functions.  This
will help in writing other programs so that each function can be called
accordingly.  The following list of code has been written and attached in
Appendix B.
Ø The turn rate of the navigation frame with respect to the earth in the

navigation frame.
Ø The turn rate of the earth with respect to the inertial frame in the

navigation frame.
Ø The turn rate of the body frame with respect to the navigation frame in the

body frame.
Ø Skew symmetric matrix for a 1 by 3 column vector.
Ø Update the directional cosine matrix of the body frame in the navigation

frame.
Ø Initialize the directional cosine matrix.
Ø Create the current platform angles.

With all these functions written an overall main file was written to call the
functions of the attitude computer.  This function will also control the transfer of
data between the resolution of specific forces, navigation computer and attitude
computer.

2.6. Experimental Testing

To simulate the movements of a land-based vehicle, a tested platform will be constructed.
This platform will have wheels to allow the user to push it in the desired direction to test
the IMU accelerometers.  The testing platform will also have a rotating axis that will
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IMU

12V Laptop

allow for testing the IMU gyroscopes.  There will be a laptop computer on the testing
platform to collect the inertial data.  Also, a battery pack will be onboard to power the
IMU.  A layout for the testing platform is shown in Fig. 2.6.1 and 2.6.2.

Figure 2.6.1 Top View of Testing Platform

Figure 2.6.2 Side View of Testing Platform
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Battery
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3. Tests and Results

3.1. Initial IMU Testing

To download the data from the IMU, a software program called Gyroview was included
with the IMU from Crossbow.  This program collects the data from the six axis of the
IMU along with the temperature and time and writes the data in ASCII format to a text
file.  This text file can be read directly into Matlab for data manipulation.  The IMU has
three modes with which data can be collected.

Voltage Mode : The analog sensors are sampled and converted to digital data with
1 mV resolution.  The data is 12-bit, unsigned.  The data is just voltages, which
would need to be converted to numerical angular rates and accelerations before
we could analyze the data.

Scaled Sensor Mode : The analog sensors are sampled, converted to digital data,
temperature compensated, and scaled to engineering units.  The digital data
represents the actual value of the quantities measured.  The acceleration data is
measured in units of gravity and therefore must be converted to force to be useful
data.  The angular rate data is measured in degrees per second.

Angle Mode : This mode acts the same as the scaled sensor mode, however it
outputs the yaw, pitch, and rolls angles with other data.

In the project, the scaled sensor mode is used.  The data is outputted to a text file in a
spreadsheet format, which can be edited easily in Matlab.  The angular mode was not
used because it gives the angles of the yaw, pitch, and roll, which is unnecessary data.
To begin the bias on all axis and the drift need to be analyzed.  The data was collected
when the IMU is in a stationary position.  The data collected is shown below.

Figure 3.1.1  Accelerometer and Gyroscope Bias
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From figure 3.1.1 it is determined that all of the axes of the IMU are extremely noisy and
have significant bias.

3.2. Euler Angle Initialization

In order to initialize the Euler angles in an inertial measurement system, the data from the
accelerometers and gyroscopes are compared to the known quantity of the rotation of the
earth and local gravity calculated in the gravity computer.  Because the data shown in
figure 3.1.1 has such a large bias and is very noisy, it is impossible to determine the
rotation of the earth and gravity from the given data.  To test this method, the directional
cosine matrix was created using this process while a 360-degree rotation was performed
on the z-axis.  The result of this method is shown in figure 3.2.1 below.

Figure 3.2.1  360-degree z axis rotation(earth rotation and gravity method)

From the data shown in figure 3.2.1, the z axis does rotate 360 degrees however there is
undesired rotation on both the x and y axis.  This shows the failure of the earth rotation
and gravity method to initialize the directional cosine matrix.  To prove that is
initialization method does not work in this situation the norm of the direction cosine
matrix in every time step should be approximately 1.  The norm turned out to be much
greater than 1 and is useless.

Cbn =
39.36 129.38 46.68
127.86 -39.89 -1.13
-2.03 -4.88 -2.73

Norm(Cbn) = 141.89

To initialize the directional cosine matrix to one that will work in this situation, the user
must enter the initial roll, pitch and yaw angles.  From the user inputs, a directional
cosine matrix is formed using the following equations.
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This method is less accurate because of the human error inherent in estimating the initial
roll, pitch and yaw angles.  However since the previous and more accurate method cannot
be used with the IMU300CC the user entered method is the only option.  To test this
method, the directional cosine matrix was created using the user entered Euler angles,
while a 360-degree rotation was performed on the z-axis.  The result of this method is
shown in figure 3.2.2 below.

Figure 3.2.2 360 z-axis rotation (user entered method)

The latter of the two methods produces much better results.  The user-entered method
produces errors in the x and y-axis, with a 360 degree z-axis turn, between positive and
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negative 0.5 degrees.  There is, however, a significant error and further filtering on all
axes is required.  The filtering methods are discussed in Section 3.4.

3.3. Euler Angle Computation
The Euler angles are computed directly from the directional cosine matrix after every
update.  The angles are computed using a series of equations shown below.

Roll:  
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Pitch:  { }31arcsin C−=θ               Eq. 3.3.2

Yaw:  
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When the system is pitched to an angle of positive or negative 90 degrees, the system
becomes unstable.  An alternate method to compute the roll and yaw is needed when the
system is close to this situation.  Without this correction, the computed roll, pitch and
yaw angles for a 360-degree pitch rotation is shown in Fig. 3.3.1.

