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I. Abstract 

Many robotics applications require a low cost mobile platform that can be 
customized by the user.  The design, construction and testing of such a 
platform (known as Traxx) is described in this report.  Traxx consists of 3 
subsystems: the microcontroller, the digital logic feedback, and motors 
with power electronics. An 8051 microcontroller provides the control 
system and memory storage for the commands.  Traxx utilizes closed loop 
feedback via motor encoder wheels to allow for precise movement.  The 
feedback of the system is near real time since it utilizes digital logic in the 
form of two complex programmable logic devices (CPLD) that were 
designed using VHDL.  There are two DC motors that make up the 
electromechanical subsystem.  They are controlled directly by two H-
Bridge transistor arrays, which provide direction control and power 
amplification.  The complete system was verified and calibrated using a 
test program. 
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II. Introduction 

The Electrical Engineering Department purchased a robotic platform for 
about $3000 called Pioneer 2.  This platform allows to precise control in 
tele-robotics applications, however the cost was quite high.  The main 
purpose of this project was to build a precision robotics platform that cost 
considerably less then the Pioneer 2, and was versatile for use in future 
projects. 

This platform is a basic close loop controlled vehicle that is capable of very 
precise movement (1cm and 1degree) while being able to be upgraded for 
future applications.  The vehicle is completely self contained, and is 
controlled via a microprocessor and two CPLDs. 
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III. Functional Description 

Inputs and Outputs 

Inputs 

Inputs to the system are obtained from a keypad via a series of key 
presses.  The input will be in the form of a distance or turning angle, 
associated with the desired movement.  Movements allowed are: forward, 
backward, turn left, and turn right.  The keypad also selects the desired 
movement.  These are described below in the user interface section 

  
 Outputs 

  
There are two outputs: vehicle movement and LCD data.  Vehicle 
movement is the end result of all keypad inputs.  The status of each motor 
is displayed on the LCD, along with several user interface menus 
associated with specific keypad commands. 

 

 

User Interface 

The user programs the vehicle from the onboard keypad.  The user 
interface is very simple, due to the nature of the coding required.  To 
program the vehicle, the user has several choices: 

• By pressing 2, the forward movement screen appears 

• By pressing 8, the backward movement screen appears 

• By pressing 4, the turn left screen appears 

• By pressing 6, the turn right screen appears 

After selecting the desired movement, a new menu is displayed, which 
provides further instruction to the user.  The user then enters the desired 
distance or angle, and presses “E” to execute the command.  Key “F” can 
be pressed to exit the current menu.  The UI is very simple, but very 
effective.  The UI has been thoroughly tested, ensuring the robot executes 
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the proper command entered by the user.  The robot also displays the 
status of the motors: speed, distance and angle turned, while the robot is 
moving.  The user can read the display to ensure the proper function of 
the vehicle. 

Specifications 

Table 1.  The specification for the Precision Robotics Platform. 

Vehicle 

Dimensions (L x W x H):  31.4cm x 46.4cm x 21cm 
Weight (approx): 28lbs 
Power: Dual 12volt, 7.2Ah Lead Acid Batteries 
 

Drive Train 

Drive: 2 Pittman GM9236 Series Motors with 1:65.5 Gearing 
Drive Wheels:  5cm Wide, 16cm diameter Soft Foam 
Top Speed:  25 cm per second 
Minimum Speed:  5 cm per second 
Speed increments:  0.005cm per second 
Turning: 1degree increments, 128 360degree turns per command 
Distance: 1cm increments, 256 meters max per command 

Control System 

Steady State Error < 3% 
Overshoot < 20% 
Settling Time < 1 second  
        
PWM Divisions: 1791 or .055% increments 
PWM Frequency: 500 Hz 
Motor Control Input Signal: 0-255 counts 
 

 5



 

IV. System level Block Diagram 

To implement the functions described in the previous section, several 
subsystems need to be designed.  These are shown in Fig. 1.  The main 
subsystem is the microprocessor, which implements the control system, 
user interface, PWM, and any diagnostics required.  The CPLD 
subsystem is used to provide feedback about the speed, distance 
traveled, and angle turned.   

The microprocessor provides all signals required to control both motors’ 
speed and direction based on user inputs and feedback from the CPLDs.  
It contains a user interface that allows the user to program in commands 
one at a time for immediate execution.  It also continuously monitors data 
from the CPLD which is used as feedback to ensure that the commands 
are executed properly.  See Fig. 2 for details of the process loops that are 
utilized. 