Figure 3.3.1  Instability of system at (+/-)90 degrees pitch

The compensation method in the Matlab code is attached in Appendix B under the
function Euler(cbn,i).

3.4. Filtering Methods

To eliminate the noise and bias on the accelerometers and gyroscopes, statistical filters
must be used.  The data can be filtered in many ways.  To eliminate the bias on the
system an averaging filter is necessary.  The averaging filter designed finds a mean of the
data over the first 200 data points when the IMU is stationary.  Then, the mean is
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subtracted from the data to remove the bias.  It then checks if the data point is within the
minimum to maximum range of the first 200 data points. If the data is inside the
minimum to maximum range the IMU is assumed to be stationary and the data is set to 0.
If the data is outside the minimum to maximum range the IMU is considered to be
moving and just the mean is subtracted.  The result of this filter is shown in figure 3.4.1

Figure 3.4.1  Result of the averaging filter

This method was effective in eliminating some of the bias and some of the noise present.
Due to the large amounts of noise the averaging filter did not perform well enough and an
additional filtering method is required.

An alternate way to eliminate noise from a system is a median filter witch eliminates the
extremes over a window of data.  The filter sets the entire window to the median point of
the window of data.  This method was also ineffective because the noise on the system
was so large the median point became the noise extreme.  The median filter gave poor
results for all tests performed.  In combination with the averaging filter the median filter
also performed poorly.

The final filter attempted performed well, however, costs the system some accuracy.  The
final filter implemented is a variance statistical filter.  The filter takes the variance over a
specified range of data.  If the variance is below a specified value, determined from
testing, the IMU is considered stationary and the angular rate data is set to 0 and the
accelerations are set to the gravity acting upon that axis.  If the IMU is accelerating at a
constant rate or rotating at a constant rate the variance of the data will be close to 0 and
will be eliminated. The result of this filter is shown in figure 3.4.2 and 3.4.3 on the
following page.  The variance filter works very well for the angular rate data as shown in
figure 3.4.3. However, the acceleration data exhibited too much noise to accurately trust
that the variance was describing data and not strictly noise.  An alternate filter must be
used to filter the noisy accelerometer data.
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Figure 3.4.2  Stationary IMU Roll, Pitch and Yaw Results using Variance Filter

Figure 3.4.3  360-Degree Yaw Rotation Unfiltered(left) and Variance Filtered(right)

3.5 Position Calculation

In order to convert acceleration data to velocity and position, two integrations factoring in
the necessary corrections must be performed; integrating acceleration produces velocity
and integrating velocity produces position.  The corrections that must be accounted for
when integrating velocity include:  subtracting the force of gravity on the z-axis,
subtracting the Coriolis effect (the rotation of the earth), and updating the change in
attitude given by the directional cosine matrix.  However, when integrating the
acceleration twice, any bias seen on those axis will produce a quadratic function seen in
the position.  Also, any noise on the outputs of the accelerometers will distort the position
of the vehicle. As discussed above, the filtering methods worked well for the rotation rate
outputs from the three inertial gyroscopes, however, they were ineffective for the three
outputs from the accelerometers.  The filters were ineffective because the bias on the
accelerometers has a random value when powered up and changes values as the system
moves.  The changing bias along with the random startup value disallows a direct
subtraction of the bias at the input of the system.  There is also significant noise on the
accelerometers.  This noise increases in size when the inertial measurement unit is moved
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or rotated on any axis even if the movement or rotation is not on the axis being looked at.
Both the changing bias and the increased noise can be seen in figure 3.5.1 below.

Figure 3.5.1  Changing Bias and increased noise on X-axis,  No movement on X-axis
however rotation on Z-axis

In figure 3.5.1 the noise is very large which would indicate some movement in the X
direction.  There was however no movement in the X direction, only a rotation about the
Z-axis(Yaw).  Some of the increase in noise may be attributed to centripetal force,
however, because the rotation of the body is fairly slow, the centripetal force should not
contribute that much to the acceleration along the X-axis.  Also, in figure 3.5.1, the
changing bias can be seen.   The bias in this case ranges from about 0.1G to about -
0.05G.  This seemingly random change in bias has no pattern and cannot be predicted.
The bias change on all three accelerometer axis does not depend on the type of movement
or the axis on which the movement occurs.
When integrated, the noise and the bias on the accelerometers produces an unwanted
linear velocity as shown in figure 3.5.2 on the following page.  Using the first 200
stationary data points on each axis, the slope of the linear velocity is computed and
subtracted directly from the velocity of the entire data set on their respective axis.  This
provides some correction and improves the output of the position of the vehicle.  The
random bias on the system however is a very large problem.  Shown in figure 3.5.3 and
3.5.4 on the following page are the results of moving the inertial measurement unit one
meter north and then one meter south.  Because the bias of the system changes, the
movement north is not equivalent to the movement south.  When there is no movement at
all, the system shows a constant positive velocity.  When integrated, this constant positive
velocity becomes a linear change in position.   Due to the excessive noise and random
bias, position and velocity could not be determined using this inertial measurement unit.

Changing bias
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Figure 3.5.2  Unwanted linear velocity on stationary test

Figure 3.5.3 and 3.5.4  Velocity and position of system with random bias

4. Standards/Patents

4.1 Standards

A standard search was done on the Internet.  Places to purchase standards were found, but
there were no free standards listings found.  As of right now, standards have not been
purchased for this project.

4.2 Patents

Using a patent research tool linked to the Bradley University Cullom Davis Library
website the following patents have similarities to this project.
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Ø 6,463,366 Attitude determination and alignment using electro-optical sensors
and global navigation satellites

Ø 6,417,802 Integrated inertial/GPS navigation system

Ø 6,292,750 Vehicle positioning method and system thereof

All of the above patents have to do with a system integrating a GPS receiver and an
inertial measurement unit.  For these systems the GPS acts to initialize and keep the IMU
within error specs by resetting the system. This project does not depend on the error
compensation abilities of the GPS systems.  As of right now, there are no patents directly
applicable to this project.

5. Equipment List

1 – Inertial Measurement Unit
1 – Laptop computer
1 – 12V battery
1 – Testing Platform

6. Conclusions

The overall goal of the project was to determine the attitude of a vehicle using the inputs
from the inertial measurement unit.  The project goal was completed successfully.  As an
extension of this project, determining the position of the inertial measurement unit was
attempted for complete inertial navigation solutions.  However, due to the excessive noise
and random bias of the Crossbow IMU, position determination and, hence, a complete
navigation solution is not possible with this IMU unless a separate sensor like a
gyrocompass is used for a proper initialization.  Although complete inertial navigation is
not possible, this IMU can be applied to some useful short-term applications for detecting
accelerations and velocities.
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APPENDIX A – Practice Matlab Code

The following is code for Matlab converting the position of
a vehicle in earth-centered earth fixed coordinates to
Latitude Longitude and altitude.
Figure A.1 shows the position in ECEF coordinates
Figure A.2 shows the position in latitude, longitude and
altitude

From the website http:// www.geocode.com/eagle.html it was
found that the approximate address where the data was take
was 1701 E. Empire St. in Bloomington Il.

ECEF To NED
function [lat, lon, alt] = ecef2ned(gtime, ecefpos)

% ECEF2NED Convert ecef coordinates to NED coordinates and diplay.
%
% [latitude, longitude, altitude] = ecef2ned(gtime, ECEF position)
% ECEF Position Array = [x, y, z]
%
% Example:
% array.x
% array.y
% array.z
% *** The array parameters must have *.x, *.y, and *.z.
%
% Enter the time, and the x,y,z positions in ecef coordinates.
% This function will display two figures:
%           1:  x,y,z position in ecef coordinates and
%           2:  latitude, longitude, and altitude
% A negative longitude is the Western hemispere.
% A negative latitude is in the Southern hemisphere.
%
% Written  By: Brian Bleeker
%              Rob MacMillan

b = size(gtime);
gtime = gtime(:,1) - gtime(1,1);

figure(1), subplot(311), plot(gtime, ecefpos.x), grid
title('ECEF X Position')

subplot(312), plot(gtime, ecefpos.y), grid
title('ECEF Y Position')

subplot(313), plot(gtime, ecefpos.z), grid
title('ECEF Z Position')

a = 6378137.0;                                      %semi-major axis
(equatorial) radius
b = 6356752.3142;                                   %semi-minor axis
(polar) radius
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f = (a-b)/a;
e = sqrt(f*(2-f));                                  %eccentricity of
ellipsoid
len = length(ecefpos.x);                            %get length of data

for i = 1:len
    lon(i) = atan2(ecefpos.y(i), ecefpos.x(i));     %long = atan(y,x) -
direct
    lon(i) = lon(i)*180/pi;                         %convert to degrees

    h = 0;                                          %initialize
    N = a;
    flag = 0;
    j = 0;
    p = sqrt(ecefpos.x(i)^2 + ecefpos.y(i)^2);

    sinlat = ecefpos.z(i)/(N*(1-e^2)+h);            %First iteration
    lat(i) = atan((ecefpos.z(i)+e^2*N*sinlat)/p);
    N = a/(sqrt(1 - (e^2)*(sinlat^2)));
    prevalt = (p/cos(lat(i)))-N;
    prevlat = lat(i)*180/pi;

    while (flag < 2)                                %do at least 100
iterations
        flag = 0;
        sinlat = ecefpos.z(i)/(N*(1-e^2)+h);
        lat(i) = atan((ecefpos.z(i)+e^2*N*sinlat)/p);
        N = a/(sqrt(1 - (e^2)*(sinlat^2)));
        alt(i) = (p/cos(lat(i)))-N;
        lat(i) = lat(i)*180/pi;
        if abs(prevalt-alt(i)) < .00000001
            flag = 1;
        end
        if abs(prevlat-lat(i)) < .00000001
            flag = flag + 1;
        end
        j = j+1;
        if j == 100
            flag = 2;
        end
        prevalt = alt(i);
        prevlat = lat(i);
    end
end

figure(2), subplot(311), plot(gtime, lon), grid
title('NED Longitude')

subplot(312), plot(gtime, lat), grid
title('NED Latitude')

subplot(313), plot(gtime, alt), grid
title('NED Altitude')
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Figure A.1 Position in ECEF Coordinates

Figure A.2 position in latitude, longitude and altitude
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NED To ECEF
The following code converts North, East, Down coordinates to Earth Centered Earth
Fixed (ECEF) coordinates.