The CPLDs are the interface between the motors and microprocessor. It 
accepts and moves data as shown in Fig. 3. First, it receives a request 
from the microprocessor for data from a register via 3 address lines.  The 
registers hold a distance count (number of cm traveled), angle count 
(number of degrees turned) or frequency count (speed of the motors) 
which is derived from the motor encoder wheels.  When the addressing 
matches the address of the register (registers are addressed using 3 
address lines from the microprocessor giving them addresses 0 through 7) 
and bus command lines (select and read bar must be low to access the 
registers) are correct, the data is put onto the microprocessor bus and 
received by the microprocessor. 

The H-bridges amplify the PWM signal for use by the motors along with 
controlling direction, and providing power and charging abilities for the 
whole platform.  
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Figure 1. The complete system block diagram. 
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Figure 2.  The Software Flowchart for the microprocessor. 
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Figure 3.  The logic flowchart for the CPLDs. 
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V. Subsystems 

Microprocessor 

 The assembly code used in the Traxx project was written by Rob 
Shockency.  The code is modular, so it is easy to use and debug.  It also 
consists of several modules.   

Initialization 

 The startup program runs several initialization routines for the 8051 
based EMAC controller.  This is shown in Fig. 2.  First the LCD and 
keypad are initialized.  Several other important functions are enabled such 
as the timers.  “Timer 0” is set up to interrupt ever 1/20 of a second or at 
the rate of 20 Hz.  The “timer 0” interrupt provides the timing for the control 
system and LCD refresh rate. The control system is used to control the 
motors by checking the measured speed and comparing it to the set 
speed. 

“Timer 2” is also set in the startup routine.  “Timer 2” is used to create the 
PWM signals, which are used to control the motors.  “Timer 2” can be set 
up to automatically create three PWM signals by some internal hardware, 
and the outputs appear on pins 1.1, 1.2, and 1.3.  This mode of operation 
is very useful because it requires no continuous program for PWM 
generation.  The PWM used has a 500 Hz frequency and a duty cycle 
range of 0% to 100%.  The PWM was initialized by the following internal 
variables: 

 
• Registers: CRCH and CRCL  

o PWM period 

o F900 (Hex) sets the period to 500 Hz 

• Registers: CCH1 and CCL1 

o PWM 1 complement point 

o FFFF (Hex) = 0% duty cycle 

o F900 (Hex) = 100% duty cycle 
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• Registers: CCH2 and CCL2 

o PWM 2 complement point 

o FFFF (Hex) = 0% duty cycle 

o F900 (Hex) = 100% duty cycle 

 
Startup also sets all flags to their initial values, along with setting up the 
memory, and defining the starting point for the stack.  Once all the 
important features are set up, the program jumps to the wait loop located 
in the “Main” module. 

Main 

The module “Main” (as shown in Fig. 2 by the wait block) contains the 
infinite wait loop, where the program waits for the next interrupt to occur.  
The wait loop is also where the interrupts return after being completed.  
Main also has the initial coding used to start the user interface.  The wait 
loop continuously checks “keypad_flag.”  When a key is pressed, the 
keypad flag is set, and the wait loop responds to the pressed key.  If the 
key pressed corresponds to a programming button, the appropriate 
function is called.  Such function include: Forward programming, backward 
programming, turn left programming, and turn right programming. 

 
Movement Programming 

A programming function is called when the user presses the appropriate 
programming key, such as forward as displayed in Fig. 2.  Each function 
has a separate LCD screen corresponding to the desired movement and 
required input: 

 

• When the “Program Forward” button is pressed, the display changes 
to:  “Move forward? (CM.)” 

• When the “Program Backward” button is pressed, the display changes 
to: “Move backward? (CM.)” 

• When the “Program Right” button is pressed, the display changes to: 
“Turn Right? (Degrees)  Enter the # of 180’s” then it asks the user: 
“Turn Right? (Degrees)  Enter the # of 1’s” 

• When the “Program Left” button is pressed, the display changes to: 
“Turn Left? (Degrees)  Enter the # of 180’s” then it asks the user: 
“Turn Left? (Degrees)  Enter the # of 1’s” 
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After the LCD information is presented, the program waits for user inputs.  
Each key press is counted, and the result is pushed onto the stack.  After 
the data is entered, the user presses “E” to finish the process.  The 
program then pops all the data off the stack, calls a conversion function to 
convert the key presses into an actual value stored in memory.  Then, the 
appropriate function is called to actually move the vehicle.   The user can 
also press “F” to exit the programming screen. 