function [ecef_pos] = ned2ecef2(ned)
% NED2ECEF2 Convert NED coordinates to ECEF coordinates and diplay.
%
% [ECEF position] = ned2ecef2(ned position)
% NED Position Array [n,e,d]
%
% Example:
%   array.n
%   array.e
%   array.d
% *** The array parameters must have *.n, *.e, and *.d
%
% The NED positions are latitude longitude and altitude in decimal
degrees.
% A negative longitude is the Western hemispere.
% A negative latitude is in the Southern hemisphere.
%
% Written By: Brian Bleeker
%             Rob MacMillan

%a = earth_shape; %  call earth_shape to get earth data
a = 6378137 ; %a(1);
b = 6356752.3142; %a(2);
lat=ned.n*pi/180;
lon=ned.e*pi/180;
f = (a-b)/a;
e = sqrt(f*(2-f));
N = a /(sqrt(1-e^2*(sin(lat))^2));

%lat = ned.pos(1)/b + ned.geo_ref(1); % compute the current latitude
coslat = cos(lat);
sinlat = sin(lat);
coslon = cos(lon);
sinlon = sin(lon);

x = (N + ned.d)*coslat*coslon;

y = (N + ned.d)*coslat*sinlon;  % compute the current longitude

z = (N*(1 - e^2)+ ned.d)*sinlat;

%r0 = r0 + ned.geo_ref(3)*coslat;

ecef_pos.x = x;% assign positions
ecef_pos.y = y;
ecef_pos.z = z;
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The following sample data takes the NED coordinates for Dr. Ahn's house and converts it
into ECEF coordinates.  It then converts it back.  From this we are able to find the error
in the strictly mathematical model for processing the data.

Sample Data:

 » ned
ned =
    n: 40.752169
    e: -89.672332
    d: 250

» ecef=ned2ecef2(ned)
ecef =
    x: 27672.3433890974
    y: -4838712.35630367
    z: 4141776.28953698

» [lat, lon, alt] = ecef2ned(1, ecef)
lat =
           40.752176473724
lon =
                -89.672332
alt =
          249.999985948205

The error for the longitude calculation is very close to 0 as it is strictly an inverse tangent
operation.  When converting the latitude, the error is on the order of .00002%, which is
caused by the iteration process.  The error at this altitude is on the order of .00000006%.
As coordinates and altitude change the error will increase however we calculated that the
error at 2400 meters is approximately 2 millimeters and the error 12000 meters is
approximately 33 centimeters.  We feel that this is reasonable error as 12000 meters is
approximately the ceiling for commercial air travel (35000 ft.).
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APPENDIX B – Attitude Computer Matlab Code

Earth Parameters
function [earth]=earth_param()

% EARTH_PARAM  Returns the constant parameters of the earth for use
in different functions.
%
% [earth] = earth_param()
%
% Returns:
%         a - earth equitorial radius
%         b - earth polor radius
%         e - eccentricity of elipsoid
%         f - (a-b)/a
%         o - omega - earth turn rate
%
% Written By: Brian Bleeker
%             Rob MacMillan
earth.a = 6378137.0;
earth.b = 6356752.3142;
earth.f = (earth.a-earth.b)/earth.a;
earth.e = sqrt(earth.f*(2-earth.f));
earth.o = 7.292115E-5;

Turn Rate of the Earth With Respect to the Inertial Frame in the Navigation Frame
function [win] = trEARTH_IF_NED(lat)

% TREARTH_IF_LGF  Find the turn rate of the earth with respect to
the inertial
%                 frame in the local NED frame.
%
% [win] = trEARTH_IF_NED(Latitude)
%
% Latitude is in decimal degrees.
%
% Written By: Brian Bleeker
%             Rob MacMillan

earth=earth_param;

win(1) = earth.o * cos(lat*pi/180);
win(2) = 0;
win(3) = -earth.o * sin(lat*pi/180);

win = transpose(win);
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Turn Rate of the Navigation Frame With Respect to the Earth in the Navigation
Frame

function [wen] = trLGF_earth(ve, vn, lat, h)

% TRLGF_EARTH  Find the turn rate of the local geo frame with
respect to the earth.
%
% [wen] = trLGF_earth(Velocity east, Velocity north, Latitude,
altitude)
%
% Latitude is in decimal degrees.
%
% Written By: Brian Bleeker
%             Rob MacMillan

earth=earth_param;
Rn = (earth.a(1-earth.e^2))/((1-
earth.e^2*(sin(lat*pi/180))^2)^(3/2));
Re =  earth.a/((1-earth.e^2*(sin(lat*pi/180))^2)^(1/2));

wen(1) = ve/(Re+h);
wen(2) = -vn/(Rn+h);
wen(3) = (-ve*tan(lat*pi/180))/(Re+h);

wen = transpose(wen);

Turn Rate of the Body Frame With Respect to the Navigation Frame in the Body
Frame

function [wnb]=trBODY_NED_BODY(win,wen,wib,cbn)

% TRBODY_NED_BODY   Find the turn rate of the vehicle with respect
to the navigaton
%                   frame in the body frame.
%
% [wnb] = trBODY_NED_BODY(turn rate of the earth w.r.t inertial
frame in local geo frame,
%                         turn rate of local geo frame w.r.t the
earth,
%                         raw angular data from IMU, Directional
cosine matrix)
%
%
% Written By: Brian Bleeker
%             Rob MacMillan

wnb=wib-cbn*(wen+win);



25

Skew Matrix
function [omeganb] = skew(wnb)
% SKEW(WNB)    Derive the skew matrix of wnb
%     WNB = [wnb.x,wnb,y,wnd.z]
% skew(wnb)
%            0     -wnb.z     wnb.y
%            wnb.z     0     -wnb.x
%           -wnb.y  wnb.x       0
%
% Written By: Brian Bleeker
%             Rob MacMillan
omeganb = [0,-wnb.z,wnb.y;wnb.z,0,-wnb.x;-wnb.y,wnb.x,0];

Update Directional Cosine Matrix
function [cbn2]=update_cbn(cbn, delt, omeganb)

% UPDATE_CBN    Update the directional cosine matrix to compute
%               new attitude angles.
%
% [cbn] = update_cbn(cbn - old values, delta time, skew(wnb))
%
% Written By: Brian Bleeker
%             Rob MacMillan
%
cbn2 = cbn + delt[cbn*omeganb];

Gravity Computer

function [g] = gravity(lat, h, earth)
% gravity(lat, h, earth)    Derive the local gravity vector.
%                           Caused by the mass attraction of the Earth
and the centripetal
%                           acceleration caused by the Earth's
rotation.
%
% g = [g.eg, g.ng, g.g]'
% eg : the meridian deflection
% ng : the deflection perpendicular to the meridian
%
% Written By: Brian Bleeker
%             Rob MacMillan

%earth = earth_param;

g = 9.780318*(1+5.3024*10^-3*(sin(lat*pi/180))^2-5.9*10^-
6*(sin(2*lat*pi/180))^2);
g = g/(1+h/earth.ro)^2;
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Covariance Filter

function [covf, w2]=cov_filter3(f,w,range,g,gtime)

% Written By: Brian Bleeker
%             Rob MacMillan

len=length(w.r);
flag=[0,0,0];
for i = 1 : range + 1 : (len)
   if (i + range) < len
      temp6(i:i+range)= cov(f.x(i:i+range));
      if cov(f.x(i : (i + range))) > .01
         flag(1)=flag(1)+1;
         covf.x(i:i+range) = 1;
         f2.x(i : (i + range)) =(f.x(i : (i + range)));
         if flag(1) == 1
             tmp = cov(f.x(i:i+range));
         end
         if tmp < .5
             covf.x(i:i+range)=-1;
             f2.x(i : (i + range)) = 0;
         end
      else
         covf.x(i:i+range) = -1;
         f2.x(i : (i + range)) = 0;
      end
      temp5(i:i+range)= cov(f.y(i:i+range));
      if cov(f.y(i : (i + range))) > .01
         flag(2)=flag(2)+1;
         covf.y(i:i+range) = 1;
         f2.y(i : (i + range)) =(f.y(i : (i + range)));
         if flag(2) == 1
             tmp2 = cov(f.y(i:i+range));
         end
         if tmp2 < .5
             covf.y(i:i+range)=-1;
             f2.y(i : (i + range)) = 0;
         end
      else
         covf.y(i:i+range) = -1;
         f2.y(i : (i + range)) = 0;

      end
      temp4(i:i+range)= cov(f.z(i:i+range));
      if cov(f.z(i : (i + range))) > .01
         flag(3)=flag(3)+1;
         covf.z(i:i+range) = 1;
         f2.z(i : (i + range)) =(f.z(i : (i + range)));
         if flag(3) == 1
             tmp3 = cov(f.z(i:i+range));
         end
         if tmp3 < .5
             covf.z(i:i+range)=-1;
             f2.z(i : (i + range)) = 0;
         end
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      else
         covf.z(i:i+range) = -1;
         f2.z(i : (i + range)) = 0;

      end

      temp1(i:i+range)= cov(w.r(i:i+range));
      if cov(w.r(i : (i + range))) > 2.8
         w2.r(i : (i + range)) = (w.r(i : (i + range)));
      else
         w2.r(i : (i + range)) = 0;
      end
      temp2(i:i+range)= cov(w.p(i:i+range));
      if cov(w.p(i : (i + range))) > 7.2
         w2.p(i : (i + range)) = (w.p(i : (i + range)));
      else
         w2.p(i : (i + range)) = 0;
      end
      temp3(i:i+range)= cov(w.y(i:i+range));
      if cov(w.y(i : (i + range))) > 1
         w2.y(i : (i + range)) = (w.y(i : (i + range)));
      else
         w2.y(i : (i + range)) = 0;
      end

   else
      temp6(i : len) = cov(f.x(i : len));
      if cov(f.x(i : (len))) > .01
         covf.x(i : len) = 1;
         f2.x(i : ( len)) = (f.x(i : (len)));
         if tmp < .5
             covf.x(i:len)=-1;
             f2.x(i : (i + len)) = 0;
         end
      else
         covf.x(i : len) = -1;
         f2.x(i : (i + len)) = 0;

      end
      temp5(i : len) = cov(f.y(i : len));
      if cov(f.y(i : (len))) > .01
         covf.y(i : len) = 1;
         f2.y(i : ( len)) = (f.y(i : (len)));
         if tmp2 < .5
             covf.x(i:i+range)=-1;
             f2.y(i : (i + len)) = 0;
         end
      else
         covf.y(i : len) = -1;
         f2.y(i : (i + len)) = 0;