Movement Program 

 Each type of movement is performed by a specific function.  However, 
forward and backward movement is contained in one module, while 
turning left and right are contained in another.  The only difference 
between the “Move Forward” and “Move Backward” functions are the 
setting associated with the direction as seen in Fig. 2.  Direction is 
controlled by setting or clearing P4.1 and P4.2, motor 1 and motor 2 
respectively.  The same is true for turning.  To turn right, the left motor 
must move forward, while the right motor spins backward.  To turn left, the 
opposite must occur.  The move forward and backward programs use two 
eight bit numbers to represent distance traveled.  The variables below are 
used in the program: 

  
• Go_Move_Low: Low order distance (Range: 0 - 99 centimeters). 

• Go_Move_High: high order distance (Range: 0 - 255 meters). 

• Turn_180: The number of 180’s to turn (Range for the number of 180’s 
possible: 0 - 255 = 0 to 45900 degrees). 

• Turn_1: The number of 1 degree increments to turn. (Range for the 
number of 1’s possible: 1 - 179) 

o To turn 190 degrees, Turn_180 = 1 and Turn_1 = 10. 

 180 + 10 = 190 

 
Control System 

The speed of each motor is controlled by an automatic PWM adjustment 
using closed loop control as shown in Fig. 4.  The CPLD provides the 
measured speed of each motor at a refresh rate of 10 Hz.  The speed is 
calculated by taking a frequency count of the encoder of each motor.  The 
CPLD converts the encoder frequency to an 8 bit representation as a 
value between 0 and 255:  0 corresponds to 0 Hz from the encoder while 
255 corresponds to 42 KHz.  The program compares the current speed 
measurement to the desired speed.  If the motor is running too slow, the 
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PWM duty cycle is increased.  If the motor is running too fast, the PWM 
duty cycle is decreased.  

 

 

Figure 4.  A block diagram of the closed loop system. 

The control program is called every “timer 0 interrupt”, which occurs ever 
1/20 of a second.  Since the control system adjusts the PWM 20 times per 
second, and the PWM is divided into 1791 parts, it takes 89.55 seconds 
for the PWM to go from 0% to 100%.  To make the response time faster, 
the program checks for “Spans” between the measured speed and 
desired speed.  The span is the difference between the measured value 
and desired value.  The amount of the PWM increment/decrement 
depends on the span.  The relationship is as follows: 

• If (span > 30) 

o PWM is incremented/decremented by 50. 

o Response time = 1.791 seconds to go from 0% to 100% duty 
cycle.  

• If(span > 15) 

o PWM is incremented/decremented by 5. 

o Response time = 5.97 seconds to go from 0% to 100% duty 
cycle. 

• If(span > 2) 

o PWM is incremented/decremented by 1. 
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o Response time = 89.55 seconds to go from 0% to 100% duty 
cycle. 

By adding the span checking, the PWM response time is greatly 
increased, yet, it can still precisely adjust the PWM to the desired speed.  
However, this method for controlling the motors does not provide for 0% 
steady state error and leads to slight oscillation.  The control system is 
also interrupt driven, so the microprocessor can do multiple tasks, not just 
speed control of the two motors. 

Once the user enters the distance to travel, the program turns on both 
motors to control speed 50.  The vehicle begins to move, and the program 
continuously monitors the CPLD’s calculated distance.  The CPLD 
provides real time feedback, and the microprocessor can check the data 
1000s of times per second.  When the calculated distance is within 50 cm, 
the vehicle slows down to control speed 40, and it slows down to control 
speed 30 when the vehicle is within 15 cm of the desired distance.  The 
turning code works the same, but the vehicle does not vary its speed, it 
only travels at control speed 50. 

CPLD 

A CPLD was used since it is the most efficient way to do all of the counting 
that is required for the distance and angle calculations.  It is also a much 
more accurate way of determining the current speed of the motors 
compared to frequency to voltage converters.  FPGAs were not used.  
First, CPLDs hold their program even after power is removed while 
FPGAs require a boot ROM.  All of this logic is implemented using VHDL 
and Xilinx Foundation ISE software. 