      end
  temp4(i : len) = cov(f.z(i : len));

      if cov(f.z(i : (len))) > .01
         covf.z(i : len) = 1;
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         f2.z(i : ( len)) = (f.z(i : (len)));
         if tmp3 < .5
             covf.x(i:i+range)=-1;
             f2.z(i : (i + len)) = 0;
         end
      else
         covf.z(i : len) = -1;
         f2.z(i : (i + len)) = 0;

      end

      temp1(i : len) = cov(w.r(i : len));
      %cov(w.r(i:len))
      if cov(w.r(i : (len))) > 2.8
         w2.r(i : (len)) = (w.r(i : (len)));
      else
         w2.r(i : (len)) = 0;
      end
      temp2(i : len) = cov(w.p(i : len));
      %cov(w.p(i:len))
      if cov(w.p(i : (len))) > 7.2
         w2.p(i : (len)) = (w.p(i : (len)));
      else
         w2.p(i : (len)) = 0;
      end

  temp3(i : len) = cov(w.y(i : len));
      %cov(w.y(i:len))
      if cov(w.y(i : (len))) > 1
         w2.y(i : (len)) = (w.y(i : (len)));
      else
         w2.y(i : (len)) = 0;
      end
  end
end

Cbn Initialization
function [cbn] = cbninit(yaw, pitch, roll)
% CBNINIT(yaw, pitch, roll)    Derive the initial directional cosine
matrix
%
% (cbn)
%            {cos.p*cos.y     -cos.r*sin.y + sin.r*sin.p*cos.y
sin.r*sin.y + cos.r*sin.p*cos.y}
%            {cos.p*sin.y      cos.r*cos.y + sin.r*sin.p*sin.y    -
sin.r*cos.y + cos.r*sin.p*sin.y}
%            {   -sin.p               sin.r*cos.p
cos.r*cos.p             }
%
% Written By: Brian Bleeker
%             Rob MacMillan

yaw = yaw*pi/180;
pitch = pitch*pi/180;
roll = roll*pi/180;
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cbn = [cos(pitch)*cos(yaw), -cos(roll)*sin(yaw) +
sin(roll)*sin(pitch)*cos(yaw), sin(roll)*sin(yaw) +
cos(roll)*sin(pitch)*cos(yaw);
       cos(pitch)*sin(yaw), cos(roll)*cos(yaw) +
sin(roll)*sin(pitch)*sin(yaw), -sin(roll)*cos(yaw) +
cos(roll)*sin(pitch)*sin(yaw);
       -sin(pitch), sin(roll)*cos(pitch), cos(roll)*cos(pitch)];

Euler Angle Computation

function euler(cbn, i)
% euler(cbn, position)    Derive the euler angles from cbn
%
% Written By: Brian Bleeker
%             Rob MacMillan

global angles;

angles.p(i) = (asin(-cbn(3,1)))*180/pi;

if abs(angles.p(i)-90) <= 1
   if rem(i,2)==0
      angles.r(i) = angles.r(i-1);
      angles.y(i) = atan2((cbn(2,3)-
cbn(1,2)),(cbn(1,3)+cbn(2,2)))*180/pi + angles.r(i);
   else
      angles.y(i)=angles.y(i-1);
      angles.r(i) = -atan2((cbn(2,3)-
cbn(1,2)),(cbn(1,3)+cbn(2,2)))*180/pi + angles.y(i);

end
elseif abs(angles.p(i)+90) <= 1
   if rem(i,2)==0
      angles.r(i) = angles.r(i-1);
      angles.y(i) = atan2((cbn(2,3)+cbn(1,2)),(cbn(1,3)-
cbn(2,2)))*180/pi - angles.r(i);
   else
      angles.y(i)= angles.y(i-1);
      angles.r(i) = atan2((cbn(2,3)+cbn(1,2)),(cbn(1,3)-
cbn(2,2)))*180/pi - angles.y(i);

end

else
angles.y(i) = (atan2(cbn(2,1),cbn(1,1)))*180/pi;
angles.r(i) = (atan2(cbn(3,2),cbn(3,3)))*180/pi;

end

Average/Velocity Slope Filter

function [ave, mx, mn, slope] = average(acc,w,g,cbn,delt)

% Written By: Brian Bleeker
%             Rob MacMillan

temp_x = 0;
temp_y = 0;
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temp_z = 0;
temp_wr = 0;
temp_wp = 0;
temp_wy = 0;
mx.x = -10;
mn.x = 10;
mx.y = -10;
mn.y = 10;
mx.z = -10;
mn.z = 10;
mx.wr = -10;
mn.wr = 10;
mx.wp = -10;
mn.wp = 10;
mx.wy = -10;
mn.wy = 10;

for (i = 1:400)
    a = [acc.x(i);acc.y(i);acc.z(i)];
    a = cbn * a;
   temp_x = a(1) + temp_x;
    temp_y = a(2) + temp_y;
    temp_z = a(3) + temp_z;
    temp_wr = w.r(i) + temp_wr;
    temp_wp = w.p(i) + temp_wp;
    temp_wy = w.y(i) + temp_wy;
    if a(1) < mn.x
       mn.x = a(1);
    elseif a(1) > mx.x
          mx.x = a(1);
    end
    if a(2) < mn.y
       mn.y = a(2);
    elseif a(2) > mx.y
          mx.y = a(2);
    end

if a(3) < mn.z
       mn.z = a(3);
    elseif a(3) > mx.z
          mx.z = a(3);
    end

if w.r(i) < mn.wr
       mn.wr = w.r(i);
    elseif w.r(i) > mx.wr
          mx.wr = w.r(i);
    end

if w.p(i) < mn.wp
       mn.wp = w.p(i);
    elseif w.p(i) > mx.wp
          mx.wp = w.p(i);
    end

if w.y(i) < mn.wy
       mn.wy = w.y(i);
    elseif w.y(i) > mx.wy
          mx.wy = w.y(i);
    end
    a(3)=a(3)-g;
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    if i > 1
    vel.x(i) = a(1)*delt + vel.x(i-1);
    vel.y(i) = a(2)*delt + vel.y(i-1);
    vel.z(i) = a(3)*delt + vel.z(i-1);
    else
    vel.x(i) = a(1)*delt;
    vel.y(i) = a(2)*delt;
    vel.z(i) = a(3)*delt;
    end

end
figure(100000);plot(vel.x)
figure(100001);plot(vel.y)
figure(100002);plot(vel.z)

ave.x = temp_x/200;
ave.y = temp_y/200;
ave.z = temp_z/200-g;
ave.wr = temp_wr/200;
ave.wp = temp_wp/200;
ave.wy = temp_wy/200;
mx.z = mx.z-g;
mn.z = mn.z-g;
slope.n = vel.x(400)/400;
slope.e = vel.y(400)/400;
slope.d = vel.z(400)/400;

Navigation Equation - Determine Position

function [pos, vel] = position_1(f, v, lat, h, g, delt, earth, slope)
% [position, velocity] = position(force, velocity, lat, height,
gravity, change in time, earth)
%
%                    The Navigation Equation
%
% Written By: Brian Bleeker
%             Rob MacMillan

%earth = earth_param;

%rate of change of velocity
acc.n = f.n - 2*earth.o*v.e*sin(lat*pi/180)+(v.n*v.d-
(v.e)^2*tan(lat*pi/180))/(earth.ro + h) ;%+ .001225;%- slope.n;
acc.e = f.e +
2*earth.o*(v.n*sin(lat*pi/180)+v.d*cos(lat*pi/180))+(v.e/(earth.ro+h))*
(v.d + v.n*tan(lat*pi/180));% - .00025;%- slope.e;
acc.d = f.d - 2*earth.o*v.e*cos(lat*pi/180)-
(((v.e)^2+(v.n)^2)/(earth.ro+h)) - g;% - .0005;% - slope.d;

%change rate of change of velocity into acceleration and integrate to
get velocity:  V/t*t
if (abs(acc.n*delt) < .0005)
    vel.n = v.n;% - slope.n + acc.n*delt;% - .00005;
else
    vel.n = acc.n*delt + v.n - slope.n-
.0003125;%.0005;%.000125;%.000265;
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end
vel.e = acc.e*delt + v.e - slope.e;
vel.d = acc.d*delt + v.d - slope.d;

%integrate velocity get position
pos.n = vel.n*delt;
pos.e = vel.e*delt;
pos.d = vel.d*delt;

Latitude, Longitude, and Altitude Position Determination

function [pos] = position2(v, lat, h, delt, earth)
% [position] = position2(velocity, lat, height, earth)
%
%                    pos.latitude(i)
%                       .longitude(i)
%                       .height
%
% Written By: Brian Bleeker
%             Rob MacMillan

%earth = earth_param

pos.lat = v.n/(earth.ro + h);
pos.lon = v.e*sec(lat*pi/180)/(earth.ro + h);
pos.h = v.d;

pos.lat = pos.lat*delt;
pos.lon = pos.lon*delt;
pos.h   = pos.h*delt;

Main Program

clear global
clear all
global angles;

[gtime, w.r, w.p, w.y, f.x, f.y, f.z, temp, timecounts]...
   =textread('C:\temp\IMU\lab8\data2\meter_x_1_back.txt','%f %f %f %f
%f %f %f %f %f','headerlines',8);%,'delimiter',',');

b = size(gtime);
gtime = gtime(:,1) - gtime(1,1);

f.x=f.x*9.8;
f.y=f.y*9.8;
f.z=f.z*9.8;
%%%ATTITUDE COMPUTER

%Enter the roll, pitch, yaw
yaw = 0;%12.5;%77.5
pitch = 0;%-.115;%-.115;
roll = 0;%-.535;
range = 17;
lat = 40;
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lon = -89.6175;
delt = 1/207;
delt2 = range*delt;
h = 607;
i = 1;
j = 1;
time = 0;

earth = earth_param(lat); %obtain earth
data
earth.ro;
g = gravity(lat, h, earth);

[covf,w] = cov_filter3(f,w,range,g,gtime); %median filter

b

win = trEARTH_IF_NED(lat, earth); %turn rate
of the earth w.r.t inertial frame in the NED frame
wib = [w.r(1)*pi/180;w.p(1)*pi/180;w.y(1)*pi/180];
%cnb = angle_adjust(acc, g, wib, lat, earth); %inital
directional cosine matrix
cnb = cbninit(yaw,pitch, roll);
cbn = cnb'; %get cnb to relate NED to
body for wnb
euler(cbn, i); %obtain the euler
angles

a = [0;0;g];
a = cbn * a;
acc.n=a(1);
acc.e=a(2);
acc.d=a(3);