The CPLDs have 3 functions: frequency counting, angle counting, and 
distance counting, which they perform constantly so the microprocessor 
can access the data from the registers.  Each function is listed defined and 
explained below along with the address that is used to access them. 

Frequency count 

The frequency counting code is use to keep the motors in synchronization.   
This is implemented on CPLD 1 and is shown if Fig. 3.  This was a 
replacement for the original frequency to voltage converters and A/D 
conversion.  This was quite inaccurate and also a poor way to do it 
because of the multiple conversions.  Since it was know that the micro 
processor could not compute this due to lack of resources, the CPLD was 
used.  The code translates into a set of counters, one 4bit and one 8bit.  
These correspond to the two counts that are done. 
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A 42 Khz signal is the input and the output is an 8bit number that is 
proportional to the frequency.  This is outputted based off of a 10hz signal.  
Doing the math, 42,000 divided by 256 is approximately 160Hz.  That is a 
count of 16 per 0.1s so the first count is from 0 to 15 corresponding to this 
calculated number.  After a complete count, the next count, an 8 bit 
number, is incremented.  At the end of 0.1s, the output is set to the 
register and stored until access, and then the count is reset and starts 
over. 

The counter is the 8bit proportional representation of the input frequency.  
To test this subsystem, a function generator outputted a TTL wave that 
was read by the CPLD.  The output was then displayed by having the 
microprocessor read the port and output the data in decimal form.  As the 
frequency was adjusted the count changed accordingly. 

Distance 

The distance code works similar to the frequency counter code.  It utilizes 
three counters and outputs a 16bit number in two registers on the second 
CPLD.  The low byte order register contains the distance in CM, and 
counts from 0 to 99 before incrementing the high order byte in the second 
register.  This register is in meters and goes from 0 to 255 meters.  This 
gives a maximum of 256 meters of travel that can be recorded per 
command. 

It was determined by the circumference of the wheel that there are 663 
counts per cm.  This was done by taking 500 counts per motor rotation 
times the 65.5 gear ratio and dividing that by 49.4cm which is the 
circumference of the drive wheel.  This equation is shown in table 2.  That 
yields 663 counts per cm.  Therefore, the first counter does 0 to 662, then 
increments the cm counter.  That counts from 0 to 99, increments the 
meter counters and outputs the meter and cm count to the registers for the 
bus to use. 

Angle 

The angle code is a copy of the distance code with different values.  There 
are three counters that are incremented and two that are outputted.  The 
low byte has the angle in 1 degree increments, the high byte has angles in 
180 degree increments. 

Since the vehicle has a 39cm wheelbase the circumference of the turning 
circle is 122.5cm.  divide this by 360 gives the number of cm/degree 
(about 0.34) and multiply by the number of counts per cm gives 225 
counts per cm.  the same principles as with distance are used, the first 
counter counts to 224 then increments the degree byte.  This equation is 
listed in table 2.  The degree byte counts to 179 then increments the half 
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turn byte.  This is then put on the bus for the microprocessor via the 
control program on CPLD 1. 

Table 2.  Shows the equations used in the counters for angle and distance. 

cm
countscmrotations

rotation
counts 6634.495.65500 =÷×    Distance Equation 

ree
counts

cm
countscm

deg
2256633605.122 =×°÷   Angle Equation 

Control 

The control code is what interfaces the microprocessor to the CPLD’s.  
using three address lines, select and read bar the 8 registers can be 
selected and put on the bus.  Each CPLD has 4 registers, CPLD 1 has the 
frequency counts and CPLD 2 has the Distance counts.  The high order 
address lines selects the CPLD, the other two addresses select the 
register.  Read bar and select have to both be low and the address valid 
before the CPLD will be brought out of high impendence and data sent to 
the bus.  This prevents bus conflicts, and is required for the bus to operate 
at all. 

Power Electronics 

There are two parts to the power electronics, the power system and the H-
bridges. 

Power system 

The power system consists of two 7.2Ah batteries, and a 5v DC/DC 
converter.  The batteries are mounted on the base where they are 
connected to a toggle switch.  The switch is double pole double throw so 
when the vehicle is off, the batteries are connected to a harness that can 
be plugged into the charger and charge the batteries.  This allows for the 
batters to be charged without having to be removed.  When the switch is in 
the on position all of the electronics are powered up through the DC/DC 
converter with the exception of the H-bridges which receive 12volts.  The 
DC/DC converter is an 85% efficient 12volt unregulated to 5volt regulated 
power converter and powers the encoder wheels, CPLDs and 
microprocessor.  The only component receiving 12volts are the H-bridges 
to power the motor.  Using 5volts on all of the electronics eliminates the 
use of the on board power converters and not only conserves battery life 
but also reduces heat and with it reliability problems. 
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All of the ground on board are connected to each other through one 
central point near the H-bridges.  This is to limit noise and clean up the 
signals on all ports.  Also the chassis is grounded to try and eliminate high 
frequency noise and for safety so that any broken or loose wire will go to 
ground and trip the fuse.  There is also a 5A inline fuse between the 
battery and all of the electronics to prevent the possibility of shorting the 
batteries. 

H-bridges 

The H-bridges power the motors and provides direction control.  There are 
two parts to the H-bridge, the power transistors and the logic ports.  It was 
found that transistor arrays are pretty robust, handling 55v, but the logic 
can not handle noise at all, causing a few casualties during design before 
the noise problem was fixed.  However the H-bridges were also the 
constant source of headache because they not only were susceptible to 
noise, but produced it and amplified it from the motors.  The H-bridges are 
also on heat sinks. 

There are two input signals going to the h-bridges from the 
microprocessor, the PWM signal that gets amplified from 5 to 12volts, and 
the direction which is a TTL logic level 0 or 1.  The PWM is created from 
the micro based on the feedback from the encoders via the CPLDs, the 
direction is used mainly for turning which is accomplished by turning the 
motors in opposite directions. 

The output of the H-bridges is a differential signal that is 0 to 12volts.  
Neither of the lines from the motor is set to the system ground, instead 
they are set to a differential ground 12volts from the other line.  This helps 
to filter out some of the noise from the motors using differential signals. 

Platform 

The platform is made of 1/8” aluminum plates that were custom cut, milled, 
and folded.  It was built from scratch and fit for the electronics and motors 
that we were using.  The design which is shown in Fig. 6, is symmetrical 
so that the there would be even weight distribution over the drive wheels 
and the center of turning would be the center of the vehicle.  This made it 
much easier for the turning to be calculated. 

The design is a regular octagon that has a side length of 18cm.  This size 
permits the motors to be butted against each other and the batteries to be 
centered next to the motors.  This also allows for caster holes so that the 
casters can stick up past the bottom plate.  The sides of the bottom plate 
are folded 90degrees with a lip to bolt the top on to it.  This provides ridged 
ness and a place to mount the motors.  Also the DC/DC converter is 
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mounted between the batteries.  Two cable harnesses take all of the 
necessary connection to the top level. 

Electronics are mounted on the top plate on two tiers so that they may all 
fit on board, H bridges and CPLD’s on the lower level and Microprocessor, 
keypad and display on the top. The two cable harnesses can then be 
disconnected and the top disconnected from the bottom for service to the 
motors and batteries if needed. 

The top also provides bracing for the outside of the drive wheels so that 
the amount of stress on the motor shafts is reduced.  Custom made motor 
shaft extensions are added to the hold the wheels and nylon bearing are 
used opposite the motors to support the extensions.  Flexing the aluminum 
a small amount will allow the top to be removed with relative ease. 

 

Figure 6.  The drawing of the base for the platform. 
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Figure 7. Two pieces of the platform after they have been cut, milled, folded, and painted. 

 

Figure 8. Assembled platform with electronics. 
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Figure 9. Assembled platform, side view.. 

  

Figure 10.  CPLDs on the second tier of platform. 
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Figure 11.  Complete platform with electronics. 
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VI. Implementation & Evaluation 

Testing  

The robotic platform is very simple to test.  Once the control program was 
created, the outputs were measured on an oscilloscope to ensure the 
correct functionality.  The automatic PWM adjustment code works 
because the desired speed and measured speed are both displayed on 
the LCD.  The measured speed oscillates around the desired speed as 
predicted, and the oscillation is very small.  The user interface was also 
tested in the same manner, but the UI output was seen on the LCD.  The 
UI was tested by simulating a user.  However, the UI is not “idiot proof.”  If 
invalid data is entered, the vehicle will malfunction.  However, an easy fix 
is possible, but a time limit stopped the progress.  Once the user interface 
was functioning, the vehicle could be given a command.  The final test 
phase required the vehicle to execute a command which was then 
measured with a ruler.  To calibrate the vehicle, the desired command was 
programmed, and the output was measured with a meter stick, or by 
measuring the angle turned.  The CPLD’s could then be adjusted to 
remove the error in movement.  After several iterations, the vehicle was 
calibrated to correctly travel and turn.  The CPLDs are very easy to 
program, so the final calibration was simple. 