[ave, mx, mn, slope] = average(f,w,g,cbn,delt);
%FILTER

%f.x = f.x - slope.n;
%f.y = f.y - slope.e;
%f.z = f.z - slope.d;

%[f] = acc_filter(f, ave, mx, mn, g, cnb);

%w = ang_filter(w, ave, mx, mn);

for i = 1:b
   if i == 1
        vtemp.n = 0;
        vtemp.e = 0;
        vtemp.d = 0;

        %covftemp.x = covf.x(i);
        %covftemp.y = covf.y(i);
        %covftemp.z = covf.z(i);

        %acc = acc_filter2(acc, g, covftemp, acc, g, cnb);
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        [pos, vtemp] = position_1(acc, vtemp, lat, h, g, delt, earth,
slope);
        v.n(1) = vtemp.n;
        v.e(1) = vtemp.e;
        v.d(1) = vtemp.d;
        p.n(1) = pos.n;%0;
        p.e(1) = pos.e;%0;
        p.d(1) = pos.d;%0;

        epostemp = position2(vtemp, lat, h, delt, earth);

        epos.lat(1) = epostemp.lat + lat;
        epos.lon(1) = epostemp.lon + lon;
        epos.h(1)   = epostemp.h   + h;

     else
        euler(cbn, i)                     %obtain the
euler angles

        earth = earth_param(epos.lat(i-1)); %obtain
earth data

g = gravity(epos.lat(i-1), epos.h(i-1), earth); %Calculate
new gravity

        %covftemp.x = covf.x(i);
        %covftemp.y = covf.y(i);
        %covftemp.z = covf.z(i);

        acc.n = f.x(i);
        acc.e = f.y(i);
        acc.d = f.z(i);
        %acc = acc_filter2(acc, g, covftemp, accprev, gprev, cnb);

        if rem(i,250)==0
           cnb
           acc
        end

        a = [acc.n;acc.e;acc.d];
        a = cbn * a;
        acc.n = a(1);
        acc.e = a(2);
        acc.d = a(3);

        if rem(i,250)==0
           cbn
           acc

i
        end

        [pos, vtemp] = position_1(acc, vtemp, lat, h, g, delt, earth,
slope);
        v.n(i) = vtemp.n;
        v.e(i) = vtemp.e;
        v.d(i) = vtemp.d;
        p.n(i) = pos.n + p.n(i-1);            %positions
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        p.e(i) = pos.e + p.e(i-1);
        p.d(i) = pos.d + p.d(i-1);

        epostemp = position2(vtemp, epos.lat(i-1), epos.h(i-1), delt,
earth);

        epos.lat(i) = epostemp.lat + epos.lat(i-1);
        epos.lon(i) = epostemp.lon + epos.lon(i-1);
        epos.h(i)   = epostemp.h   + epos.h(i-1);

        wib = [w.r(i)*pi/180; w.p(i)*pi/180; w.y(i)*pi/180]; %IMU
angular rates
    end

    win = trEARTH_IF_NED(epos.lat(i), earth); %turn rate
of the earth w.r.t inertial frame in the NED frame
    wen = trLGF_earth(vtemp, epos.lat(i), epos.h(i), earth); %turn
rate of the NED frame w.r.t earth in the NED frame
    wnb = trBODY_NED_BODY(win,wen,wib,cnb); %turn rate
of the body w.r.t NED in the body frame
    skewwnb = skew(wnb);                        %skew
wnb
    cbn = update_cbn(cbn, delt, skewwnb);   %update the
directional cosine matrix
    cnb = cbn';
    accprev = acc;
    gprev = g;
 end

%Roll, Pitch, Yaw
figure(1), subplot(311), plot(angles.r), grid
title('Roll - Time in seconds')

subplot(312), plot(angles.p), grid
title('Pitch - Time in seconds')

subplot(313), plot(angles.y), grid
title('Yaw - Time in seconds')

%Position (m)
figure(22), subplot(311), plot(gtime, p.n), grid
title('Position Movement North')

subplot(312), plot(gtime, p.e), grid
title('Position Movement East')

subplot(313), plot(gtime, p.d), grid
title('Position Movement Down')

%Position (m)
figure(23), subplot(311), plot(gtime, v.n), grid
title('Velocity Movement North')

subplot(312), plot(gtime, v.e), grid
title('Velocity Movement East')
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subplot(313), plot(gtime, v.d), grid
title('Velocity Movement Down')

%Position (lat, lon, h)
figure(3), subplot(311), plot(gtime, epos.lat), grid
title('Position Movement North')

subplot(312), plot(gtime, epos.lon), grid
title('Position Movement East')

subplot(313), plot(gtime, epos.h), grid
title('Position Movement Down')
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IMU Specifications:

IMU300CC :
http://www.xbow.com/Products/Product_pdf_files/Inertial_pdf/IMU300CC.pdf

IMU400CC :
http://www.xbow.com/Products/Product_pdf_files/Inertial_pdf/IMU400CC.pdf

IMU700CA :
http://www.xbow.com/Products/Product_pdf_files/Inertial_pdf/IMU700CA.pdf

MicroPak and MicroPak II:
http://www.systron.com/