Final Tests and Problems 

To measure the success of the project, a set of maneuvers was 
programmed into the robot to maneuver a square.  At first, the results 
were very bad.  The vehicle still needed much calibration.  Little can be 
said about the accuracy of the vehicle because it cannot even maneuver a 
straight line.  However, we were informed of a huge mistake in our design.  
We had twisted all the wires together into one long cable.  This was a fatal 
mistake because the encoder frequency and 12 volt PWM signals were 
coupled together because of the twisting wire cable.  Once the wires were 
separated, the results were much better, but the vehicle would still travel in 
an arch.  Still, the vehicle did maneuver a square, but the accuracy was 
undesirable.  It did perform all the necessary maneuvers involved in 
making a square, and it stopped after the program was executed.  Much 
work is still needed on the system, so a final test could not be done.  The 
best advice for the future is to use a laptop and AD/DA card to control the 
vehicle.  Assembly language is a low level programming language, and it 
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is very difficult to use affectively in this project.  A laptop and C code would 
make the vehicle work flawlessly. 

 

VII. Conclusion 

With the ambitious goal of creating a complete robotic platform from 
scratch to compete with one that was professionally designed and cost 
over 3 times as much, we have had great success.  With a little under 8 
months of development and building our prototype is nothing less then 
remarkable.  It operates well, and has vast amounts of expandability for 
future projects. 

This platform was designed to be a lower cost solution than the Pioneer 2.  
However, unlike the pioneer 2, the expandability on this is much greater.  
Not only can cameras, and wireless web control be added, but different 
types of control systems can be added.  This could be used in lab for 
experimentation with different types of control systems running the vehicle 
to see the results.  It could also be used in a VHDL or VLSI setting to see 
the advantages of these technologies over conventional microprocessors.  
Even the microprocessor classes could use a faster/larger microprocessor 
development board and add much more functionality, friendlier user 
interface, or the ability to store multiple commands and execute them.  No 
to mention RF labs could use this vehicle for work with wireless transition 
of data to and from the vehicle.  The fields that this vehicle can be used for 
are quite abundant. 

Like the vehicle itself, the future for it can utilize any field of study.  Even 
before its completion upgrades and expansions for it were developed.  A 
VHDL version of the entire control system was created, utilizing RAM for 
command storage and even better real time feedback by eliminating 
microprocessor delay.  This vehicle not only benefited us, but will continue 
to benefit others in the years to come. 

This project is not simply something that will just disappear after creation.  
It will also be used in future applications.  This project is not a completely 
new, revolutionary idea.  It is however, a new and improved version of an 
old concept that will see much use in years to come.  This vehicle is using 
some of the latest and greatest technologies such as VHDL (Very high 
speed integrated circuit Hardware Descriptor Language), and high density 
CPLD (Complex Programmable Logic Device).  It also takes some of the 
most commonly used devices such as microprocessors and power 
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transistors; combining them with the new technology to create a control 
system that allows for the high precision desired.  When you start from 
scratch on an old idea, new ways of implementing that idea come to light, 
such as the combination of the VHDL code and Assembly code for a 
complete real-time control system. 

This platform will also serve as a starting point for other projects to come.  
Another group can take this platform and add a camera and some 
sensors, allowing it to follow people, or they could add an arm to it for 
retrieving items desired by the user.  The possibilities are only limited by 
human ingenuity. 
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 US199700079438 

 This is a patent on remote control vehicle that uses PWM to control the 
motors.  It also uses a transistor that automatically changes the PWM 
signal to allow for both forward and reverse direction of the motor.  The 
only difference is the PWM signal is transmitted as an analog-frequency 
signal from the hand held transmitter.  We transmit the control signal, and 
the micro controller creates the PWM.  The whole transistor-switching 
network is the same as what we use because it turns the motor on and off 
at a rate of the PWM frequency. 
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http://www.zionix.com/
http://www.pittmannet.com/
http://standards.ieee.org/reading/ieee/std/lanman/802.11b-1999.pdf
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